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Abstract

In planning with a Markov decision process (MDP) frame-
work, there is the implicit assumption that the world is pre-
dictable. Practitioners must simply take it on good faith the
MDP they have constructed is comprehensive and accurate
enough to model the exact probabilities with which all events
may occur under all circumstances. Here, we challenge the
conventional assumption of complete predictability, arguing
that some events are inherently unpredictable. Towards more
effectively modeling problems with unpredictable events, we
develop a hybrid framework that explicitly distinguishes de-
cision factors whose probabilities are not assigned precisely
while still representing known probability components using
conventional principled MDP transitions. Our approach is also
flexible, resulting in a factored model of variable abstraction
whose usage for planning results in different levels of approxi-
mation. We illustrate the application of our framework to an
intelligent surveillance planning domain.

1 Introduction

Modeling an intelligent agent acting in an uncertain envi-
ronment is challenging. For this purpose, researchers have
developed elegant mathematical frameworks, such as the
Markov Decision Process (MDP), that encode all states of
the environment, actions, and transitions, as a dynamical
system (Puterman 1994). However, in order to apply these
frameworks to agents that interact with the real world, there
are inherent obstacles that the practitioner must overcome.

First, it is intractable to model the real world comprehen-
sively or with any extensive level of detail. Instead, the prac-
titioner should choose an appropriate depth of abstraction.
Second, the practitioner must select which features to include
in the environment state. Not only should these features cap-
ture the critical events on which agents should base smart
decisions, but they should also comprise a system whose
dynamics are self-contained. In particular, the probability of
a next state must be an ascertainable function of the previous
values of the selected features (and only their latest values,
in the case of a Markov model). This means that all modeled
events must be strictly predictable (from modeled features)
and their probabilities accurately prescribed.
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In this paper, we propose an alternative framework that
relaxes the conventional assumption of complete predictabil-
ity. We take the position that, from an agent’s perspective, an
event may be inherently unpredictable. This could be because
the event’s underlying causes are prohibitively complex to
model as part of the agent’s state, or because circumstances
surrounding the event reside in a portion of the environment
that the agent cannot sense. Yet another reason to label an
event as unpredictable could be that it is so rare as to pre-
clude an accurate estimate of transition probabilities (neither
through collected data nor through expert knowledge).

We contend that the agent should treat the occurrences
of unpredictable events with corresponding features that it
explicitly distinguishes from the conventional, predictable
features using a factored model. We show that, independently
of the complexity required to accurately model the dynamics
of unpredictable features, equivalently accurate predictions
are obtained by a model that depends only on the history of
observable features. In constructing such a model, the agent
avoids assigning arbitrary probabilities to the occurrences of
unpredictable events. Yet it retains the ability to plan for all
possible future paths, while accounting for known probability
components associated with predictable feature values.

Our framework has several other advantages over conven-
tional modeling options. First, it is simpler for a practitioner
to specify the model, since some of the hard-to-estimate prob-
abilities can be avoided. Second, it avoids the computational
complexity of modeling additional features that only enable
weak prediction of rare events. Third, our modeling approach
naturally circumvents errors associated with probabilities as-
signed to unpredictable events. Our approach is also flexible
in the model that it produces. At one end of the dial, the
practitioner can specify a dependence on complete histories
of observable features, yielding optimality guarantees but at a
computational cost. We also contribute a principled approach
on how such dependence can be alleviated by varying the
order of the history dependence. We expect such approxima-
tion, in practical situations, to strike an effective balance in
computational performance and the quality of approximation.

2 Motivating Scenario

As a motivating example, we will use a scenario with surveil-
lance activities. A robot moves within the simplified surveil-
lance environment in Fig. 1, corresponding to a floor of the
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Figure 1: Outline and topological representation of the ISR
surveillance environment.

Institute for Systems and Robotics (ISR) in Lisbon. For robot
navigation, the position of the robot is defined as its loca-
tion in a topological map with 8 possible positions (nodes in
Fig. 1). In addition to the robot, there is a network of video
cameras that is able to detect events such as a fire in the Cof-
fee Room and visitors at the Elevator Hallway who require
assistance.

Thanks to its local sensors and a path planner, the robot
can move from location to location by selecting high-level
navigation actions {N, S, E, W} corresponding to the four
cardinal directions. Nevertheless, the underlying machinery is
not perfect, sometimes resulting in failed navigation actions,
which we can reliably predict using a Markovian probabilistic
model. For example, taking the action IV at the Hallway T-
intersection moves the robot successfully to the Elevator
Hallway with a particular probability. The robot is in charge
of completing several tasks, namely:

Surveillance of the environment. The robot should maintain
under close surveillance the Underwater Robotics Lab and
the Robot Soccer Field, where valuable items are stored,
and the Coffee Room and the Elevator Hallway, to com-
plement the surveillance network in the task of detecting
fire and people arriving.

Fire assistance. If a fire is detected, the robot should head to
the Coffee Room to assist in putting out the fire.

Assistance to visitors. If a person arrives at the Elevator Hall-
way and requires assistance, the robot should head to that
location to assist the person.

Associated with each of these tasks is a relative priority value;
the objective of the robot is to plan its movement so as to bal-
ance its expected completion of tasks given these priorities.

3 Background

In this section, we review the conventional factored MDP
framework (Boutilier, Dean, and Hanks 1999) for planning
activities. This formalism sets the stage for our approach,
but it presents some challenges when modeling events in
problems such as our example.
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Figure 2: (Left) A binary representation of state-feature X,
where each bit indicates whether or not the corresponding
location has been visited recently. (Right) A DBN representa-
tion of the dependencies in the state-transitions of the MDP.

3.1 Conventional (Factored) MDP Model

A Markov Decision Process (MDP) M = (X, A, P, r,v) can
be used to model tasks related to robot planning in a factored
manner (Boutilier, Dean, and Hanks 1999). The components
are the following: (i) the state space is X (in factored models,
this is the Cartesian product of several feature spaces X}, x
Xy x -+ x Xy); (ii) the action space is A; (iii) the transition
function (it can be factored) is P : X x A x X — R, and it
encodes the probabilities of next state X (¢ + 1) as a Markov
function of current state X (¢) and action A(t); (iv) the reward
function (it could be factored too) is r : X x A — R, and
it encodes the reward obtained given the current state X (¢)
and action A(t); (v) the discount factor is v, which weighs
future rewards when computing the total expected reward
accumulation.

To model the example problem introduced in Section 2, we
can represent the state space as a set X = &) X XAy X Xp X Xy,
The state factor, or feature, X, (¢) € X, encodes the position
of the robot at time ¢ (which is any of of the labeled graph
nodes in Fig. 1). The remaining features encode the statuses
of the robot’s completion of its various tasks.

We associate with the surveillance task feature X;(t)
that indicates which of the target locations have been vis-
ited recently (at time t). This feature takes values in X; =
{0,...,15}, which is the decimal representation of a 4-bit
sequence corresponding to 4 flags indicating the target loca-
tions that have been visited (see Fig. 2, left). When one of
the target locations is visited, the corresponding flag is set
to 1. Whenever X,(t) = 15, then X, (¢ + 1) = 0, indicating
that the robot should repeat its surveillance of all target sites.

We associate with the fire assistance task binary feature
X ¢(t) that indicates whether a fire is identified as active at
time ¢. It is set to 1 when a fire is detected in the Coffee
Room. After the robot visits that room, this feature is reset to
0, indicating that the robot has successfully put out the fire.

We associate with the visitor assistance task a binary fea-
ture X, (¢) that indicates whether there is a person needing
assistance at time ¢. It is set to 1 whenever a person needing
assistance is detected in the Elevator Hallway. After the robot
visits that place, the flag is reset to 0, indicating that the robot
has successfully assisted the person.

Thanks to the factored structure of the model, the tran-
sition probabilities may be encoded potentially more com-



pactly using a 2-stage Dynamic Bayesian Network like the
one in Fig. 2 (right). In this case, the set of possible actions is
A ={N,S,E,W}. The factored structure also allows for a
compact representation of the transition probabilities. In fact,
the transition probabilities associated with a state-factor X,
for example, can be represented as a conditional probabil-
ity table (CPT) that represents the probability distribution
PX,(t+1) | Xs(¢), A(t), Xp(t + 1)], with one entry for
each combination of action and values of X, (t), X,(t + 1)
and X, (t + 1). The transition probabilities associated with
each action a € A can then easily be obtained from the
product of such CPTs.
Similarly, we can also specify a factored reward function
that separately represents the priorities of the individual tasks.
r(z) = wers(x) + wprp(x) + wyry(z). (1
Each component r; encodes the goals of a task, and (1) indi-
cates that the robot should complete all tasks. The weights w;
indicate the relative importance/priority of the different tasks.
For concreteness, we define the reward components as

rs(z) = 1z, =15 (2),
Tf(l') = _1{$f:1}(x)a

Ty (1’) = _1{m1,:1}(x)1
where the operator 1 works as follows: component r rewards
those states in which the robot recently visited all critical lo-
cations (corresponding to x, = 15); component 7 penalizes
those states in which a fire is active (xy = 1); and compo-
nent r,, penalizes those states in which there is a visitor in
need of assistance (z, = 1).

3.2 Planning in the Conventional MDP Model

Planning in a conventional MDP model consists of deter-
mining a policy (an action selection rule) that maximizes
the total reward accumulated by the agent throughout its
lifetime. Formally, this amounts to determining the policy
m : X — A that maximizes the corresponding value for
every state x € X,

VT(z) = Ex [ 4'r(X (1), At) | X(0) =z,
t=0

where the expectation is taken with respect to trajectories
{X(t),t =0,...} induced by the actions A(¢), which in turn
are selected according to the rule A(t) = w(X(t)). The
policy with maximal value is known as the optimal policy,
and its corresponding value function, V'*, the optimal value
function. The optimal value function V* is known to verify

V*(x) = rglea} Ey wp(z,a) [7(z,a) +yV*(Y)],

and it is possible to define the action-value function QQ* as
Q*<.'IJ, a) = ]E’YNP(CE,G) [’I"(Z& (l) + VV*(Y)]

=Eyp(sa , “(Y,b)| .
Y ~P(z,0) T(Iavale‘c}ng( )

The recursive relation above can be used to iteratively com-
pute Q*(x,a) for all (z,a) € X x A, a dynamic program-
ming method known as value iteration. From Q*, the optimal
policy can then be trivially computed as
m*(x) = argmax Q" (z, a).
acA

262

3.3 Modeling Events

Using a factored model such as the one just described, an
event may be modeled by simply associating a boolean state
feature with the occurrence of the event (Becker, Zilberstein,
and Lesser 2004; Goldman et al. 2007). In this paper, we
restrict our consideration to uncontrollable events:

Definition 1. An uncontrollable event i corresponds to a
boolean feature Xy; € {0,1}, such that

e ¢ is said to occur when Xy;’s value changes from 0 to 1;

e Given current state x, the probability of occurrence at time

t+1 is independent of the action a taken at time t:

P[Xui(t+1)=1| X(t)=x, A(t)=a] = P[Xy;(t+1)=1| X () = ] .

For instance, in our example problem X, corresponds to
the uncontrollable event that a visitor needs assistance. From
statistical data, the robot may estimate the appearance of
such a visitor with a probability P[X, (¢t + 1) = 1] = pyisitor-
As long as we have included features in our current-state
representation that together encode sufficient information for
predicting the occurrence of the event in the next state, then
our Markovian transition model is perfectly suitable.

4 Modeling Unpredictable Events

For some events, however, it may not be possible to ac-
curately prescribe occurrence probabilities. An instance is
the fire event from our running example, which is rep-
resented using feature X ;. For illustrative purpose, in
Section 3.3, we have assigned the occurrence probabil-
ity P[X;(t+1) =1| Xf(¢t) = 0] as a small constant pfye.
However, if the transition model is presumed to have been
estimated from real experience of fires in the coffee room,
there is simply not enough data to know the true transition
probabilities of this feature with a high degree of certainty.
Given the rarity of a fire, the assignment of pg,. is bound to
be arbitrary. Our event model is, at best, an approximation.

Definition 2. An unpredictable event is an uncontrollable
event whose occurrence probability cannot be accurately
estimated as a Markov function of the latest state and action.

We now describe two solution approaches for modeling
such events. The first approach augments the conventional
model with additional features that effectively render the
event predictable. In the second approach, we devise a model
wherein unpredictable events are explicitly treated as special
factors whose CPTs are not assigned precisely, and provide
a formal method for recasting the problem as a bounded-
parameter model.

4.1 Expanded Event Model (EEM)

To help the robot to better predict fires, an alternative would
be to also model the underlying process of how the fire was
caused. In general, an unpredictable event could be made
predictable if the factored model were to include additional
features with transitions known, and sufficient for predicting
that event. In our example problem, we could model the un-
derlying causes of a fire. Figure 3 gives the reader a flavor
of what such a model might look like. Restricting consider-
ation to fires caused by faulty wiring in the coffee machine,
we have expanded our original model with additional fea-
tures that serve to predict the fire event. Working our way up
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Figure 3: Expanded factored model for predicting X ;.

through these added features, first there is whether or not the
coffee machine is on. The fire is much more likely to start
with the machine on than off. Whether or not the machine is
on is affected by the presence of a person in the coffee room.
However, having a bystander in the room also drastically de-
creases the chances of a fire breaking out, since the bystander
would intervene in the case that the coffee machine appears
to be malfunctioning. The fire event is also affected by the
condition of the wiring and the humidity in the room.

The challenge with this expanded event model (EEM)
is that it makes the robot’s decision-making problem more
complex. We doubled the number of features in our state
representation, thereby increasing our state space by an order
of magnitude or more. Furthermore, the robot may not be
able to directly observe the added features due to sensory lim-
itations of the system. In this case the problem would become
a Partially Observable Markov Decision Process (POMDP)
(Kaelbling, Littman, and Cassandra 1998), introducing sig-
nificant additional complexity (besides that caused by the
state space expansion).

4.2 Boundedly-Predictable Event Model (BPEM)

Another challenge with the aforementioned modeling ap-
proach is that it assumes that we are able to construct a
well-specified Markov model of the underlying causes of
all events. These may themselves be difficult to model or
predict, requiring additional layers of causes that underlie
the underlying causes, thereby combinatorially exploding the
augmented model. Here we develop a flexible and principled
approach for leaving out any or all of these additional factors.

The idea is to treat some features as external to the agent.
Given a prior distribution over external feature values but a
lack of agent observability of these values, these variables
can be marginalized out of the EEM. The result is a reduced
model that highlights CPT entries (denoting event occurrence
probabilities) that are not precise. Instead, these are bounded
probability values. Fortunately, the bounds on these parame-
ters may be tightened given knowledge about the dynamics
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of the process underlying the events.

Theorem 1. If we choose a set of external features X g that
serve to inform predictions of events encoded by feature set
Xy, and all remaining internal features X, such that:

1. the state is factored into X = (Xg, Xv, X1),

2. at each time t, the agent is assumed to directly observe O(t) =
(Xu(t), X1(t)) but not the external feature values X g (t),

3. the external features are conditionally independent of all else
P[XEe(t+ 1)|X (), A(®)] = P[Xe(t+ 1)|XEe(t)], and

4. the internal features are conditionally independent of the

external features
PIXr(t+1)[X(8), A(t)] = P[X1(t+1)| Xu (t), X1 (t), A(H)],

then maintaining an alternate state representation

X'(t) = (X[(0...1), Xp(0...1)), 2)
is sufficient for predicting the events:
P[Xu(t+1)|A(0...1),000...1)] =
P Xy (t+1)|X7(0...1), Xy (0...8)]. (3)

Proof Sketch. The equality in Equation 3 is proven in two
steps. First, consider that, since all internal feature values
X1(0...t) are observed, as well as the event feature values
Xy(0...t), and all external feature values unobserved, we
can rewrite the left-hand side as follows:

P[Xy (t+1)]A(0...1),00...1)]
= PXy(t+1)|Xu(0...8), X7(0...1), A(0...£)]. (@)

All that remains to reduce Equation 4 to the right-
hand side of Equation 3 is to prove that Xy (¢t + 1) is
conditionally independent of {A(0...¢)} given evidence
{X1(0...t), Xy(0...t)}. This holds as consequence of the
d-separation relationship (Pearl 1988) shown in Fig. 4. [

Corollary 1. Given properties 1-4 in Theorem 1, al-
ternate state representation X'(t) D(t), where
D(t) € {Xy(0...t),Xs(0...%)} d-separates Xy (t+1)
and {A(0...1),{Xy(0...¢),X7(0...t)}/D(t)}, is suffi-
cient for predicting the events.

The implication of the Theorem and Corollary 1 is that
we can capture all the relevant effects of unobservable exter-
nal variables without explicitly modeling the external vari-
ables. Whether or not we have the know-how or capability to
model external variables, a model containing only observable



event-effectors is sufficient for making predictions. Figure 5
portrays a reduced model for our running example, where
only the robot’s position history and the fire history suffice
to predict future fire status regardless of how complex the
external fire-generating process is.

Inferring a reduced model. Given a model of event-
underlying external variables, we can compact our model
without losing predictive power, by simply marginalizing
these variables out. Reducing our model becomes an
inference problem that updates the conditional probability
tables of the affected event features as the affecting external
variables are removed. The equations below describe this
inference problem as an iterative process that computes three
kinds of terms for each decision stage. The first term, which
we refer to as the joint-external-event distribution, or J(t) at
decision stage ¢, effectively merges the two variables X g ()
and Xy (t) into one node. The second term is the marginal
event distribution, M (t), which is induced by marginalizing
over the first term. The third term, which we call the
induced-external distribution I E(t), is used for computing
the joint-external-event distribution of the next decision stage.

For stage t = 0, IE(0) = P[X (0)]. For stages ¢ > 1:

J(t) =P Xe(t), Xv(#t)|Xv(0...t—1),X;(0...t—-1)] =

>

Xp(t1)

(IP’[XU(t)|XE(t—1),XU(t—l),XI(t—l)]

]P’[XE(t)|XE(t71)]IE(t71)> 5)

M(t) = P[Xu(8)|Xu(0...t—1), X7(0...t—1)] =

> J@) (6)
XpE(t)
J(t)
IE(t) = P[Xg(t)|Xu(0...1), X1(0...8)] = =—= (1)
M (t)

Upon augmenting the state with the necessary history
(X'(t) = (Xu(0...t), X;(0...%)), in the worst case),
Equations 57 allow us to complete our specification of the
reduced model. The marginal distribution M (¢) defines the
new CPT of the event features X (¢4 1) in terms of old CPT
entries from the EEM. As we reduce the EEM, the CPTs for
all other internal state variables remain unaffected, since they
are conditionally independent of past external variables given
the event features.

Note that we are replacing the external variables with his-
tories of event features, but that we expect that this is a rea-
sonable trade-off in the case that many external variables can
be eliminated. Moreover, depending on the dynamics of the
problem, histories of events can often be encoded compactly
such as by encoding the past times that a fire occurred and the
respective durations, rather than the whole bit sequence. Note
also that in modeling problems with our framework, there
is flexibility in terms of which and how many variables we
choose to marginalize out. Marginalizing out fewer external
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Figure 5: An equivalent reduction of the model in Figure 3.

variables could, for instance, decrease the history dependence
(though if these variables are unobservable, we would have a
POMDP instead of a history-augmented MDP).

Propagating Bounds. If the dynamics of some or all of
the external variables are not known, or imprecisely speci-
fied, then the model reduction above results in a bounded
probability distribution for predicting the events. Here, we as-
sume that the CPT entries involving Xz in the EEM are each
represented with a lower and upper bound [p;, pys). These
bounds should in turn be propagated to the reduced model as
the external variables are marginalized out. We can still apply
Equations 5-7, but we should do it twice, so as to compute
an upper and lower bound for each entry in each distribution.
In particular, to compute lower (upper) bounds, each term in-
dicated with a faint bracket underneath should be substituted
with the lower (upper) bound for that term, and each term
indicated with a bracket above should be substituted with the
upper (lower) bound. '

Some bounds may be tighter than others. For instance,
although we may not know the probabilities of faultiness in
the coffee-machine wiring or of how likely this is to cause
a fire, we can more easily collect data about bystander and
coffee machine usage and patterns. Moreover, we may be
certain that if the coffee machine is not on, then no fire will
break out. This knowledge may improve the bounds that are
propagated through marginalization, tightening the bounds
on various parameters of our reduced model.

The resulting factored model is an instance of a bounded-
parameter MDP (BMDP) (Givan, Leach, and Dean 2000),
and so solution methods for BMDPs can be readily applied.
In contrast to the general BMDP, our model has the advan-
tage that we have explicitly highlighted which parameters
are uncertain. If we were to encode the problem without per-
forming such factorization, and systematically propagating
uncertainty, we would be left with the relatively more daunt-
ing task of assigning bounds to all parameters for all states in
the transition matrix.

Approximating the event distribution. Although we
have eliminated the external variables, we are left with a
history dependence whose computational consequences may

'In the interest of space, we describe the most simplistic method
for propagating bounds, but there exist more sophisticated ap-
proaches yielding tighter bounds (e.g., Bidyuk and Dechter 2006).



Figure 6: BPEM for the sce-
nario where only pgy. 1S un-
known, but the fire dynam-
ics are Markovian.

be undesirable. Moreover, if the horizon of the planning prob-
lem is infinite, maintaining a dependence on the entire history
is untenable. Fortunately, there are principled methods for
approximating such distributions finitely (Begleiter, El-Yaniv,
and Yona 2004; Littman, Sutton, and Singh 2002).

One such solution is to predict the events using a k-order
Markov model. This amounts to assuming that the event-
generating process is k-order stationary, or to assuming that
such a process is a sensible approximation of the true process.
Under this assumption, we can infer our reduced model using
exactly the same inference technique described by Equations
5-7, iterating only up to time step k. In particular, the new
CPT for event features X/ () is:

M(t) = P[Xu(8)| Xv(t — k..
P[Xy (k)| Xv (0. .. k—1), X1(0...k—1)]

-1, X(t—k...t—1)] =
3

for any given time step ¢t > k.

This approach flexibly approximates the event prediction
model to a desired level of granularity. An appropriate level
of k& may be selected depending on computational restrictions
and on the presumed complexity of the underlying event pro-
cess. The larger the value of k, the closer the prediction model
will be to the underlying process. However, if less is known
about the process, a larger & can also lead to looser bounds
in the probability parameters of the model. The smaller the
value of k the simpler the decision model used to plan. At the
extreme, we can model the events as depending on neither
history nor on state by approximating the distribution with a
single probability denoting the likelihood of the event taking
place at any given time step.

5 Illustrative Examples

In this section, we illustrate the application of our modeling
approach to different instances of the scenario introduced in
Section 2.

Fixed unknown probabilities. In the first set of experi-
ments, we consider the situation in which fires break out with
a fixed probability pg,. that is known to lie in the interval
[0.0,0.7] but is otherwise unknown. This corresponds to the
simplest event model, where the dependence of Xf(t) on
the history of observations is only through X (¢ — 1) and
X,(t — 1).2 Using the BPEM depicted in Fig. 6, we can
now build a standard BMDP that accommodates for the un-
certainty in pgre. We solve the BMDP using interval value
iteration (Givan, Leach, and Dean 2000) and compute two

2Unlike the fire event, the assistance event was assumed to be
predictable here, with a fixed probability passistance = 0.1.
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policies, Tmax and myin. These two policies attain, respec-
tively, the best and worst possible performances given the
uncertainty in the BMDP parameters.

For comparison, we also computed the optimal policy for
an optimistic MDP, Ty, that considers pgy. = 0.0, and a
pessimistic MDP, 7., that considers pg,e = 0.7. Note that,
since the only uncertainty in the BMDP model concerns the
parameter pgre, We expect the performances of Topt and Tpes
to match those of 7,5 and 7y, respectively.

We tested the four policies in our navigation scenario, run-
ning each policy for a total of 200 independent Monte Carlo
trials. In each trial, a (simulated) robot moved around the
environment for a total of 100 time-steps while following the
prescribed policy and the total discounted reward accumu-
lated was evaluated.? Figure 8(a) presents the results obtained.
The solid area corresponds to the empirical estimation of the
value bounds obtained from the BMDP. As expected, the
values obtained by the two MDP policies match, approxi-
mately, the bounds prescribed by the BMDP policy. We also
compared the performance of the different policies as a func-
tion of the actual value of pg,e. The results are depicted in
Fig. 8(b) and, as before, the MDP policies closely match the
bounds attained by the BMDP solution.*

Next, we generalized this experiment to the case where
both fire and assistance events are treated as unpredictable
(With pagsistance lying in the interval [0.0, 1.0]). The results
are depicted in Fig. 7, where we observe again that the MDP
policies closely match the bounds attained by the BMDP
solution.’

Comparative Performance

= = = Optimistic MDP
++000 Pessimistic MDP
= BMDP

Ave. total disc. reward

0 2 4 6 8 10 12 14 16 18 20
Time step

Figure 7: Comparison of BMDP, optimistic MDP and pes-
simistic MDP policies in a scenario where both pg.. and
Passistance are unknown.

3The actual value of Psre, unknown to the robot, was 0.4.

“Note that in all of these experiments, we have intentionally cho-
sen unrealistically-high fire probabilities to bring out the potentially-
significant differences in performance among methods. In a separate
experiment (whose detailed results we have omit here to save space)
we also tested smaller probabilities (e.g., pare = 0.01), and ob-
served the same qualitative trends.

3 Actual values of Passistance and Pare Were both 0.4.
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(a) Unknown fire probability, 0 < pgre < 0.7.
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(b) Dependence of the performance on the value of pgre.

Figure 8: Comparison of BMDP, optimistic MDP and pessimistic MDP policy in a scenario with constant fire probability pgye.

Non-Markovian fire events. In the second set of experi-
ments, we consider a situation in which a pre-determined
number of fires break out at random instants in time during
the simulation. This means that the feature X f(t) is non-
Markovian given the state information available to the robot.

In these experiments, predicting the fire would require sev-
eral additional features (among which the time remaining
until the end of the episode), as depicted in Fig. 9. How-
ever, as we derived in Section 4.2, this EEM can be re-
duced to the more compact BPEM in Fig. 5, where uncer-
tainty has been propagated into the dependence of X (t)
on {X;(0...t),X,(0,...,t)}. Note that, in this case, the
BPEM complexity is unaffected by the number of fires,
whereas the EEM complexity is critically dependent, leading
to a larger latent state space with every additional fire. In
a problem context such as this, the BPEM is a much more
sensible alternative due to its scalability.

For illustrative purposes, we adopt the simplest approxi-
mation, considering a first-order Markov approximation as
described in Section 4.2. The resulting BPEM is thus equiva-

Figure 9: EEM for the second
test scenario, requiring a large
number of additional features.

lent to that used in the simpler context of the previous experi-
ments. As before, we tested the four policies in our navigation
scenario, running each policy for a total of 200 independent
Monte Carlo trials. Figure 10 presents the results obtained.

Notice that, for a small number of fire events (Fig. 10(a)),
the MDP policies do not trace the performance bounds of
the BMDP approach. However, as the number of fire events
increases (Fig. 10(b)), this difference in performance disap-
pears. This may be an artifact of the approximation, indicat-
ing that the scenario wherein only a small number of fires
take place is not adequately captured by a simple MDP model.
As events become less rare, the approximation appears to be-
come sufficiently accurate for planning. We note, however,
that this preliminary experiment is merely an illustration of
the approximate BPEM model, serving as a precursor for
more rigorous evaluations of its efficacy.

6 Related Work

The conventional method of reasoning about uncertain events
while planning, which we extend here, is to include the
events as part of the state and model their occurrence as
transition probabilities (Becker, Zilberstein, and Lesser 2004;
Witwicki and Durfee 2009). Other work (Cao and Zhang
2008) models an MDP that reasons only about these kind of
events instead of states, completely abstracting away from the
underlying Markov model. To combine asynchronous events
and actions, others have employed Generalized Semi-Markov
Decision Processes (GSMDPs) (Younes and Simmons 2004;
Rachelson et al. 2008). They consider time to be continuous
and model a set of external events that can be triggered at any
time affecting the system state. A difficulty with such models
is that a time distribution is assumed for each event, which
may not be easy to construct in a real problem, especially
when considering rare events.

Others have acknowledged that rare events are difficult to
model conventionally. There is extensive work on estimating
the probabilities of rare events (Juneja and Shahabuddin 2006;
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(a) Three fires break out at random times during each trial.
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Figure 10: Comparison of BMDP, optimistic MDP and pessimistic MDP policies in a scenario with non-Markovian fire events.

Rubino and Tuffin 2009). In general, the idea is to simulate
the system and apply different sampling techniques in order
to derive small probabilities for the events. These techniques
are used in a wide spectrum of applications, such as biological
systems, queue theory, reliability models, etc. Usually the
rare events (e.g., a queue overflow or a system failure) have
a very low probability but they can occur if the simulations
are properly driven. A challenge is that, given the existence
of many hidden variables, fine-tuning an arbitrarily complex
model is not always possible.

Our approach is complementary to previous work that in-
troduced bounded and imprecise parameter models and devel-
oped solution algorithms, such as MDPs with imprecise prob-
abilities (Harmanec 2002), POMDPs with imprecise proba-
bilities (Itoh and Nakamura 2007), bounded-parameters varia-
tions in MDPs (Givan, Leach, and Dean 2000) and POMDPs
(Ni and Liu 2008), as well as Factored MDPs with imprecise
probabilities (Delgado, Sanner, and de Barros 2011). The
modeling framework that we develop describes a principled
approach to actually specifying a bounded-parameter model.
Thus, our work contributes a useful precursor to, and a formal
context for, applying bounded-parameter models.

The idea of reducing a decision model by eliminating
unobserved external variables has also been explored in mul-
tiagent settings (Oliehoek, Witwicki, and Kaelbling 2012;
Witwicki and Durfee 2010), where agents model abstract in-
fluences from peers rather than the peers’ full decision models.
Here we show that by modeling environmental influences
abstractly, the same principle also facilitates single-agent
decision making. Along a similar vein, PSRs (Littman, Sut-
ton, and Singh 2002) also seek to make predictions using a
compact representations of histories of observable features.

7 Conclusions and Future Work

In this paper, we have addressed the challenge of modeling
unpredictable events for the purposes of intelligent planning
and decision-making under uncertainty. In contrast to the
majority of work in this area, which assumes a perfectly pre-
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dictive model of world dynamics, we have acknowledged that
an accurate MDP model may be impossible to prescribe. As
a precursor to planning in these scenarios, we have developed
a framework for accounting for events whose underlying
processes are prohibitively complex or unknown.

Our main contribution is a principled modeling approach.
We have shown that if (potentially large) portions of the
underlying event process can be treated as unobservable ex-
ternal variables, those variables do not need to be included
in the decision model. In particular, we have proven that an
MDP model without the external variables provides the same
predictive power as a POMDP model with the external vari-
ables. And we have formulated how inference techniques can
be used to reduce the model through marginalization.

For those situations where there is uncertainty in the under-
lying process, we have developed a method for systematically
propagating the uncertainty to distinguished parameters in
our reduced model. And for when knowledge is gained about
the underlying process, the same method incorporates that
knowledge in the form of tightened probability bounds on
event prediction probabilities. The output of our method, the
BPEM, is a special type of BMDP, which our principled
approach helps the modeling practitioner to specify. Our ap-
proach offers the benefit of flexibility in the richness of the
BPEM, accommodating different levels of knowledge about
event dynamics, and supporting trade-offs in computational
complexity and predictive precision.

We have illustrated how our framework can be used to
model fire events in a robot planning problem. In the future,
we plan to extend our experimental work to carefully analyze
the purported trade-offs among event models, in particular
comparing computation and quality of EEM planning with
approximate BPEM planning. Additionally, the modeling
groundwork that we have presented here motivates future
work into exploiting our BPEM’s factored structure in plan-
ning. In particular, we envision algorithms that compute plans
more efficiently by leveraging the fact that unpredictability
only manifests itself in the CPTs of uncontrollable events.
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