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World of catastrophes
Nature

2004/12/26 – Sumatra-Andaman Earthquake
Magnitude estimate between 9.1 and 9.3
Triggered tsunamis causing 230,000 fatalities

2005/08 – Hurricane Katrina
1,836 dead
$81.2 billion damage

Human
26 April 1986 – Chernobyl atomic reactor meltdown
11 September 2001 – Twin Towers in New York

–



Catastrophes: science
Great Hanshin earthquake (1995). Killed over 6,400
people in and around Kobe, Japan.

The data served to prototype a rescue simulation:
Robocup Rescue Domain

Captures the dynamics of natural and man factor
disasters and civil disorders

Includes uncertainty of various parameters
Realistically simulates the events: fire, traffic,
building collapses, road blockage, etc.

–



Robocup Rescue - Scenario
Given a post-event situation

Civilians trapped under collapsed buildings, and
their life signs weakening with time
Some access routs are blocked or destroyed
Fires and civil disorder start and spread throughout
the event site

Manage platoons of Fire brigades, Police forces and
Ambulance teams

Save as many people as possible
Recover and preserve site and its infrastructure
(buildings, communications, etc.)

–



Robocup Rescue - Elements
General capabilities

Mobility, communication, partial situation
awareness at higher reasoning levels

Specialisations
Ambulance teams rescue civilians from rubble and
transport to safety
Fire brigades extinguishing fires
Police forces for traffic ordering, general order and
safety

Our Target: Provide automated decision and
information support for time critical and potentially
irreversible decisions.

–



Task 1: ambulance allocation
Multiple ambulance services

Business oriented operation
Competition for government funds and public
opinion

Given several locations that require medical
assistance, how many ambulances from which firm will
go to which location?

–



Task 2: police patrols
Low ratio of police force vs. operative requirements

How frequently and with what qualitative force to patrol
an area?

How many safe routs vs their quality can the given
police force support? Can and should it be adapted
over time?

–



Task 3: firefighters
Maintain effort toward saving the building or draw back
and minimise the spread of fire?

Concentrate on a multitude of smaller fires or allow
controlled unification and deal with only one location?

Will transportation routs be endangered?
Are there still civilians evacuating from the
area/building?

Push through the fire to victims or save the fire crew
and pull out?

If multiple crews are on site, which one goes?
When?

–



RoadmapRoadmap
Driving applications

search and rescue

Multiagent decision making
description, requirements, complexity

G  thGame theory
classroom game 
repeated strategic and Bayesian games 
fictitious play and regret matching

Stochastic games
DEC-MDP and its specializations

Partially observable stochastic games
I-POMDP framework
I-POMDP solution techniques 
I-POMDP applicationspp
DEC-POMDP

Uncertainty utilization
TTD-MDP  Multiagent EMTTTD MDP, Multiagent EMT



Multiagent decision problemMultiagent decision problem
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Multiagent decision problemMultiagent decision problem
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Multiagent decision problemMultiagent decision problem
joint rewards joint rewards 
(preferences)

reward reward

action actionaction action

E h t ti i  dEach agent optimizes rewards

Single interaction (game)

Strategy: Δ(A)Strategy: Δ(A)



Multiagent decision problemMultiagent decision problem
joint rewards joint rewards 
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reward reward

action actionaction action

E h t ti i  d
Repeated interactions

Each agent optimizes rewards

Strategy: History of observations → Δ(A)Strategy: History of observations → Δ(A)
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Multiagent decision problemMultiagent decision problem
joint rewards joint rewards 
(preferences)

reward reward

action actionaction action

E h t ti i  d

physical state
obs obs

Repeated interactions
Each agent optimizes rewards

Strategy: History of observations → Δ(A)Strategy: History of observations → Δ(A)



Dimensions of interactionDimensions of interaction

Single or Extended
Strategies in extended interactions may be 

different
Extended: Finite or infinite interactions

Cooperative or Non-cooperative

Team HostileNeutral



Dimensions of interactionDimensions of interaction

Joint reward or Joint reward and state
State is dynamic, influenced by actions
State may influence rewards as well

Perfect or Incomplete information about 
others



Predictive and epistemological 
requirements of solutionrequirements of solution

In order to maximize rewards, predict actions of 
othersothers

Common knowledge of rationality
All agents are rational; All know that all are rational; All 

know that all know that all are rational; ...

Common and perfect knowledge of rewards
All know others’ rewards; All know that all know others’ 

rewards; ...

Common and partial knowledge of rewards
Probability distribution over possible rewards is common 

knowledge



Predictive and epistemological 
requirements of solutionrequirements of solution

Epistemological requirements for rational behavior are strict!Epistemological requirements for rational behavior are strict!



Models of interactions (first glance)Models of interactions (first glance)

Single and repeated interactions with joint 
rewards are the focus of traditional game theory

Interactions involving joint state and reward are 
the focus of decision theory inspired approaches 
to game theory. These generally include 
extensions of single agent decision theoretic extensions of single agent decision-theoretic 
models to multiagent settings 



Other applicationsOther applications

RoboticsRobotics

Planetary exploration

S f  i  b  Surface mapping by rovers

Coordinate to explore pre-
defined region optimally Spirit Opportunitydefined region optimally

Uncertainty due to sensors

Robot soccer

Spirit Opportunity

Robot soccer

Coordinate with teammates 
and deceive opponentspp

Anticipate and track others’ 
actions RoboCup Competition



Other applicationsOther applications
Defense

C di  UAV  Coordinate UAV movements 
in battlefields

Exact “ground Exact ground 
situation” unknown

Coordinate anti-air defense 
unitsunits

Distributed SystemsDistributed Systems
Networked Systems

Packet routing
Sensor networks



RoadmapRoadmap
Driving applications

search and rescue

Multiagent decision making
description, requirements, complexity

Game theoryGame theory
classroom game 
repeated strategic and Bayesian games
fictitious play and regret matching

Stochastic games
DEC-MDPs and its specializations

Partially observable stochastic gamesPartially observable stochastic games
I-POMDP framework
I-POMDP solution techniques
I-POMDP applications
Dec-POMDP

Uncertainty Utilization
TTD-MDP, Multiagent EMT



Classroom game: Prisoner’s dilemmaClassroom game: Prisoner s dilemma
Instructions

W   i  t  l   d  i  hi h b d  ill b  t h d ith  i  th  We are going to play a card game in which everybody will be matched with someone in the 
room. I will now give each of you a pair of playing cards, one red card (♥ or ♦) and one black 
card (♠ or ♣). The numbers or faces on the cards will not matter, just the color. You will be 
asked to play one of these cards by holding it to your chest . Your earnings are determined by 
the card that you play and by the card played by the person matched with you. 

If you play your red card, then your earnings will increase by $2, and the earnings of the 
person matched with you will not change. If you play your black card, your earnings do not 
change and the earnings of the person matched with you go up by $3. If you each play your 
red card, you will each earn $2. If you each play the black card, you will each earn $3. If you 
play your black card and the other person plays his or her red card, then you earn zero and the 
other person earns the $5  If you play red and the other person plays black  you earn the $5  other person earns the $5. If you play red and the other person plays black, you earn the $5, 
and the other person earns zero. All earnings are hypothetical. After you choose which card to 
play, hold it to your chest. We then tell you who you are matched with, and you can each 
reveal the card that you played. Record your earnings in the space below. To make this easier, 
please write your name: ____________________ . 

To begin: Would the people in the row that I designate please choose which card to play and 
write the color (R or B) in the first column. Show that you have made your decision by picking 
up the card you want to play and holding it to your chest. Everyone finished? Now, I will pair 
you with another person, ask you to reveal your choice, and calculate your earnings. 
Remember to keep track of earnings in the space provided below. Finally, please note that in 
period 2 you will be matched with a different person  and payoffs will change  In period 3 you period 2 you will be matched with a different person, and payoffs will change. In period 3 you 
will be matched with a different person and payoffs change again, but you get to play with 
him/her in the last three periods.



Classroom game: Prisoner’s dilemmaClassroom game: Prisoner s dilemma
Your payoff table

Period Your card Other’s card Your 
(R or B) (R or B) earnings

1

22

3

4

5



Classroom game: Prisoner’s dilemmaClassroom game: Prisoner s dilemma

Payoff table for Period 1

black red

Player II

ayo tab e o e od

black 3,3 0,5

red 5,0 2,2
Player 

I

Payoff table for Period 2

black red

Player II

black 8,8 0,10

red 10,0 2,2
Player 

I



Game in Normal Form
Defined by a tuple < I, {Ai}i∈I , {Ri}i∈I >

I is the set of players, usually I = {1, ..., n}

Ai is the set of actions (pure strategies) available to
player i.

Space of pure strategy profiles A =
⊗
i∈I

Ai

Let a = (ai, a−i) ∈ A. Where ai ∈ Ai is the action
prescribed to agent i, and a−i ∈

⊗
j∈I\{i}

Aj = A−i

portion of profile adopted by other agents.
Ri : A → R is the reward (utility) of the player i,
given that players simultaneouslyplay their actions

Each agent rationally seeks to maximise its utility

–



Why game is a game?
Is there a guarantee of utility if I don’t know how others
act?

If I know how others act, how should I?

If the game is to be repeated, should I act differently?

–



Guarantees
“Enemy assumption”: A player assumes that all others
collude against it.

Essentially a zero sum game
I = 1, 2, and R1 = −R2.

Guarantee is max
a1∈A1

min
a2∈A2

R1(a1, a2)

Simplest example: Fire station location

–



Guarantees: example
Two plants A and B build a new private fire station

Where should it be located?

Assume fires are deliberate, then time of arrival
dictates utility for the Fire Brigade:

Fire at
A A and B B

S
ta

tio
n near A 0 -1 -1

middle -0.5 -0.5 -0.5
near B -1 -1 0

Minimax value is −0.5 and minimax strategy is middle

–



Equilibria
Given a partial profile a−i ∈ A−i the action choice of
agents except i ∈ I.

a∗i is a best response of agent i ∈ I to a−i if
a∗i ∈ arg max

ai∈Ai

Ri(ai, a−i)

A strategy profile(joint action) a ∈ A is a pure Nash
equilibria if for all i ∈ I ai is a best response to a−i.

–



Equilibria: example
Two plants A and B build a new private fire station.
Where should it be located?

Assume fires are deliberate, then time of arrival
dictates utility for the Fire Brigade:

A A and B B
near A 0 -1 -1
middle -0.5 -0.5 -0.5
near B -1 -1 0

The pair (A and B, middle) is a pure Nash equilibria

–



Non-existence of pure Nash
Police sends patrols to plant A and plant B to try and
catch the saboteurs.

Utility is determined by the similarity of actions:
A B

A 1 -1
B -1 1

It is easy to see that no pair (apolice, asaboteur) is an
equilibrium profile.

Intuition: Surprise factor by randomisation

–



Mixed profile
Mixed strategyof an agent i ∈ I is a probability
distribution πi over Ai, where π(ai) is the probability of
selecting action ai.

Denote ∆i the set of all probability distributions over
Ai. Mixed strategy profile(joint mixed strategy) is a
distribution π = (πi, π−i) ∈

⊗
i∈I

∆i.

π(a) =
∏
i∈I

πi(ai) is the probability that agents will

jointly select pure profile a ∈ A.
Expected utilityis then Eπ[Ri] =

∑
a∈A

π(a)Ri(a)

–



Mixed Nash equilibrium
Given partial mixed profile π−i. π∗

i is a best response
mixed strategy if π∗

i ∈ arg max
πi∈∆i

E(πi,π−i)[Ri]

A complete mixed profile π is in mixed Nash equilibrium
if for all i ∈ I, πi is a best response to π−i.

For the police patrol example equally probable choice
is an equilibrium.

–



Example
Two incidents occur in two distinct and remote
locations

Both require attendance by two ambulance teams

The utilities are
L1 L2

L1 (2,1) (-1,-1)
L2 (-1,-1) (1,2)

Problem:
Two pure Nash exist (L1, L1) and (L2, L2)

Victims at one location are doomed.
Can we improve their chances?

–



Example (cont)
Shouldn’t mixed Nash do just that?

Symmetric mixed Nash exists with each ambulance
randomly selecting a location.
Expected payoff is 1/4!! Half of the times the
ambulances will miss each other and all victims will
perish!

–



Correlated Nash
Let P be a joint distribution over the joint profiles A.

P is a correlated equilibrium if for any agent i ∈ I holds
for all ai, āi ∈ Ai that

∑

a
−i∈A

−i

P (ai, a−i)(Ri(ai, a−i) − Ri(āi, a−i)) ≥ 0

Entire profile is sampled, not composed of random
samples

Requires a correlated random source
E.g. in England: weather at 09:00

–



Example revisited

L1 L2

L1 (2,1) (-1,-1)
L2 (-1,-1) (1,2)

Equilibrium: P ((L1, L1)) = P ((L2, L2)) = 1
2 .

Expected utility is equal for both ambulance teams 3
2

Both incidents have equal chance at the treatment

–



Sad example
Ambulances are independent business services

Cost driven and competitive

Government funds:
Distributed in proportion to saved lives
Recognition for success in major events

Scenario:
Two ambulance services
Three events: two are minor one major

Minor events are local to the services
Major event necessitates both services to handle

–



Sad example (cont)
Assume that total government funds are 4 units

If the major event is handled extra 2 units are allocated

The utilities can be summarised by:
Major Minor

Major (3,3) (0,4)
Minor (4,0) (2,2)

Problem: It is always best to handle the minor event.

But in real life they do concentrate on major events.
Why?

–



Repeated games
Ambulance services “play” this game repeatedly.

Long term accumulation of utility
For infinite repetition discounting by γ < 1 or
averaging of a single repetition utility, rt

i, are used.
∞∑
t=1

γtrt
i or lim

T→∞

1
T

T∑
t=1

rt
i

Sequences of actions (or rules composing them) are
considered

Behaviour rules producing action sequences are
termed policy
In presence of memory new possibilities occur:
trust, revenge, reciprocity, etc.

–



Happy example
Consider again:

Major Minor
Major (3,3) (0,4)
Minor (4,0) (2,2)

Assume the following tit-for-tat policy:
At first attempt to choose “Major”
Then mimic the previous action of the other agent

It is easy to see that TFT is an equilibrium for infinite
utility accumulation, and that (Major, Major) is infinitely
repeated.

–



Bayesian gamesBayesian games
Relax the assumption of perfect knowledge of 

t ’ dagents’ rewards

Type system
Agent’s type: Encompasses private information 

relevant to the agent’s behaviorrelevant to the agent s behavior
Joint probability distribution over types, which is 

common knowledgeg



Bayesian gamesBayesian games

In Harsanyi's own words:In Harsanyi s own words:

“. . . we can regard the attribute vector ci as representing certain 
physical, social, and psychological attributes of player i himself in that it p y , , p y g f p y f
summarizes some crucial parameters of player i's own payoff function Ui
as well as main parameters of his beliefs about his social and physical 
environment . . .”



Bayesian games – Example Bayesian games – Example 

Criminals Criminals

Enter Stay out

Enter 0,-1 2,0

Enter Stay out

Enter 1.5,-1 3.5,0Police 
Patrol

Stay 
out

2,1 3,0 Stay 
out

2,1 3,0Patrol

Policing is weak Policing is strong

Type space: },{ StrongWeakPolice RR=Θ



Bayesian games – Example Bayesian games – Example 
Criminals Criminals

Enter Stay out

Enter 0,-1 2,0

Stay out 2,1 3,0

Enter Stay out

Enter 1.5,-1 3.5,0

Stay out 2,1 3,0
Police 
Patrol

Let p be the probability that the police is weak

Policing is weak Policing is strong

p p y p

Enter Stay out

Enter, Enter 1.5(1-p),-1 2p+3.5(1-p),0

Enter, Stay out 2(1-p), -p+(1-p) 2p + 3(1-p),0

Stay out, Enter 2p + 1.5(1-p), p – (1-
p)

3p + 3.5(1-p),0

Stay out, Stay 
out

2,1 3,0
out



Bayesian games – Example Bayesian games – Example 
Criminals Criminals

Enter Stay out

Enter 0,-1 2,0

Stay out 2,1 3,0

Enter Stay out

Enter 1.5,-1 3.5,0

Stay out 2,1 3,0
Police 
Patrol

For all p ≥ 0, (Enter, Enter) and (Enter, Stay out) is 

Policing is weak Policing is strong

p , ( , ) ( , y )
dominated

Enter Stay out

Enter, Enter 1.5(1-p),-1 2p+3.5(1-p),0

Enter, Stay out 2(1-p), -p+(1-p) 2p + 3(1-p),0

Stay out, Enter 2p + 1.5(1-p), p – (1-
p)

3p + 3.5(1-p),0

Stay out, Stay 
out

2,1 3,0
out



Bayesian games – Example Bayesian games – Example 
Criminals Criminals

Enter Stay out

Enter 0,-1 2,0

Stay out 2,1 3,0

Enter Stay out

Enter 1.5,-1 3.5,0

Stay out 2,1 3,0
Police 
Patrol

For all p ≥ 0, (Enter, Enter) and (Enter, Stay out) is 

Policing is weak Policing is strong

p , ( , ) ( , y )
dominated

so the games collapses into:

Enter Stay out

Stay out, Enter 2p + 1.5(1-p), p – (1-
p)

3p + 3.5(1-p),0
p)

Stay out, Stay 
out

2,1 3,0



Bayesian games – Example Bayesian games – Example 
Criminals Criminals

Enter Stay out

Enter 0,-1 2,0

Stay out 2,1 3,0

Enter Stay out

Enter 1.5,-1 3.5,0

Stay out 2,1 3,0
Police 
Patrol

Policing is weak Policing is strong

Enter Stay outy

Stay out, Enter 1.5 + 0.5p, 2p -1 3.5 – 0.5p, 0

Stay out, Stay 2 1 3 0

For p > 0.5, Enter is a dominating action for the criminal and 
{(Stay out  Stay out) Enter} is a Nash equilibrium 

Stay out, Stay 
out

2,1 3,0

{(Stay out, Stay out),Enter} is a Nash equilibrium 
For p ≤ 0.5, {(Stay out, Stay out), Enter} and {(Stay out, 

Enter), Stay out} are Nash equilibria



Bayesian games – Example Bayesian games – Example 
Criminals Criminals

Enter Stay out

Enter 0,-1 2,0

Stay out 2,1 3,0

Enter Stay out

Enter 1.5,-1 3.5,0

Stay out 2,1 3,0
Police 
Patrol

Policing is weak Policing is strong

Enter Stay outy

Stay out, Enter 1.5 + 0.5p, 2p -1 3.5 – 0.5p, 0

Stay out, Stay 2 1 3 0

EU(Stay out, Enter) =
EU(Stay out  Stay out) =

Stay out, Stay 
out

2,1 3,0

)2(5.05.3)5.05.3)(1()5.05.1( −+−=−−++ pxppxxp
+ 3)1(32EU(Stay out, Stay out) =

Police is indifferent when  
xxx −=−+ 3)1(32

2/1
3)2(5.05.3

=
−=−+−

x
xpxpp

2/1=x



Bayesian games – Example Bayesian games – Example 
Criminals Criminals

Enter Stay out

Enter 0,-1 2,0

Stay out 2,1 3,0

Enter Stay out

Enter 1.5,-1 3.5,0

Stay out 2,1 3,0
Police 
Patrol

Policing is weak Policing is strong

Enter Stay outy

Stay out, Enter 1.5 + 0.5p, 2p -1 3.5 – 0.5p, 0

Stay out, Stay 2 1 3 0

EU(Enter) =
EU(Stay out) =

Stay out, Stay 
out

2,1 3,0

1)22()1(1)12( +−=−+− ypyyp
0EU(Stay out) =

Criminal is indifferent when  
0

)1(2/1
0)22(1

py
py
−=
=−+
)1(2/1 py=



Bayesian games – Example Bayesian games – Example 
Criminals Criminals

Enter Stay out

Enter 0,-1 2,0

Stay out 2,1 3,0

Enter Stay out

Enter 1.5,-1 3.5,0

Stay out 2,1 3,0
Police 
Patrol

3 B i  N h ilib i

Policing is weak Policing is strong

3 Bayesian Nash equilibria
{Stay out, Enter} for any p
{(Stay out, Enter), Stay out} if p ≤ 0.5{( y , ), y } p

if p ≤ 0.5 }
2
1,

2
1,

)1(2
21,

)1(2
1{

p
p

p −
−

− 22)1(2)1(2 pp



Bayesian gamesBayesian games

In general, a strategy profile            is a 
Bayesian Nash equilibrium if for each agent i

},{ ji ππ

and its type,    , iθ

),())(,(maxarg)( jijjiii i
paR θθθπθπ θ∑= ),())(,(g)( jijji

Aa
ii

jj

i
ii

p
θ

θ∑
Θ∈∈



Repeated gamesRepeated games

In game theory, two models of decision-
making in repeated interactions are popular: 

Fictitious playp y
Rational learning



Repeated games – Fictitious playRepeated games – Fictitious play
Simplest model of decision-making in repeated games
At each stage  an agent ascribes a mixed strategy to the At each stage, an agent ascribes a mixed strategy to the 
other,
Other agent is assumed to act according to this mixed 
strategy

)( j
t

i ab

strategy
The strategy is computed as follows:

⎪⎧ =−t aaif 11 Maintain a
f  

⎪⎩

⎪
⎨
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≠

=
+=

−
−

j
t
j

jj
j

t
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t

aaif

aaif
aFaF

1
1

0

1
)()( frequency 

count of 
previous actions

j
t
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Agent computes its best response to the mixed strategy of 

∑
∈

=

jj Aa
j

t
j

ji aF
ab

)(
)(

Agent computes its best response to the mixed strategy of 
other  



Fictitious play – ExampleFictitious play – Example
Police patrol 2

Coordination 

Enter Stay out

Enter 0,0 1,1Police 
game

, ,
Stay out 1,1 0,0

patrol 1

2 pure strategy Nash equilibria and one mixed strategy 
Nash equilibrium

{E t  St  t} {St  t  E t }{Enter, Stay out} {Stay out, Enter}

{ }5.0,5.0,5.0,5.0



Fictitious play – ExampleFictitious play – Example
Police patrol 2

Coordination 

Enter Stay out

Enter 0,0 1,1Police 
game

, ,
Stay out 1,1 0,0

patrol 1

Round Patrol 1 Patrol 2 1’s belief 2’s belief

0 (1,0.5) (1,0.5)

1 Stay out Stay out (1,1.5) (1,1.5)

2 Enter Enter (2,1.5) (2,1.5)

3 Sta  o t Sta  o t (2 2 5) (2 2 5)3 Stay out Stay out (2,2.5) (2,2.5)

4 Enter Enter (3,2.5) (3,2.5)

... ... ... ... ...



Fictitious play – ExampleFictitious play – Example
Police patrol 2

Coordination 

Enter Stay out

Enter 0,0 1,1Police 
game

, ,
Stay out 1,1 0,0

patrol 1

Round Patrol 1 Patrol 2 1’s belief 2’s belief

0 (1,0.5) (1,0.5)Nash equilibrium!
1 Stay out Stay out (1,1.5) (1,1.5)

2 Enter Enter (2,1.5) (2,1.5)

3 Sta  o t Sta  o t (2 2 5) (2 2 5)

Nash equilibrium!

3 Stay out Stay out (2,2.5) (2,2.5)

4 Enter Enter (3,2.5) (3,2.5)

... ... ... ... ...



Fictitious playFictitious play
Interesting properties

If an action vector is a strict Nash equilibrium of a 
stage game, it is the steady state of fictitious play in the stage game, it is the steady state of fictitious play in the 
repeated game

If th  i i l di t ib ti  f h t’  t t i  If the empirical distribution of each agent’s strategies 
converges in fictitious play, then it converges to a Nash 
equilibrium

Fictitious play in repeated games converges if the 
game is a 2x2 game with generic payoffs or is a zero-game is a 2x2 game with generic payoffs or is a zero
sum game



Regret: Emotion
Regret is a realisation of a missed opportunity

Action choice suboptimal in retrospective

In common practise people use it to improve their
future decisions.

The current strategy is modified, to match the
optimal retrospective

Given that we play a game repeatedly, can this concept
be utilised to rationally improve utility accumulation?

– p. 1



Regret: Formalisation
Given a game G =< I, {Ai}, {Ri} >

History of play at time t is a sequence of joint

profiles ht = (aτ )tτ=1 ∈
t
⊗

τ=1

A, where A =
⊗

i∈I

Ai

Consider the following definition:
Lost opportunity:
Lt
i(a

∗
i , a

′
i) =

1

t

∑

τ≤t:aτ

i
=a∗

i

[Ri(a′i, a
τ
−i)−Ri(a

τ )]

Disappointment (regret):
Dt

i(a
∗
i , a

′
i) = max{Lt

i(a
∗
i , a

′
i), 0}

– p. 2



Regret Matching
Assume at time t agent i took action a∗i

Denote pt+1

i (ai) the probability of agent i choosing
action ai at time step t+ 1

To match regret one should:
Compute the regret matrix Dt

i(a
∗
i , a

′
i)

At time t+ 1 the agent should select its action w.r.t.:

pt+1

i (ai) =







1

µD
t
i(a

∗
i , ai) ai 6= a∗i

1−
∑

a′

i
∈Ai

pt+1

i (a′i) otherwise

– p. 3



Example

l1 l2

l1 (2,1) (-1,-1)
l2 (-1,-1) (1,2)

Lt
i(a

∗
i , a

′
i) =

1

t

∑

τ≤t:aτ

i
=a∗

i

[Ri(a′i, a
τ
−i)−Ri(a

τ )]

Dt
i(a

∗
i , a

′
i) = max{Lt

i(a
∗
i , a

′
i), 0}

t a1 a2 R
D1 D2

p1(l1) p2(l1)
l1 → l2 l2 → l1 l1 → l2 l2 → l1

1 l2 l1 (-1,-1) 0 3 3 0 3

10

7

10

2 l2 l2 (1,2) 0 1 3

2
0 1

10
0

3 l1 l2 (-1,-1) 2

3

1

3
1 0 1

15
0

4 l2 l2 (1,2) 2

4
0 3

4
0 0 0

– p. 4



Regret: behaviour convergence
Let ht = (aτ )tτ=1 be the history of play up to time t.

Empirical distribution of joint profiles is:
zt(a) = 1

t |{τ ≤ t : aτ = a}|

Theorem (Hart-MasColell, Hart):
If every agent matches its regret, then the sequence zt

converges almost surely to the set of correlated
equilibria.

– p. 5



Stochastic process
Stochastic process is a sequence of random variables
X1, . . . , Xt, . . . .

Completely described by the conditional probability
Pr(Xt = xt|X1 = x1, ..., Xt−1 = xt−1)

For Markovian process
Pr(Xt = xt|X1 = x1, ..., Xt−1 = xt−1) = Pr(Xt =
xt|Xt−1 = xt−1) = Tt(xt|xt−1)

Process is homogeneous if exists transition matrix
T (x′|x) = Pr(Xt = x′|Xt−1 = x) for all t

– p. 6



Regret Matching: Markov chain
Random choice of next action given the current one

Transition matrix for agent i at time t:

T t+1

i (a′i|a
∗
i ) =







1

µD
t
i(a

∗
i , ai) ai 6= a∗i

1−
∑

a′

i
∈Ai

T t+1

i (a′i|a
∗
i ) otherwise

Exists stationary probability qt+1

i so that qt+1 = T t
i q

t+1

i

– p. 7



Regret Matching: Markov chain
Theorem (Hart-MasColell, Hart):

If player i chooses action at time t+ 1 according to
qt+1

i , then its regrets Dt
i(·|·) converge to zero

If every player adopts the above then zt converges
almost surely to the set of correlated equilibria

– p. 8
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Stochastic (Markov) Games
Regret Matching had some very interesting elements

Agent concentrates exclusively on its regret. It is
essentially the state of the world.
Agent’s utility was essentially determined by the
change in the state
Probabilistically selected actions w.r.t. state
Action sequence was generated by a concise rule,
or policy

Can this situation be explicitly modelled?

Can a “game” be described with these properties?

–



Markovian Environment
Consider the tuple < S, s0, A, T >

S set of agent’s world states, with s0 being the
initial one
A is the set of actions available to the agent
T : S ×A× S → [0, 1] is the transition matrix.
T (s′, a, s) is the probability that the world will
change from state s ∈ S to state s′ ∈ S if agent
performs a ∈ A

What a rational agent would do with such a setting?

–



How does it work?
At time t = 0 the world starts at state s0

Then decision loop is repeated
Agent chooses an action at ∈ A

Action at is applied
The world changes its state. st+1 is chosen w.r.t.
T (·|st, at)

Time step occurs t← t + 1

How does an agent choose its action?

–



Example
For example the crime rate is weakly responsive to the
police presence

Modelled by a Markovian environment
S = {high,medium, low} is the crime rate
A = {large, small} is the police force size

T (·, a, ·)
a = large a = small

high medium low high medium low
high 0 0.7 0.3 1 0 0

medium 0 0.5 0.5 0.5 0.5 0
low 0 0 1 0.1 0.3 0.6

–



Markov Decision Problem
The tuple < S, s0, A, T > is only the environment

Rational agents needs a performance measure to
decide on an action (sequence)

Markov Decision Problem (MDP) is a tuple
< S, s0, A, T, r >

Given a utility function r : S ×A× S → R

Utility based performance measure

Finite horizon T <∞: E

(
T∑

t=0
r(st+1, at, st)

)

Infinite horizon γ < 1: E

(
∞∑
t=0

γtr(st+1, at, st)

)

Infinite Average: lim
T→∞

E

(
1
T

T∑
t=0

r(st+1, at, st)

)

–



Action sequence by policy
Formally infinite performance measures would require
strategies to be infinite sequences of actions

Instead we define a policy
Repeatedly applied rule to construct the sequence
We’ll focus on π : S → ∆(A), where ∆(A) is the
space of distributions over A

Sufficiency of policy space
The sufficient statistics set for previous activity is
the domain
Performance may not be improved by a more
complex policy
π : S → ∆(A) is sufficient for single agent MDPs

–



How good is a policy?
Denote V π(s) the utility accumulated by
an agent following policy π if the system starts in state s.

V π(s) =
∑
a

π(s, a)
∑
s′

(R(s′, a, s) + γV π(s′)) T (s′|s, a)

Define auxiliary quality of action Qπ(s, a)

Denotes the utility gained by an agent by applying
a ∈ A in state s and then following policy π

V π(s) =
∑
a

π(s, a)Qπ(s, a)

Qπ(s, a) =
∑
s′

(R(s′, a, s) + γV π(s′))T (s′|s, a)

Notice that given π, V π is the solution to a system of
linear equations

–



Example
Crime rate model:

S = {high, medium, low} is the crime rate

A = {large, small} is the police force size

T (·, a, ·)
a = large a = small

high medium low high medium low

high 0 0.7 0.3 1 0 0

medium 0 0.5 0.5 0.5 0.5 0

low 0 0 1 0.1 0.3 0.6

Police chief will receive:
A reprimand if the crime rate increases
A frown from his neighbour if it remains the same
A medal if it drops
A bad reputation if he uses too much force

–



Example
Crime rate model:

S = {high, medium, low} is the crime rate

A = {large, small} is the police force size

T (·, a, ·)
a = large a = small

high medium low high medium low

high 0 0.7 0.3 1 0 0

medium 0 0.5 0.5 0.5 0.5 0

low 0 0 1 0.1 0.3 0.6

Police chief utility is:

R(·, a, ·)
a = large a = small

high medium low high medium low

high -1.5 0 0 -0.5 1 1

medium -2 -1.5 0 -1 -0.5 1

low -2 -2 -1.5 -1 -1 -0.5

–



Example
A policy π : S → ∆(A) for the chief would be to decide
how many people he send out every day with what
probability depending on that day’s situation.

Assume that he always send out large force
π(s) = (1, 0)

Assume also that he likes to say “Tomorrow is another
day” and assigns γ = 0.5

What would be his benefit?

–



Example
T (·, a = large, ·) R(·, a = large, ·)

high medium low high medium low

high 0 0.7 0.3 -1.5 0 0

medium 0 0.5 0.5 -2 -1.5 0

low 0 0 1 -2 -2 -1.5

V π(s) =
∑

s′

(R(s′, a, s) + γV π(s′))T (s′|s, a)

V π(h) = 0.0 ∗ (..) + 0.7 ∗ (0.0 + 0.5V π(m)) + . . .

0.3 ∗ (0.0 + 0.5V π(l))

V π(m) = 0.0 ∗ (..) + 0.5 ∗ (−1.5 + 0.5 ∗ V π(m)) + . . .

0.5 ∗ (0.0 + 0.5V π(l))

V π(l) = 0.0 ∗ (..) + 0.0 ∗ (..) + 1.0 ∗ (−1.5 + 0.5V π(l))

–



Example
T (·, a = large, ·) R(·, a = large, ·)

high medium low high medium low

high 0 0.7 0.3 -1.5 0 0

medium 0 0.5 0.5 -2 -1.5 0

low 0 0 1 -2 -2 -1.5

V π(s) =
∑

s′

(R(s′, a, s) + γV π(s′))T (s′|s, a)

V π(h) = 0.35V π(m) + 0.15V π(l)

V π(m) = −0.75 + 0.25V π(m) + 0.25V π(l)

V π(l) = −1.5 + 0.5V π(l)

–



Example
T (·, a = large, ·) R(·, a = large, ·)

high medium low high medium low

high 0 0.7 0.3 -1.5 0 0

medium 0 0.5 0.5 -2 -1.5 0

low 0 0 1 -2 -2 -1.5

V π(h) = −1.15 (max ≈ −0.59)

V π(m) = −2 (max ≈ −1.13646)

V π(l) = −3 (max ≈ −1.285714)

–



Optimal policy
Rational agent would like to find π∗ ∈ arg max

π
V π(s0)

Bellman-Ford Equation:
Exists V ∗ so that:

V ∗(s) = max
π

∑
a

π(s, a)
∑
s′

(R(s′, a, s) + γV ∗(s′)) T (s′|s, a)

V ∗ = max
π

V π, and exists π∗ so that V ∗ = V π∗

π∗(s, ·) = arg max
π(s,·)

∑
a

π(s, a)
∑
s′

(R(s′, a, s) + γV ∗(s′)) T (s′|s, a)

But how do we find V ∗??

–



Value Iteration
Dynamic Programming solution

Start from some arbitrary small V0(·)

Propagate back in time:
Vt+1(s) = max

π

∑
a

π(s, a)
∑
s′

(R(s′, a, s) + γVt(s
′)) T (s′|s, a)

Propagation step is a γ-contraction mapping
Procedure converges to V ∗

–



Policy Iteration
But we can have an intermediate policy:

Start with some arbitrary Q0(·, ·)

Loop the following:
Compute a greedy policy w.r.t. Qt:

π(s, a) = arg max
a

Qt(s, a)

Compute policy value V π

Compute
Qt+1(s, a) =

∑
s′

(R(s′, a, s) + γV π(s′)) T (s′|s, a)

Converges being a contraction mapping as well

–



Markov games
State may be subject to effects by more than one agent

Multiagent Markovian Environment < S, s0, {Ai}
N
i=1, T >

S and s0 ∈ S are the state space and initial state
Ai is the space of i’th agent actions
T : S ×A× S → [0, 1], where A =

⊗
Ai.

T (s′, a, s) is the probability that state will change
from s to s′ if joint action a = (a1, ..., aN ) is taken

Markov Game is then < S, s0, {Ai}
N
i=1, T, {Ri}

N
i=1 >

Ri : S × A→ R, where A =
⊗

Ai

Usually discount accumulated

–



Policy profile
For regular games we had a mixed strategy profile
π = (π1, ..., πN )

π(a) =
∏

πi(ai)

For Markov games we define a joint policy profile
π = (π1, ..., πN )

π(s, a) =
∏

πi(s, ai)

Notice that a policy of an individual agent may be
“pure”

For each s ∈ S exists a single ai ∈ Ai so that
π(s, ai) = 1

–



Minimax solution
For N = 2 and R1 = −R2 we can formulate a minimax
solution

Let V (s) be expected reward for the optimal policy
starting at state s ∈ S

Let Q(s, a1, a2) the expected reward for the optimal
policy if at first agents perform (a1, a2)

Then system of equations holds:
V (s) = max

π
min
a2

∑
a1∈A1

Q(s, a1, a2)π(a1)

Q(s, a1, a2) = R(s, a1, a2) + γ
∑

s′∈S

T (s′, a1, a2, s)V (s′)

–



Equilibrium solution
Given the estimate of quality Q(s, a) one can define
equilibrium

Policy profile π = (π1, ..., πN ) is an equilibrium if for any
π′ = (π′

i, π−i)∑
a∈A

π(s, a)Qi(s, a) ≥
∑
a∈A

π′(s, a)Qi(s, a)

–



Dec-MDP
Dec-MDP is a Markov Game with identical utilities

Models a cooperating (team) group of agents
Find a joint policy profile to maximise the
(common) utility
Notice that the individual sub-policies are executed
independently

Extremely hard to solve!!

Frequently the state is a composition of:
Individual properties of agents
Intrinsic agent independent property

–



TI-Dec-MDP

Let < S =
N⊗

i=0
Si, {Ai}, T,R > be a Dec-MDP with

decomposable state space

Transition independence implies that:
Exist Ti : Si × Ai × Si → [0, 1] for 1 ≤ i ≤ N

Exists T0 : S0 × S0 → [0, 1]

For s′ = (s′1, ..., s
′
N ), s = (s1, ..., sN ) ∈ S and

a = (a1, ..., aN ) ∈ A holds:

T (s′, a, s) = T0(s
′
0, s0)

N∏
i=1

Ti(s
′
i, ai, si)

Notice that the utility function R has not been factored.

–



TI-Dec-MDP (cont)
TI-Dec-MDPs are hard to solve, but exponentially
simpler than Dec-MDPs

πi : S × A→ [0, 1] are sufficient policies
Solved by a dedicated Coverage Set Algorithm for
structured utilities
Approximated by an iterative procedure

Asynchronous policy iteration
Begin from an arbitrary policy profile π = (π1, ..., πN )

Each agent i in its turn
Compute the reduced utility Ri = E[R] w.r.t. π−i

Compute optimal policy π∗
i for the resulting MDP

< S0 × Si, Ai, T0 · Ti, Ri >

Let π ← (π∗
i , π−i)

–
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Partially observable stochastic gamePartially observable stochastic game
POSGs are a generalization of POMDPs and 
normal form games to multiple states and 
multiple agents

POSG ( lti l  t t

Normal form 

POSG (multiple states
multiple agents)

Normal form 
game

(single state
multiple agents)

POMDP
(multiple states
single agent) multiple agents)



Multiagent POMDPsMultiagent POMDPs

Multiagent POMDP frameworks generalize POMDPs to Multiagent POMDP frameworks generalize POMDPs to 
multiagent settings

Decentralized POMDPs (DEC POMDPs)Decentralized POMDPs (DEC-POMDPs)
Objective view of the interaction

(What should all agents do?) 
Applicable to team problemsApplicable to team problems
Initial beliefs of agents are common knowledge 

Interactive POMDPs (I-POMDPs)Interactive POMDPs (I POMDPs)
Subjective view of the interaction
(What should a particular agent do?)
Applicable to cooperative and non-cooperative problemsApplicable to cooperative and non cooperative problems
Beliefs of other agents are unknown



Background: POMDPBackground: POMDP
Decision-making in single agent complex domains: 

Partially Observable Markov Decision ProcessPartially Observable Markov Decision Process

Single agent Tiger problem (digression from search & rescue)

Task: Maximize collection of gold over a 
finite or infinite number of steps while 
avoiding tiger

g g g p ( g )

avoiding tiger

Tiger emits a growl periodically (GL or 
GR)GR)

Agent may listen or open doors (L, OL, 
or OR)or OR)



Background: POMDPBackground: POMDP

Question 1: How rich should S be?Question 1: How rich should S be?
Answer: As much as you can

Question 2: What if other agents are present?

Problem

“... there is currently no good way to combine game
theoretic and POMDP control strategies.”g

- Russell and Norvig
AI: A Modern Approach, 2nd Ed.



Background: POMDPBackground: POMDP
Steps to compute a strategy (policy)

1. Model of the decision making situation:

iiiiii OCRTOAS ,,,,,, Ω

2. Update beliefs:

iiiiii

)()(: SASSE Δ→Ω××Δ

L GL
)Pr( TR

0 10.5

L GR

)()(

L,GL

)Pr( TR0 0.15

L,GR

)Pr( TR
0 10.85

)Pr( TR )(

0 10.

OR,* OL,*

)Pr( TR5



Background: POMDPBackground: POMDP
3. Optimal policy computation:

B ild h  l k h d h bili  Build the look ahead reachability tree
Dynamic programming (DP)



Background: POMDPBackground: POMDP
Dynamic Programming in POMDPsg g

OL OR
TL TR

L
TL TR



Background: POMDPBackground: POMDP
DP in POMDPs

Number of policy trees is exponential in 
observations and doubly exponential in horizons!

L

GL GR

L

GL GR

L

GL GR

OLOR

L

OLOL

L

LOR

OL

TL TROLL

GL GR

LL

GL GR

OLOR

GL GR

TL TR



Background: POMDPBackground: POMDP
DP in POMDPs

Prune suboptimal policy trees

L

GL GR

L

GL GR

L

OLOL

L

LOR

TL TROLL

GL GR

LL

GL GR

TL TR



Background: POMDPBackground: POMDP
Policies in the tiger problem

Look ahead 1 step
(horizon 1)

[0.0 – 0.02] [0.39 – 0.61] [0.61 – 0.98][0.02 – 0.39] [0.98 – 1.0]

LL LL L

* *GLGR*GLGR Look ahead 2 steps

LOL OR

Look ahead 2 steps
(horizon 2)

1 of 4 different policies



I-POMDPI-POMDP
Key ideas

Include possible behavioral models of other agents in  
the state space. Agent’s beliefs are distributions over 
the physical state and models of othersp y

Intentional (types) and subintentional models

Intentional models contain beliefs. Beliefs over models 
give rise to interactive belief systems 

Interactive epistemology, recursive modeling

Finitely nested belief system as a computable 
approximation of the interactive belief system

C b ’ b li f ( bj iCompute best response to agent’s belief (subjective 
rationality)



Potential applicationsPotential applications

RoboticsRobotics

Planetary exploration

S f  i  b  Surface mapping by rovers

Coordinate to explore pre-
defined region optimally Spirit Opportunitydefined region optimally

Uncertainty due to sensors

Robot soccer

Spirit Opportunity

Robot soccer

Coordinate with teammates 
and deceive opponentspp

Anticipate and track others’ 
actions RoboCup Competition



I-POMDPI-POMDP
Definition of a finitely nested I-POMDP of strategy 

llevel for agent i in a 2 agent setting

iiiiili OCROTAIS ,,,,,, Ω
l

iiiiili ,,,,,,,

ISi,l is the set of interactive states

jljljljli SMMwhereMSIS ∪Θ=×= −−− 1,1,1,,

jjjjjljlj OCROTAb ,,,,,,1,1, Ω= −−θ and Bayes rational



I-POMDPI-POMDP
Definition of a finitely nested I-POMDP of strategy 

llevel    for agent i in a 2 agent settingl

iiiiili OCROTAIS ,,,,,, Ω

ISi,l is the set of interactive states
A is the set of joint actions

iiiiili ,,,,,,,

A is the set of joint actions
Ti is the transition function defined on the physical state 
(beliefs of others cannot be directly manipulated)
Ωi is the set of observations of agent i
Oi is the observation function (beliefs of others are not 
directly observable)directly observable)
Ri is the reward function of agent i



Interactive beliefs in I-POMDPInteractive beliefs in I-POMDP
“In interactive contexts […], it is important to take into 

account not only what the players believe about account not only what the players believe about 
substantive matters […] but also what they believe 
about the beliefs of other players.”
“One specifies what each player believes about the 
substantive matters, about the beliefs of others about 
these matters, about the beliefs of others about the , f f
beliefs of others, and so on ad infinitum.”

- Robert J. Aumann

New concept: Interactive beliefs
New approach to game theory: Epistemic  decision New approach to game theory: Epistemic, decision 
analytic



Interactive beliefs in I-POMDPInteractive beliefs in I-POMDP
Agent i’s belief is a distribution over the physical state 
and models of j

)( ii ISb Δ∈ )( ii

)( jj ISb Δ∈ )( jj ISb Δ∈

Uncountably infinite Hierarchical
belief systems
have been explored jj

)( ii ISb Δ∈ )( ii ISb Δ∈ )( ii ISb Δ∈ )( ii ISb Δ∈

in game theory



ObservationObservation
Amount of information in interactive belief 
hierarchy is finitehierarchy is finite

Information content decreases asymptotically with 
the number of levels

Q ti  1  H   l l  h ld  Question 1: How many levels should we 
include?
Answer: As many as we canAnswer: As many as we can

Can one work with infinite levels?
Answer: Yes, in some special cases, p



ObservationObservation
Minimax in Chess game

Model of agent’s possible moves
Model the other player’s possible responses

Assume she is rational (is she?)Assume she is rational (is she?)

Model the other player modeling the agent’s 
possible responses

Assume she believes agent is rational (does she?)

Model further ...
Assume that she believes that agent believes that Assume that she believes that agent believes that 
she is rational ...

Include as much detail and levels as you 
can 



I-POMDPI-POMDP
Integrate models of others in a decision-theoretic 
frameworkframework

An important model is a POMDP describing an agent – it 
includes all factors relevant to agent’s decision making.  g g
These are intentional models (BDI)

Represent uncertainty by maintaining beliefs over the state 
d d l  f th  t   Thi  i  i  t  i t ti  and models of other agents.  This gives rise to interactive 

belief systems 
interactive epistemology

When no other agents are present beliefs become “flat” 
and classical POMDP results

Computable approximation of the interactive beliefs: 
finitely nested belief systems 

infinitely nested beliefs are computable if there is common 
knowledge – Nash equilibriaknowledge Nash equilibria



Belief update in I-POMDPBelief update in I-POMDP
Formalization



Belief update in I-POMDPBelief update in I-POMDP

T k M i i ll ti f ld fi it

Multiagent Tiger problem

Task: Maximize collection of gold over a finite or 
infinite number of steps while avoiding tiger

Each agent hears growls as well as creaks (S, CL, or 
CR)CR)

Each agent may open doors or listen
Each agent is unable to perceive other’s observation agents i & j

Understanding the I-POMDP (level 1) belief update

LL
pj (TL)

pj (TL)



Belief update in I-POMDPBelief update in I-POMDP

T k M i i ll ti f ld fi it

Multiagent Tiger problem

Task: Maximize collection of gold over a finite or 
infinite number of steps while avoiding tiger

Each agent hears growls as well as creaks (S, CL, or 
CR)CR)

Each agent may open doors or listen
Each agent is unable to perceive other’s observation agents i & j

Understanding the I-POMDP (level 1) belief update

L GL Spj (TL)
L GL,Spj (TL)

pj (TL) pj (TL)



Belief update in I-POMDPBelief update in I-POMDP

T k M i i ll ti f ld fi it

Multiagent Tiger problem

Task: Maximize collection of gold over a finite or 
infinite number of steps while avoiding tiger

Each agent hears growls as well as creaks (S, CL, or 
CR)CR)

Each agent may open doors or listen
Each agent is unable to perceive other’s observation agents i & j

Understanding the I-POMDP (level 1) belief update

L GL S

L,GL

L,GR
pj (TL)

L GL,Spj (TL)

L,GR

pj (TL) pj (TL)L,GL



Belief update in I-POMDPBelief update in I-POMDP

T k M i i ll ti f ld fi it

Multiagent Tiger problem

Task: Maximize collection of gold over a finite or 
infinite number of steps while avoiding tiger

Each agent hears growls as well as creaks (S, CL, or 
CR)CR)

Each agent may open doors or listen
Each agent is unable to perceive other’s observation agents i & j

Understanding the I-POMDP (level 1) belief update

L GL S

L,GL

L,GR

pj
(TL)

pj (TL)
L GL,Spj (TL)

L,GR

pj (TL)pj (TL) pj (TL)
L,GL



DP in I-POMDPDP in I-POMDP
Recurse through levels beginning with level 0

Agent j
l l 0 d l  f h i  1level 0 models of horizon 1

(assumes agent i is noise)

a1 a2 a1 a2a1a1a2



DP in I-POMDPDP in I-POMDP
Best response to level 1 belief at horizon 1

Agent j 
l l 0 d l  f h i  1

Agent i
l l 1 level 0 models of horizon 1level 1

a1

a1 a2 a1 a2a1a1a2



DP in I-POMDPDP in I-POMDP

Agent j 
l l 0 d l  f h i  2

Agent i
l l 1 level 0 models of horizon 2level 1

a a a aa1

a1 a2

o1 o2

a1

a2 a1

o1 o2

a1

a1 a2

o1 o2

a1

a2 a1

o1 o2

1 2 2 1 1 2 2 1



DP in I-POMDPDP in I-POMDP
Best response to level 1 belief at horizon 2

Agent j 
l l 0 d l  f h i  2

Agent i
l l 1 level 0 models of horizon 2level 1

a1
o1 o2

a a a a

a1 a2

a1

a1 a2

o1 o2

a1

a2 a1

o1 o2

a1

a1 a2

o1 o2

a1

a2 a1

o1 o2

1 2 2 1 1 2 2 1



DP in I-POMDPDP in I-POMDP

Agent j 
l l 0 d l  f h i  3

Agent i
l l 1 level 0 models of horizon 3level 1

a a

a1
o1

o2

a a

a1
o1

o2

a1

a1 a2

o1 o2

a1

a2 a1

o1 o2

a1

a1 a2

o1 o2

a1

a2 a1

o1 o2

1 2 2 1 1 2 2 1



DP in I-POMDPDP in I-POMDP
Best response to level 1 belief at horizon 3

Agent j 
l l 0 d l  f h i  3

Agent i
l l 1 level 0 models of horizon 3level 1

a1
o1

o2

a1
o1 o2

a1
o1 o2

1

a a

a1
o1

o2

a a

a1
o1

o2

a1 a2 a2 a1

a1

a1 a2

o1 o2

a1

a2 a1

o1 o2

a1

a1 a2

o1 o2

a1

a2 a1

o1 o2

1 2 2 1 1 2 2 1



POMDPs and I-POMDPsPOMDPs and I-POMDPs
Beliefs – probability distributions over states 
are sufficient statisticsare sufficient statistics

They fully summarize the information contained in 
any sequence of observations

Solving POMDPs is hard (P-space) 
d ( l f l )We need approximations (e.g., particle filtering)

Solving I-POMDPs is at least as hardSolving I-POMDPs is at least as hard
An approximation: interactive particle filtering 

If recursion does not terminate, look for fixed 
points



Improving DP in I-POMDPImproving DP in I-POMDP

The interactive state space is very large because 
it includes models of other agents. Theoretically, 
th   f t bl  d l  i  t blthe space of computable models is countably
infinite

The curse of dimensionality is especially potent for The curse of dimensionality is especially potent for 
I-POMDP
I-POMDP faces the curse of history afflicting both y g
agents

Can we reduce the size of the interactive state 
space and thereby mitigate the curse of 
dimensionality?



Improving DP in I-POMDPImproving DP in I-POMDP

Can we reduce the size of the interactive 
state space and thereby mitigate the curse 
of dimensionality without loss in value?



Behaviorally equivalent modelsBehaviorally equivalent models

Equivalence 
Cl  f B li fClasses of Beliefs

P1 P2 P3



Equivalence classes of interactive 
statesstates

• Definition
– Combination of a physical state and an equivalence class

f d lof models



Lossless aggregation gg g

fi i l d O b biliIn a finitely nested I-POMDP, a probability 
distribution over                                         , provides a 
sufficient statistic for the past history of i’s
observations
Transformation of the interactive state space into 

behavioral equivalence classes is value-preservingq p g
Optimal policy of the transformed finitely nested I-

POMDP remains unchangedPOMDP remains unchanged



Solving I POMDPs exactlySolving I-POMDPs exactly

d S l O ( G li f i )Procedure Solve-IPOMDP ( AGENTi, Belief Nesting  L ) : 
Returns Policy
If L = 0 Then

Return  {  Policy : =  Solve-POMDP ( AGENTi ) }
Else

ll G GFor  all  AGENTj < >  AGENTi

Policyj : =  Solve-IPOMDP( AGENTj , L-1)
EndEnd
Mj := Behavioral-Equivalence-Models(Policyj )
ECISi : = S x  {  xj Mj }   j j

Policy : = Modified-GIP(ECISi , Ai , Ti , Ωi , Oi , Ri )
Return Policy

End
75

End



Beliefs on ECISBeliefs on ECIS

Agent j’s policy

76



Agent i’s policy in the g p y
presence of another agent j

Policy becomes diverse as i’s
ability of observing j’s actions ability of observing j’s actions 
improves  



78



Discussion on ECIS
A method that enables exact solution of 

Discussion on ECIS

finitely nested interactive POMDPs

Aggregate agent models into behavioral 
equivalence classes

Discretization is lossless

Interesting behaviors emerge in the multi-
agent Tiger problem 

79



Improving DP in I-POMDPImproving DP in I-POMDP

Can we reduce the size of the interactive 
state space and thereby mitigate the curse 
of dimensionality permitting loss in value?



Monte Carlo sampling in I-POMDPMonte Carlo sampling in I-POMDP

1. Sample interactive states 
using agent’s belief as the 

M t C lsampling distribution

1−ti

1−t
ibS

Monte Carlo
Sampling

2. Project the set of 
samples over time

1−tis

1−t
ib

S

3.   Perform DP using Projection

ib

3.   Perform DP using 
sampled set t

ibS
Projection



Particle filteringParticle filtering

Single-agent Tiger problem

GL
Propagate Weight Resample

1−t
ib

S t
ib

S

T(s’|s,L) O(GL|s’,L)

i i

Projection

L



Interactive particle filteringInteractive particle filtering
Approximating the I-POMDP belief update

Propagation:
•Sample other’s actionp
•Sample next physical state
•Sample other’s observation
•Update other’s belief 



Improving DP in I-POMDPImproving DP in I-POMDP

Can we mitigate the curse of history by 
avoiding planning for all the observation 
histories for both agents?



Point Based Value Iteration (PBVI)Point Based Value Iteration (PBVI)
Potentially scalable approach for solving 
POMDPs approximately (Pineau et al., ’03,‘06)

Exact SolutionSelect belief pointsPrune alpha vectors Next runPrune alpha vectors

Expansion of belief points



Point Based Value IterationPoint Based Value Iteration
Many different belief expansion strategies

Stochastic trajectory generation
Greedy error minimization
Gain based methods (Samples et al. ’07)

Improvements on PBVI
Randomly backing up vectors at select points 
(P  )(Perseus; Spaan&Vlassis, ’05)
Prioritized vector backup (Shani et al. ’06)



Interactive PBVI (I-PBVI)Interactive PBVI (I-PBVI)
Hypothesis: Extending PBVI approach to 
I POMDP  lt  i   l bl  I-POMDPs results in a scalable 
approximation for I-POMDPs

Generalizing PBVI to multiagent settings is 
not trivialnot trivial

Research challenges:
1   Space of agent models is countably infinite1.  Space of agent models is countably infinite
2.  Parameterized representation of nested beliefs is   

difficult
3   Other agents’ actions need to be predicted 3.  Other agents  actions need to be predicted 

suggesting a recursive implementation 



Issue 1: Space of agent models is 
infiniteinfinite
Approach

Analogous to PBVI in POMDPs  select a few initial Analogous to PBVI in POMDPs, select a few initial 
models of the other agent

Need to ensure that the true model is within this set, 
otherwise the belief update is inconsistentotherwise the belief update is inconsistent

Select models so that the Absolute Continuity 
Condition is satisfiedCondition is satisfied

Subjective distribution over future observations 
(paths of play) should not rule out the observation 
histories considered possible by the true distributionhistories considered possible by the true distribution

How to satisfy ACC?
C ti  b li fCautious beliefs
Select a finite set of models,          , with the partial 
(domain) knowledge that the true or an equivalent 
model is one of them

ji /
~Θ

model is one of them



Issue 2: Representing nested beliefs is 
difficultdifficult

Level 0 beliefs are standard discrete distributions 
(vectors of probabilities that sum to 1) (vectors of probabilities that sum to 1) 
Level 1 beliefs could be represented as probability 
density functions over level 0 beliefs
Probability density functions over level 1 beliefs Probability density functions over level 1 beliefs 
may not be computable in general

Parameters of level 1 beliefs may not be bounded (e.g., a 
polynomial of any degree)polynomial of any degree)
Level 2 beliefs are strictly partial recursive functions

hApproach
We previously limited the set of models, 
Level l belief becomes a discrete probability 

ji /
~Θ

Level l belief becomes a discrete probability 
distribution 

1
~~

−Θ×= ljli SSI )~(~
,, lili SIb Δ∈

1,, ljli ,,



Issue 3: Predict other agent’s actionsIssue 3: Predict other agent s actions
Approach

Candidate agent models grow over time and must 
be tracked

D fi   l t  i t ti  t t  Define a complete interactive state space
Reach(         ,0) = 

1,
~

−Θ lj 1,
~

−Θ lj
Reach(          H ) = Set of models 

~ΘReach(         , H ) = Set of models 
of agent j in the course of H steps 

1, −Θ lj

)~(Re~ HachSSI Θ×
Solve other agent’s models at each level to 
predict actions

),(Re 1,, HachSSI ljli −Θ×=

predict actions
Recursively invoke I-PBVI to solve models



Interactive PBVIInteractive PBVI
Back project alpha vectors for I-POMDPs (see paper)

Retain alpha vectors optimal at selected belief 
points

Computational Savings



Experimental ResultsExperimental Results
Measured the least time taken in reaching a 

ti l  f  i  t  f th  dparticular performance in terms of the rewards
Function of belief points, number of models and horizons
Compared with Interactive Particle Filter (I-PF)p ( )

Multiagent Tiger Problem

LEVEL 1LEVEL 1 LEVEL 2LEVEL 2LEVEL 1LEVEL 1 LEVEL 2LEVEL 2

(Dual Processor Xeon  3 4GHz  4GB RAM  Linux)(Dual Processor Xeon, 3.4GHz, 4GB RAM, Linux)



Discussion on I-PBVIDiscussion on I-PBVI
Interactive PBVI generalizes PBVI to multiagent 

ttisettings
The generalization is not trivial

I-PBVI demonstrates scalable results on toy 
problemsp

Further testing on realistic applications is within 
reach 

Further improvement is possible by carefully 
limiting the set of models in Reach()limiting the set of models in Reach()

True or equivalent model must remain in the set 
otherwise the belief update may become inconsistent



DP in I-POMDP for stationary 
policiespolicies

Can we directly improve I-POMDP policies 
instead of first improving the value function 
and then obtaining a better policy?



Policy IterationPolicy Iteration
Class of solution algorithms – search policy 
spacespace

Exponential growth in solution size
Bounded Policy Iteration (Poupart&Boutilier,03)y ( p , )

Fixed solution size (controlled growth)
Applied in POMDP & Dec-POMDP

D BPI (B t i H &Zilb t i 05) ti l Dec-BPI (Bernstein,Hansen&Zilberstein,05) -- optional 
correlation device may not be feasible in non-cooperative 
settings

Contribution: 
Policy iteration algorithm (approximate) for I-y g ( pp )
POMDPs : generalization of BPI
Shows scalability to larger problems



Policy Representationy p
Possible representation of policy

Node action

Edge obs

Finite state controllersFinite state controllers
(Hansen, 1998)

Tree representation
Node has an infinite horizon policy rooted at it
N d  h   l  t  i t d ith it Node has a value vector associated with it 
which is a linear vector over the entire belief 
space
Beliefs are mapped to a node (n) that optimizes 
the expected reward from that belief:

argmaxn b · Vn



Finite State ControllerFinite State Controller
A finite state controller may be defined as:

where:
is the set of nodes in the FSC of agent i

is the set of edge labels (Ωi)

Let:
partitions the entire belief space



Policy IterationPolicy Iteration
Starting with an initial controller, iterate 
over two steps until convergence:

Policy Evaluation:
Evaluate Vn for each node
Solve system of linear equations

Policy Improvement:
Construct a better controllerConstruct a better controller
Possibly by adding new nodes



Policy Improvement (Hansen 98)Policy Improvement (Hansen,98)

Apply Backup operator  Apply Backup operator, 
i.e. construct new nodes 
with all possible values of 
action and transition on 
observation 

| || ||Ω| d
V

|A||N||Ω| new nodes
Add them to the controller

Prune all dominated nodesPrune all dominated nodes

Drawback: Leads to 
exponential growth in exponential growth in 
controller size 0 1P(s)

Example of policy iteration for a 
POMDPPOMDP



Bounded Policy Iteration (BPI) 
(P t&B tili 03)(Poupart&Boutilier,03)

Instead of performing a Instead of performing a 
complete back up, replace 
a node with a better node

Li   f  ti l Linear program for partial 
backup
New node is a convex 
combination of two backed up 
nodes
Changes in controller:g

ε
stochastic action stochastic action 
policy stochastic observation 

policy



Local OptimaLocal Optima
This form of policy improvement is prone to converging to local optima
When all nodes are tangents to backed up nodes: ε = 0, no 
imp o ementimprovement
Escape technique suggested by Poupart & Boutilier (2003) in BPI

VV

0 1P(s)



I-POMDP Generalization: Nested 
Controllers

Nested Controllers: Analogous to nested beliefs
Embed recursive reasoningg

Starting from level 0 upwards, for each level l, 
construct a Finite state controller for each frame of 
each agent (         )g ( )

For convenience of representation, let’s assume two agents 
and each one frame for an agent at each level

Agent i’s level 2 
controller:controller:

Agent j’s level 1 
controller:controller:

Agent i’s level 0 
controller:controller:



Interactive BPI: Policy EvaluationInteractive BPI: Policy Evaluation
Compute the value vector of each node using the Compute the value vector of each node using the 
estimate of other agent’s model by solving a 
system of linear equations:
For each ni,l, and interactive state, is=(s, nj,l-1), 
solve:



I-BPI: Policy ImprovementI-BPI: Policy Improvement
Pick a node (ni,l) and perform a partial backup using LP to 
construct another node (n’i l) that pointwise dominates ni l by co s uc a o e ode ( i,l) a po se do a es i,l by
some ε > 0

V

ε

New vector dominates old vector by and hence replaces it 
0 1P(s)

New vector dominates old vector by ε and hence replaces it 



I-BPI: Policy ImprovementI-BPI: Policy Improvement
Pick a node (ni,l) and perform a partial backup using LP to construct 
another node that point-wise dominates ni,l by some ε > 0

Obj ti  F ti  i i  Objective Function: maximize ε
Variables: 
Constraints:



Escaping Local Optimap g p

VV

0 1bT bR
1 bR

20 1

P(s)

bb 1 2

Analogous to escaping for POMDPs



Algorithm: I-BPIg
1. Starting from Level 0 up to Level l, construct a 1 node 

controller for each level with a random action and transition 
to itself. 

2. Reformulate interactive state space and evaluate

LlLl

.

L1

.

.
L1

L0
Time



Algorithm: I-BPIg
3. Starting from Level 0 up to Level l, perform 1 step of back up 

operator. Max |Ai(j)| nodes

LlLl

.

L1

.

.
L1

L0
Time



Algorithm: I-BPIgo t : 
4. Starting from Level 0 up to Level l, reformulate IS space, perform 

policy evaluation followed by policy improvement at each levelpolicy evaluation followed by policy improvement at each level

LlLl

.

L1

.

.
L1

L0
Time



Algorithm: I-BPI
5. Repeat step 4 until convergence
6. If converged, push nested controller out of local 

optima by adding new nodes 

LL
l

.

L

.

.
L

1

L
0

Time



Evaluation

AUAV: 81 states  5 actions  4 observationsAUAV: 81 states, 5 actions, 4 observations
Money Laundering: 99 States, 11 actions, 9 
Observations
Scales to larger problems...



EvaluationEvaluation

Simulations results for multiagent tiger problem
showing results obtained by simulating performance of
agent controllers of various sizes for levels 1 4agent controllers of various sizes for levels 1 – 4



Discussion on I-BPIDiscussion on I-BPI
Advantages of I-BPI

Is significantly quicker and scales to large problems 
(100s of states, tens of actions and observations)
Mitigates curse of history and curse of dimensionality
Improved solution quality

Limitations
Prone to local optimaProne to local optima

Escape technique may not work for certain local optima
Not entirely free from curses of history and 
dimensionalitydimensionality

Future WorkFuture Work
Scale to even larger problems and more agents
Mealy machine implementation for controllers (Amato et 
al  2011)al. 2011)



Summary of I-POMDPsSummary of I-POMDPs
I-POMDPs: A framework for decision making in uncertain multiagent settings
Analogous to POMDPs but with an enriched state space

interactive beliefsinteractive beliefs
Uses decision-theoretic solution concept

MEU
For infinitely nested beliefs, look for fixed points
Intractability of I-POMDPs

Curse of dimensionality: belief space complexityCurse of dimensionality: belief space complexity
Curse of history: policy space complexity

Exact: Equivalence classes of interactive statesExact: Equivalence classes of interactive states
Lossless transformation of IS into a discrete space

Approximation 1: Interactive Particle Filter
Randomized algorithm for approximating the nested belief update
Partial error boundsPartial error bounds

Approximation 2: Interactive Point-based Value Iteration
Algorithm for partial update of the value function
Linear program not needed
Partial and loose error bounds

Approximation 3: Interactive Bounded Policy IterationApproximation 3: Interactive Bounded Policy Iteration
Update the nested policy directly
Represent policies using finite-state machines
Local optima

G hi l d l t t  I t ti  D i  I fl  Di  (I DID )Graphical model counterpart: Interactive Dynamic Influence Diagrams (I-DIDs)



Applications of I-POMDPsApplications of I-POMDPs
Adversarial reasoning in the context of money laundering (Ng et al., 
2010)

Behavioral modeling of recursive reasoning data in Centipede Game Behavioral modeling of recursive reasoning data in Centipede Game 
(Doshi et al., 2010)

Predicting opponent strategies in Lemonade Stand Game (Wunder et al., 
2011)

Learning from human teachers in the context of robotics (Woodward & Learning from human teachers in the context of robotics (Woodward & 
Wood, 2012) 

Generalizations or specializations
Trust enabled I POMDPs (S  & P t  2009)Trust enabled I-POMDPs (Seymour & Peterson, 2009)

Models of the other agent include trust levels as well
Parameterized I-POMDPs (Wunder et al., 2011)

Distribution over lower-level models is learned parameter from agent 
l ipopulation

Intention-aware POMDPs (Hoang & Low, 2012)
Specialization: Assumes that the other agent observes its state perfectly 
Hierarchy reduces to a nested MDP y

Reinforcement learning in I-POMDPs (Ng et al., 2012)
Bayes-adaptive RL



Application 1: Adversarial reasoning in 
money launderingmoney laundering

Money laundering domain
R d t  (  l d ) h ld  i  Red team (money launderers) hold money in 
accounts

{dirty pot, bank accounts, securities, shell companies,...}

Blue team (law enforcement) must sense the 
money

{no sensors, bank accounts, shell companies, casinos,...}{no sensors, bank accounts, shell companies, casinos,...}

Red team’s actions involve placing, layering or 
integrating the money, and observing the blue 
team’s sensorsteam s sensors
Blue team’s actions involve placing the sensors, 
and observing reports and sensor information

|S| = 99, |Ai| = 9, |Aj|= 4, |Ωi| = 11, |Ωj| = 4



Application: Adversarial reasoning 
(contd )(contd.)

Approach
Formulate a level 1 I-POMDP for each team
Combine I-PF with a sampled reachability tree 
for both agents to generate separate policy 
trees for red and blue teams with initial beliefs

E i tExperiments
Laundering game was played by simulating the 
two teams’ policy trees across 50 trialstwo teams  policy trees across 50 trials
For most settings of particles and agent 
solution horizons, red team has the advantage!solution horizons, red team has the advantage!
Blue team wins when each team models the 
opponent at just horizon 1  pp j



Application 2: Behavioral modeling of 
recursive reasoning datarecursive reasoning data

Two large studies involving human subjects 
on levels of recursive reasoning

Two-player alternating-move game with 
l t  d f t i f ti  complete and perfect information 

General sum game & fixed sum game



Experimental studies (contd)
Two levels of reasoning:

Experimental studies (contd)

Opponent type
imyopic

predictive 



Computational model: Interactive 
POMDPPOMDP

Modeling behavioral data gathered from study
M l i iMultiagent setting
State space includes other agents’ models 
A finitel  nested I POMDP of agent i ith a A finitely nested I-POMDP of agent i with a 
strategy level l interacting with another agent j, 
is defined as

ISi,l : Interactive states, defined as ISi,l = S × Mj,l-1
h     where    

for         , and ISi,0 = S where 
S is states of physical environment

 i t ti l d l  f t j  d fi d     : intentional models of agent j, defined as    
where bj,l-1 is j’s level l-1 belief,   is the frame

SMj : subintentional models of j



Empirically informed I-POMDPEmpirically informed I-POMDP
I-POMDPi,2:

Interactive States: 
physical state space S = {A,B,C,D} (perfectly 
observable)observable)
model set                        

is the level 1 predictive model of the opponent
is the level 0 myopic model of the opponent

Action:
A  A  {St  Mo e} (dete mini ti )Ai = Aj = {Stay, Move} (deterministic)

Observation:
Ωi = {Stay  Move}Ωi  {Stay, Move}



Empirically informed I-POMDP 
(contd )(contd.)

Descriptive decision model
Subjects made non-normative choice 

Rationality errors observed

Q t l  d lQuantal response model

∑
=∈

ii

ii

abU

abU

ii e
eAaq ),(.

),(.
*

*

)( λ

λ

q(ai ∈ Ai) is the probability assigned to action ai by 
the model

∑
∈ ii Aa

e

U(bi, ai) is the utility for i performing the action ai
given its belief bi

λ controls how responsive is the model to value λ controls how responsive is the model to value 
differences



Empirically informed I-POMDP 
(contd )(contd.)

Descriptive judgment model
Subjects learned from previous game

learning is slow
bj t  ld b  d i hti  th  id  th t subjects could be underweighting the evidence that 

they observe

Updating belief:p g

Underweighting when  γ<1
Overweighting when γ>1
Normative updating when γ=1 

γ controls the learning rate



LearningLearning
Two parameters to learn
γ controls learning rate
λ controls non-normative choice

Gradient Descent
Error function: the inverse of the data likelihood

is the action from Ai selected by subject i in 
the gth game



ResultsResults
We utilized the learned values to 
parameterize the underweighting and 
quantal response models within the I-
POMDPPOMDP

Comparison of model predictions with actual Comparison of model predictions with actual 
data



Application 3: Learning from a 
human teacherhuman teacher

Domain 
Agent (robot) learning interactively from a 
non-technical human teacher

L i  b  d t tiLearning by demonstration
Learning by reinforcements

Interaction consists of signals generated by 
the agent and teacher

Examples of signals: words, gestures, facial 
expressions, eye gaze, rewards, ... 



Application to learning (contd )Application to learning (contd.)
Approach

M d l th  l i  bl    I POMDPModel the learning problem as a I-POMDP
All signals from the teacher and environment are 
modeled as agent’s observationsg
Teacher is modeled in the agent’s IS

Teacher’s belief about the state of the world, about 
agent’s variables and beliefs are maintainedagent s variables and beliefs are maintained

Action selection accounts for the predicted future 
actions of the teacher

Benefits of the approach
Principled formulation of the problemPrincipled formulation of the problem
Complex interactions possible due to nested 
modeling



Application to learning (contd )Application to learning (contd.)
Benefits (contd.)

Acting to reduce inconsistency in its modeling 
of the teacher’s modeling

I t t th  t h  t  t  h  i  Interrupt the teacher to request a change in 
teaching subject
Ask a clarification whether the previous action of the p
teacher was about a different topic
Issue a correction to the teacher about the topic of 
the question that the agent had askedthe question that the agent had asked



Brief digression: CooperationBrief digression: Cooperation

Multiple agents share a common reward 
function (team of agents)

Common initial belief over physical states 

Popular framework for cooperative decision 
making

Decentralized POMDPs



Decentralized POMDPDecentralized POMDP
Definition of a DEC-POMDP for 2 agents

OCROTAS ,,,,,, Ω

A is the set of joint actions of both agents 
T i  th  t iti  f ti  i  j i t ti  Th  T is the transition function given joint actions. The 
transitions may be independent of other’s actions
Ω is the set of joint observationsΩ is the set of joint observations
O is the joint observation function. Observations may 
be local and independent
R is the reward function which is identical for each 
agent



Decentralized POMDPDecentralized POMDP
Objective of a DEC-POMDP is to compute a 
joint policy which optimizes the collective 
reward for all agents. A joint policy is a 
t l f l l li ituple of local policies ji πππ ,=

Solving a DEC-POMDP is a NEXP-Complete 
problem

Each local policy,     , is a mapping from the iπ
agent’s local history of observations to its 
actions which optimize the agent’s reward

i



SpecializationsSpecializations
Markov team decision problem (MTDP)

Observations may be local and independent:

R d  f h t  id ti l (t )
),|().,|(),,|,( 2221112121 saoOsaoOsaaooO =

Rewards of each agent are identical (team)

Networked distributed POMDP (ND POMDP)Networked distributed POMDP (ND-POMDP)
Both transitions and observations are local and 

independentindependent

Interaction between agents is through the 
),|'().,|'(),,,|','( 22221111212121 sasTsasTssaassT =

rewards. Agent’s rewards are influenced by some 
of the other agents (neighborhood)



Solving DEC-POMDPSolving DEC-POMDP
Naive approach

Simply convert to a normal form game and use 
iterated elimination of dominant policies or choose 
Nash equilibriumNash equilibrium

bi,bj

V11
i, 
j

… V1n
i, 
j

…

V11
j V1n

j

… … ……

Vm1
i, 

Vm1
j

… Vmn
i, 

Vmn
j



Solving DEC-POMDPSolving DEC-POMDP
Naive approach

Simply convert to a normal form game and use 
iterated elimination of dominant policies or choose 
Nash equilibriumNash equilibrium

Not a good idea!!
Number of policies doubly exponential 

in the number of horizons



DP in DEC-POMDPDP in DEC-POMDP

Generalize DP operator of POMDP to DEC-
POMDP

Prune policy sets of both agents 
simultaneously using iterated elimination of 
d i t d li idominated policies

Remove a policy if it is not optimal at any Remove a policy if it is not optimal at any 
multiagent belief. A multiagent belief of an 
agent is a distribution over the space of agent is a distribution over the space of 
physical states and all policies of other agent 



DP in DEC-POMDPDP in DEC-POMDP
Start with horizon 1 policies

agent i agent j

a1 a2 a1 a2



DP in DEC-POMDPDP in DEC-POMDP
Perform an exhaustive backup
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DP in DEC-POMDPDP in DEC-POMDP
Eliminate dominated policies – iteration 1

a1 a2a1

a1 a1

o1 o2

a1 a1

o1 o2

a1 a1

o1 o2

a1
o1 o2

a1
o1 o2

a1
o1 o2

a2
o1 o2

a1
o1 o2

a1 a2 a2 a1

a a a

a1 a2 a1 a2 a2 a1

a a aa2

a2 a1

o1 o2

a1

a2 a2

o1 o2

a2

a2 a2

o1 o2

a2

a2 a1

o1 o2

a1

a2 a2

o1 o2

a2

a2 a2

o1 o2

2 1 2 2 2 2 2 1 2 2 2 2



DP in DEC-POMDPDP in DEC-POMDP
Eliminate dominated policies – iteration 2
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DP in DEC-POMDPDP in DEC-POMDP
Eliminate dominated policies – iteration 3
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DP in DEC-POMDPDP in DEC-POMDP
Eliminate dominated policies – iteration 4

a1

a1 a1
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DP in DEC-POMDPDP in DEC-POMDP
Interesting property:

DP may be used to find the optimal joint y p j
policy in DEC-POMDP

This is because in the cooperative case, removing 
(weakly) dominated policies preserves at least ( y) p p
one optimal joint policy. If more than one policy 
remains, simply select the joint policy that is 
largest in valuelargest in value



Improving DP in DEC-POMDPImproving DP in DEC-POMDP

An exponential number of policy trees are 
generated during each backup stage for each 

t  M  f th  li i   d i t dagent. Many of these policies are dominated

C   d  th  b  f t  th t  Can we reduce the number of trees that are 
generated?



Point based DP in DEC-POMDPPoint based DP in DEC-POMDP

Point based DP 
Select a set of multiagent belief points
Prune and backup policies that are optimal at 

these points
Expand the set of multiagent belief points

We prune the policy set but at the expense 
of optimality. Larger number of belief points 

l  l  i  ti lit→ lesser loss in optimality



Point based DP in DEC-POMDPPoint based DP in DEC-POMDP
Some techniques for expanding belief points

Random generation – Generate more belief points 
randomly 
Stochastic trajectory – Sample other’s action  next Stochastic trajectory – Sample other s action, next 

states, observations and update belief

Belief expansion represents overhead that should 
be managed cautiously. Trade off optimality for g y p y
efficiency



Memory bounded DP (MBDP)Memory bounded DP (MBDP)
Start with horizon 1 policies

agent i agent j

a1 a2 a1 a2



MBDPMBDP
Perform an exhaustive backup and select maxTrees
Generate belief states using approximate policies
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MBDPMBDP
Select pairs with largest value at the belief states

Use these pairs for next backup

o2
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Joint Equilibrium Search for PoliciesJoint Equilibrium Search for Policies

Search for joint policy such that the j p y
individual policies of agents are in 
equilibrium

Policy computation is centralized but 
execution of policies is distributed
Centralized planning addresses the problem of 

lti l  ilib i  multiple equilibria 



JESPJESP
Fix other agent’s policy
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JESPJESP
Generate all possible policies for agent i
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JESPJESP
Select best response policy for i
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JESPJESP
List all policies for agent j
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JESPJESP
Select best response policy for j and iterate

Policies are in equilibrium and represent a local optimum
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DP-JESPDP-JESP
Instead of listing all policies, 

build a best response policy using DP

a a
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DP-JESPDP-JESP
Generate a set of reachable belief points and

perform DP over them

a a a a
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DP-JESPDP-JESP
Generate a set of reachable belief points and

perform DP over them

a a
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DEC-POMDP and I-POMDPDEC-POMDP and I-POMDP
common 

d rewardsreward reward

DECDEC--POMDPPOMDP
action action

physical statephysical stateobs obs

DECDEC POMDPPOMDP
perspectiveperspective

obs

joint 
rewardsreward rewardrewards

action action

reward

II--POMDPPOMDP
action action

physical statephysical stateobs obs

perspectiveperspective



DEC-POMDP and I-POMDPDEC-POMDP and I-POMDP
common 

d

DECDEC--POMDPPOMDP

rewardsreward reward

DECDEC POMDPPOMDP
perspectiveperspective

action action

physical statephysical stateobs obsobs

joint 
rewardsreward rewardrewards

action action

reward

II--POMDPPOMDP
action action

physical statephysical stateobs obs

perspectiveperspective



Relationship between modelsRelationship between models

G   i  h  i i  i  f D d I POMDP Gray area in the intersecting region of Dec- and I-POMDP 
indicates the current uncertainty about whether team behavior 
as produced by a Dec-POMDP could be obtained from a finitely 
nested I-POMDP for certain problems  as wellnested I-POMDP for certain problems, as well

This region may not be empty and is a topic of ongoing 
investigationsinvestigations



RoadmapRoadmap
Driving applications

search and rescue

Multiagent decision making
description, requirements, complexity

Game theoryGame theory
classroom game
repeated strategic and Bayesian games
fictitious play and regret matching

Stochastic games
DEC-MDP and its specializations

Partially observable stochastic gamesPartially observable stochastic games
I-POMDP framework
I-POMDP solution techniques
I-POMDP applications
Dec-POMDP

Uncertainty Utilization
TTD-MDP, Multiagent EMT



Human-Agent Collaboration
Possible to create a training tool for human emergency
response teams.

E.g. firefighter managers have been trained using
RoboCup Rescue.

Emergency protocols allow a stochastic model of
humans interacting with a simulated environment.

Can it be used to devise a flexible training
environment?
How can we diversify the experience to provide a
sufficient span of scenarios?
Can a certain degree of surprise be ensured?

–



Interactive simulations
Interaction is a sequence of complex events which are

extended in time
have a component hidden from the human player

Surprise can be achieved by
Exposition of information contrary to the known

Find that the building is not abandoned
Sequencing of events that require polar response

False report of a fire in the North followed by a
report that it is in the South

–



Interactive simulations
Interaction is a sequence of complex events which are

extended in time
have a component hidden from the human player

Surprise can be achieved by
Exposition of information contrary to the known

Find that the building is not abandoned
Sequencing of events that require polar response

False report of a fire in the North followed by a
report that it is in the South

How do we produce these sequences?
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Interactive simulations
Interaction is a sequence of complex events which are

extended in time
have a component hidden from the human player

Surprise can be achieved by
Exposition of information contrary to the known

Find that the building is not abandoned
Sequencing of events that require polar response

False report of a fire in the North followed by a
report that it is in the South

How do we produce different sequences?
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Interactive simulations
Interaction is a sequence of complex events which are

extended in time
have a component hidden from the human player

Surprise can be achieved by
Exposition of information contrary to the known

Find that the building is not abandoned
Sequencing of events that require polar response

False report of a fire in the North followed by a
report that it is in the South

How do we produce different sequences?
Interactive simulations ≡ dynamic narratives

–



Trajectory Distribution: Intuition
Markovian environment representation < S,A, T >

States are plot points experienced by a player
Actions are effects external to the player
State transitions are plot connections

–



Trajectory Distribution: Intuition
Markovian environment representation < S,A, T >

States are plot points experienced by a player
A firefighter discovers a new fire hazard
Police finds a new witness

Actions are effects external to the player
State transitions are plot connections
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Trajectory Distribution: Intuition
Markovian environment representation < S,A, T >

States are plot points experienced by a player
Actions are effects external to the player
State transitions are plot connections

–



Trajectory Distribution: Intuition
Markovian environment representation < S,A, T >

States are plot points experienced by a player
Actions are effects external to the player

A witness approaches the firefighter
A bank robbery occurs

State transitions are plot connections

–



Trajectory Distribution: Intuition
Markovian environment representation < S,A, T >

States are plot points experienced by a player
Actions are effects external to the player
State transitions are plot connections

–



Trajectory Distribution: Intuition
Markovian environment representation < S,A, T >

States are plot points experienced by a player
Actions are effects external to the player
State transitions are plot connections

Subject to the player’s behaviour (stochasticity)
Subject to the narrator’s decisions (actions)

–



Trajectory Distribution: Intuition
Markovian environment representation < S,A, T >

States are plot points experienced by a player
Actions are effects external to the player
State transitions are plot connections

–



Trajectory Distribution: Intuition
Markovian environment representation < S,A, T >

States are plot points experienced by a player
Actions are effects external to the player
State transitions are plot connections

A story is a trajectory over plot points (states)

Trajectory distribution means that a different story is
told every time

–



Example – Fire Chief game
A Fire Chief manages 3 firefighter teams

Consider three stories:
Story 1
“Yesterday a firefighter Team A has been withdrawn
from the Toy Factory fire and sent to the Docks. As
your correspondent has later discovered, the
Docks housed dangerous materials, which led to
the infamous explosion and the subsequent perish
of Team A.”

–



Example – Fire Chief game
A Fire Chief manages 3 firefighter teams

Consider three stories:
Story 2
“Earlier today, following an anonymous tip, the Fire
Chief sent both Team A and Team B to the Docks,
leaving only Team C to handle the fire in our
beloved Toy Factory. However, this controversial
decision proved to be prudent, since it has
prevented the explosion of dangerous chemicals in
the Docks.”

–



Example – Fire Chief game
A Fire Chief manages 3 firefighter teams

Consider three stories:
Story 3
“Our ancient Toy Factory sustained yesterday
irrecoverable damage due to the fire that spread
from its storage rooms. All three of our firefighter
teams where at the time deployed at the Docks,
where a minor chemicals leak was handled by one
of them. As a result, by the time they arrived at the
Toy Factory the place was engulfed in flames.”

–



Example – State Space
Consider the ratios of firefighter teams present to the
necessary number of teams: (x : x∗, y : y∗)
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Example – State Space
Consider the ratios of firefighter teams present to the
necessary number of teams: (x : x∗, y : y∗)

A story is then a trajectory through this state space
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Example – State Space
Consider the ratios of firefighter teams present to the
necessary number of teams: (x : x∗, y : y∗)

A story is then a trajectory through this state space

Story 1
(3 : 1, 0 : 1) – All teams are at the Toy Factory
(2 : 0, 1 : 2) – Team A is recalled to the Docks
(2 : 0, 0 : 2) – Explosion kills Team A

–



Example – State Space
Consider the ratios of firefighter teams present to the
necessary number of teams: (x : x∗, y : y∗)

A story is then a trajectory through this state space

Story 2
(3 : 2, 0 : 1) – All teams are at the Toy Factory
(1 : 1, 2 : 2) – Team A and B are set to the Docks
(1 : 0, 2 : 0) – Explosion is prevented at the docks

–



Example – State Space
Consider the ratios of firefighter teams present to the
necessary number of teams: (x : x∗, y : y∗)

A story is then a trajectory through this state space

Story 3
(0 : 1, 3 : 1) – All teams are at the Docks
(0 : 3, 3 : 0) – Docks are safe, Toy Factory ablaze
(3 : 0, 0 : 0) – Too late: Toy Factory burned down

–



Example – Actions and Transitions
States are the ratios of firefighter teams present to the
necessary number of teams: (x : x∗, y : y∗)

A story is a trajectory through this state space

Actions are hints and information given to the player
Anonymous call about chemicals at the Docks
TV coverage of the Toy Factory fire
An explosion at the Docks

–



Example – Actions and Transitions
States are the ratios of firefighter teams present to the
necessary number of teams: (x : x∗, y : y∗)

A story is a trajectory through this state space

Actions are hints and information given to the player
Anonymous call about chemicals at the Docks
TV coverage of the Toy Factory fire
An explosion at the Docks

How do we choose actions to produce Story 1?
How do we choose actions so that Story 3 is more
likely?

–



Target Trajectory Distribution MDP
Given an Markovian environment: < S, T,A > where

S is the set of states of the world,
A is the set of actions,
T : S × A→ ∆(S) is the transition function with
T (s′|s, a) being the probability of the world changing
from state s to state s′ if the action a was applied.

Can we prefer a specific long term sequence?
Can the preference be soft, i.e. a distribution?

–



TTD-MDP (cont)
Let τ ⊂ S+ be a set of finite sequences of states.

We will assume that τ is formed by paths in a tree.

Let P(·) be a distribution over τ .
P represents our preferences over various,
long-term system developments

A TTD-MDP is defined by a tuple < < S, T,A >, τ,P >

Notice that a transition function T : τ × A→ ∆(τ) is
naturally induced by T .

–



TTD-MDP: Questions
Given a TTD-MDP, < < S, T,A >, τ,P >

What is the policy π : τ → A that induces P?
Is it always possible to produce P?

No, transition function T may prevent that.
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TTD-MDP: Questions
Given a TTD-MDP, < < S, T,A >, τ,P >

What is the policy π : τ → A that induces P?
Is it always possible to produce P?

No, transition function T may prevent that.
How do we measure performance?

Information Theory provides a divergence
measure between two distributions:
Kullback-Leibler divergence
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TTD-MDP: Questions
Given a TTD-MDP, < < S, T,A >, τ,P >

What is the policy π : τ → A that induces P?
Is it always possible to produce P?

No, transition function T may prevent that.
How do we measure performance?

Information Theory provides a divergence
measure between two distributions:
Kullback-Leibler divergence

Can the policy be computed on-line?
Yes, the structure of τ combined with
appropriate performance measure allow that.

–



TTD-MDP: Further Questions
Assumes complete observability

Active plot point is always known to the narrator
Will not hold if the narrator is part of the simulation

Trajectories are finite
What if it’s a never-ending story?
Can a TTD-like principle be defined for infinite
trajectories?

Single agent
What if the simulation includes multiple “narrators”?
Can a similar TTD principle be applied for
multi-agent simulations?

–



Example – Story
Two police precincts are fighting organised crime

They are unable to catch the leader
There are signs of him being in the precinct, but
not the exact location

They know that increased patrols make him
uncomfortable
If the leader moves from precinct to precinct, his
crime activity is disrupted

Ideally the police would like to modulate patrols so as
to keep the crime leader in constant agitation

–



Partially observable environment
A partially observable Markovian environment
< S, s0, A, T, Ω, O >

S state space of the world, s0 is the initial state
A is a set of actions available to the agent
T : S × A× S → [0, 1] is the transition function
Ω is the set of all possible observations
O : Ω× S × A× S → [0, 1] is the observability
function.

O(o|s′, a, s) is the probability that the agent will
observe o if it performed a and the world shifted
from s to s′.

–



Markovian, but not (PO)MDP
Given a Markovian environment < S,A, T,O, Ω >

To describe a task within the environment:
Expression of preferences

Need to encode infinite system development
Include multiple developments
Include randomisation

Reference system dynamics τ : S × S → [0, 1]
Stochastic rule
Chains infinite sequences
Native to the environment model

Performance measure
Kullback-Leibler divergence
Need to (quickly) converge to the reference

–



Example
Two police precincts are fighting organised crime

They are unable to catch the leader
There are signs of him being in the precinct, but
not the exact location

They know that increased patrols make him
uncomfortable
If the leader moves from precinct to precinct, his
crime activity is disrupted

Ideally the police would like to modulate patrols so as
to keep the crime leader in constant agitation

–



Example (cont)
Environment < S,

⊗
Ai, T,

⊗
Ωi, {Oi} >

S = {pr1, pr2} is the set of precincts
Ai = {higher, lower} is increasing or decreasing
patrols
Ωi = S is an indicator of leader’s presence in the
precinct
T reflects leader’s tendency to move
Oi reflects the police capability to gather
information

Reference dynamics is then τ(s′, s) =

{
1 s 6= s′

0 otherwise

–



Questions
The environment is only partially observable

How can we even know what kind of state
sequence is being reproduced?
Can we know what kind of system dynamics
represents that sequence?

Given a reference signal represented by system
dynamics τ

How can we construct the policy that produces the
reference?

–



Recording the world
How do we know where we are?

We can summarise all our knowledge in a single
distribution pt : S → [0, 1]

pt(s) expresses the degree (probability) to which
we believe that the state at time t is s.

How do we compute it?
p0(s) = 1 iff s = s0

Given that an agent performed action a and
received observation o:

pt+1(s) ∝ O(o|s, a)
∑
s′
T (s|a, s′)pt(s

′)

–



Explaining the world: EMT
How do we know how the world moves?

We can estimate the instantiated dynamics:
τ : S × S → [0, 1]

For τ has to hold pt+1 = pt ∗ τ

There are many such τ

Make a conservative update:
τt+1 = arg min

τ :pt+1=pt∗τ
d(τ, τt)

If d(·, ·) is Kullback-Leibler divergence the update is
termed Extended Markov Tracking (EMT)

EMT’s update is shorthanded H[pt+1 ← pt, τt]

–



EMT Control
It is possible to utilise EMT to construct an on-line
policy to reproduce a reference dynamics τ∗

Control loop is composed by
Belief update
EMT estimation of system development
Let Ta = T (·|a, ·). Action choice

a∗ = arg min
a

DKL( H[pt ∗ Ta ← pt, τt] ‖ τ∗)

Application of a∗.

But can it be used in a multi-agent setting?

–



Stigmergy
Stigmergy is a mechanism of spontaneous, indirect
coordination

Trace left in the environment by an action
stimulates the performance of a subsequent action,
by the same or a different agent.

Assume that two agents choose actions a1,a2 and the
joint operation (a1, a2) is applied on a common system
state.

In a stigmergic environment observations will
provide information on the state dynamics and
enable action coordination

–



Multi-agent EMT
Given an environment: < S,

⊗
Ai, T,

⊗
Oi, {Ωi} >, and

a reference dynamics τ∗

Let each agent run independent EMT based control on
the complete actions space

⊗
Ai as follows:

Update beliefs pt according to T and Oi

Compute EMT estimate of system development
Compute optimal joint action

a∗ = (a∗1, ..., a
∗
N ) = arg min

a
DKL( H[pt∗Ta ← pt, τt] ‖ τ∗)

Apply a∗i

–



Stigmergy – example
Each police precinct will

Estimate the apparent crime leader behaviour
Predict the effect of a coordinated patrols.
Apply the local portion of the joint action
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Stigmergy – example
Each police precinct will

Estimate the apparent crime leader behaviour
Using crime leader model and EMT

Predict the effect of a coordinated patrols.
Apply the local portion of the joint action
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Stigmergy – example
Each police precinct will

Estimate the apparent crime leader behaviour
Predict the effect of a coordinated patrols.
Apply the local portion of the joint action
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Stigmergy – example
Each police precinct will

Estimate the apparent crime leader behaviour
Predict the effect of a coordinated patrols.

These joint actions are not necessarily the same
Apply the local portion of the joint action
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Stigmergy – example
Each police precinct will

Estimate the apparent crime leader behaviour
Predict the effect of a coordinated patrols.
Apply the local portion of the joint action
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Stigmergy – example
Each police precinct will

Estimate the apparent crime leader behaviour
Predict the effect of a coordinated patrols.
Apply the local portion of the joint action

Combined into a joint action different from all
player choices

–



Stigmergy – example
Each police precinct will

Estimate the apparent crime leader behaviour
Predict the effect of a coordinated patrols.
Apply the local portion of the joint action

Crime leader responds to the combined joint action
leading to stigmergy
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Apply the local portion of the joint action

Crime leader responds to the combined joint action
leading to stigmergy

Observations provide a correlation signal
Dynamics estimates are correlated
Locally computed joint actions will not differ
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leading to stigmergy

Observations provide a correlation signal
Dynamics estimates are correlated
Locally computed joint actions will not differ

too much too frequently
in their effect on the dynamics estimate
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System is continually changing

No single state trajectory is certain

In partially observable systems
Can not track a single state trajectory
Concept of system dynamics is needed
Only apparent dynamics can be used
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