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Abstract

We describe a point-based approximate value
iteration algorithm for partially observable
Markov decision processes. The algorithm per-
forms value function updates ensuring that in
each iteration the new value function is an up-
per bound to the previous value function, as
estimated on a sampled set of belief points. A
randomized belief-point selection scheme allows
for fast update steps. Results indicate that the
proposed algorithm achieves competitive perfor-
mance, both in terms of solution quality as well
as speed.

1 Introduction

Partially observable Markov decision processes
(POMDPs) provide a rich mathematical frame-
work for agent planning under uncertainty, with
many applications in operations research and
artificial intelligence (Sondik, 1971; Kaelbling
et al., 1998). Unfortunately, the expressive-
ness of POMDPs is counterbalanced by the
high cost of computing exact solutions (Pa-
padimitriou and Tsitsiklis, 1987; Madani et al.,
1999). Approximate (heuristic) solution tech-
niques in POMDPs aim at reducing this com-
plexity (Hauskrecht, 2000).

A classical method for solving POMDPs is
value iteration (Sondik, 1971). This method
incrementally builds a sequence of value func-
tion estimates that converge to the optimal—
i.e., highest attainable—value function for the
current task. Traditional exact value iteration
algorithms (Sondik, 1971; Cheng, 1988; Kael-
bling et al., 1998) search in each value iteration
step the complete belief simplex for a minimal
set of belief points that generate the necessary
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set of vectors for the new horizon value func-
tion. This typically requires solving a number
of linear programs and is therefore costly in high
dimensions.

In (Zhang and Zhang, 2001) it was shown
that value iteration still converges to the opti-
mal value function if the computed value func-
tion in each step is an upper bound to the
value function of the previous step. Standard
value iteration steps can then be interleaved
with such ‘partial’ value iteration steps, result-
ing in a speedup of the total algorithm. How-
ever, linear programming is again needed in or-
der to ensure that the new value function is an
upper bound to the previous one.

On the other hand, in practical tasks one
would like to compute solutions only for those
parts of the belief simplex that are reachable,
i.e., that can be actually encountered by in-
teracting with the environment. This has re-
cently motivated the use of approximate solu-
tion techniques for POMDPs (Poon, 2001; Roy
and Gordon, 2003; Pineau et al., 2003), in which
a set of belief points are sampled from the be-
lief simplex—e.g., by random exploration—and
then an approximate solution is sought that
plans on these points only instead of the com-
plete belief simplex.

In this paper we describe a simple approxi-
mate value iteration method for POMDPs that
borrows ideas from (Zhang and Zhang, 2001)
and (Pineau et al., 2003). The proposed algo-
rithm performs a number of value update steps,
making sure that in each step the new value
function is an upper bound to the previous value
function, as estimated on the sampled set of be-
lief points. A randomized belief-point selection
scheme allows for fast update steps. Experimen-
tal results indicate that it is capable of comput-
ing good solutions in short time.



2 The POMDP model

In its simplest form, a POMDP model describes
the interaction of an agent with its environment
as the iteration of the following two steps:

1. At any time step the environment is in a
state s ∈ S. An agent that is embedded in
the environment takes an action a ∈ A and
receives a reward r(s, a) from the environ-
ment as a result of this action. The envi-
ronment switches to a new state s′ accord-
ing to a known stochastic transition model
p(s′|s, a).

2. The agent perceives an observation o ∈ O
that is conditional on its action. This ob-
servation provides the agent with informa-
tion about the state s through a known
stochastic observation model p(o|s, a).

All sets S, O, and A are assumed discrete and
finite. At any time step the agent can summa-
rize all information about the past in the form
of a probability distribution b(s) over states s.
This distribution, or belief, can be updated us-
ing Bayes’ rule each time the agent takes an
action a and receives an observation o:

bo
a(s

′) ∝ p(o|s′, a)
∑

s

p(s′|s, a)b(s) (1)

with
∑

s bo
a(s) = 1.

The task of the agent is to find a policy—
a mapping from beliefs to actions—that
maximizes expected discounted future reward
E[

∑

∞

t=0
γtr(st, at)], where γ is a discount rate.

A policy is defined by a value function, which
estimates the expected amount of future dis-
counted reward for each belief. The value func-
tion of an optimal policy is called the optimal
value function and is denoted by V ∗. It is the
fixed point of the equation V = HV , with H
the Bellman backup operator:

V (b) = max
a

[

∑

s

r(s, a)b(s) +

γ
∑

o,s,s′

p(o|s′, a)p(s′|s, a)b(s)V (bo
a)

]

(2)

where bo
a is given by (1).

3 Value iteration in POMDPs

Value iteration in POMDPs iteratively builds
better estimates of V ∗ by applying the operator
H to an initially piecewise linear and convex
value function V0 (Sondik, 1971). The interme-
diate estimates V1, V2, . . . will then also be piece-
wise linear and convex. We will throughout as-
sume that a value function Vn at step n is rep-
resented by a finite set of vectors {α1

n, α2
n, . . .},

where each vector defines a hyperplane over the
belief simplex. Additionally, with each vector
an action is associated, which is the optimal one
to take in the current step, assuming optimal ac-
tions are executed in following steps. The value
of a belief point b is

Vn(b) = max
αi

n

b · αi
n, (3)

where (·) denotes inner product.
Most value iteration algorithms for POMDPs

build on the fact that for a given value function
Vn and a particular belief point b we can easily
compute the vector α of HVn such that

α = arg max
αi

n+1

b · αi
n+1 (4)

where {αi
n+1} is the (unknown) set of vectors

for HVn. We will denote this operation α =
backup(b, Vn). The difficult task, however, is
to ensure that all vectors of HVn are gener-
ated. Standard exact algorithms (Sondik, 1971;
Cheng, 1988; Kaelbling et al., 1998) search in
the belief simplex for a minimal set of belief
points {bi} that generate the necessary set of
vectors for the new horizon value function:

⋃

bi

backup(bi, Vn) = HVn. (5)

Finding all these points may require solving a
number of linear programs which can be expen-
sive in high dimensions.

An alternative approach to value iteration
has been proposed in (Zhang and Zhang, 2001).
The authors show that the convergence of value
iteration is not compromised if instead of com-
puting in each iteration the optimal HVn, one
computes a value function Vn+1 that is an upper
bound to Vn, and therefore holds

Vn ≤ Vn+1 ≤ HVn. (6)



This additionally requires that the value func-
tion is appropriately initialized. As shown by
the authors, this is trivially realized by choos-
ing V0 to be a single vector with all its com-
ponents equal to 1

1−γ
mins,a r(s, a). Given Vn,

the authors propose creating a number of vec-
tors of HVn by applying backup to a fixed set of
prototype belief points, and then solve a set of
linear programs to ensure that Vn+1 ≥ Vn over
the whole belief simplex.

One can also abandon the idea of doing ex-
act value backups and settle for useful approx-
imations. In the recently introduced point-
based techniques, a set of belief points are
first sampled from the belief simplex by let-
ting the agent interact with the environment,
and then value updates are performed on these
points only (Poon, 2001; Roy and Gordon, 2003;
Pineau et al., 2003). In particular, the PBVI al-
gorithm of (Pineau et al., 2003) samples a set
B of belief points from the belief simplex (by
stochastic simulation), and then it repeatedly
applies the backup operator on each b ∈ B for
a number of steps, then expands the set B, and
so forth.

Point-based solution techniques for POMDPs
are justified by the fact that in most practi-
cal problems the belief simplex is sparse, in the
sense that only a limited number of belief points
can ever be reached by letting the agent directly
interact with the environment. In these cases,
one would like to plan only for those reachable
beliefs (which is a tractable problem) instead
of planning over the complete belief simplex
(which is an intractable problem).

4 The proposed algorithm

In our algorithm we first let the agent randomly
explore the environment and collect a set B of
reachable belief points. We then initialize the
value function V0 by using a single vector as
in (Zhang and Zhang, 2001). The algorithm
performs value function update steps, making
sure that in each step the new value function
estimate Vn+1 is an upper bound to Vn for all
b ∈ B. The choice which belief points to back
up is done by randomization over B.

Given Vn, a value update step is as shown
below. (The set B̃ contains the belief points
whose value has not been improved yet in the
current value update step.)

1. Set Vn+1 = ∅. Set B̃ = B.

2. Sample a belief point b uniformly at ran-
dom from B̃. Compute α = backup(b, Vn).
If b · α ≥ Vn(b) then add α to Vn+1, other-
wise add αn = arg maxαi

n
b · αi

n to Vn+1.

3. Compute B̃ = {b ∈ B : Vn(b) > Vn+1(b)}.
If B̃ = ∅ then stop, otherwise go to 2.

The hope is that by randomly sampling be-
lief points from (increasingly smaller) subsets of
B we quickly build a function Vn+1 that is an
upper bound to Vn over B (and often over the
complete belief simplex).

As pointed out in (Hauskrecht, 2000, sec. 4),
an approximate value iteration algorithm is
characterized by the following elements: (1) the
computational complexity of the value function
backups, (2) the model complexity of the value
function (i.e., how many vectors comprise Vn),
(3) the ability of the method to bound the exact
update operator H, (4) the convergence behav-
ior of the algorithm, and (5) its control perfor-
mance.

With regard to (1) and (2), the randomized
backup steps in our algorithm allow for a quick
build-up of an upper bound to Vn, especially
in the first iterations where Vn and Vn+1 differ
substantially. As a result, the number of vec-
tors generated in each backup step will be small
compared to the size of B. Moreover, since the
cost of backup depends (linearly) on the num-
ber of vectors of Vn, the first update steps are
typically very fast. This allows the method to
quickly reach a good approximate solution with
few vectors (see the experiments below).

Concerning (3) and (4), a generated vector
α = backup(b, Vn) of Vn+1 will always be a
member of HVn if b · α ≥ Vn(b). Therefore, if
the last condition is not violated, the generated
Vn+1 will lower bound HVn (since not all vec-
tors of HVn are computed). On the other hand,
if b ·α < Vn(b) the algorithm adds a vector from
Vn(b) so that Vn+1(b) ≥ Vn(b) for each n and all
b ∈ B. In this case Vn+1 may not lower bound
HVn. However, since each iteration improves
the value of each belief point and V ∗ is an up-
per bound to Vn, the algorithm must converge
(but not necessarily to V ∗). With respect to (5)
we cannot say much at the moment, except that
we observed encouraging results in practice.



Name |S| |O| |A|

Tiger-grid 33 17 5

Hallway 57 21 5

Hallway2 89 17 5

Tag 870 30 5

Table 1: Properties of the problem domains.
The first three were introduced in (Littman et
al., 1995), the last one in (Pineau et al., 2003).

The main difference with other point-based
value update schemes is that we do not back
up each b ∈ B, but instead back up (random)
points until the value of every b ∈ B has im-
proved or remained the same. The intuition
is that in this way we limit the growth of the
number of vectors in the successive value func-
tion estimates. Moreover, we can afford to use
a large set B of belief points sampled in ad-
vance, as opposed to other point-based algo-
rithms that propose growing B incrementally.
Larger B means higher chance of incorporating
high-valued beliefs in the value backups. In par-
ticular, we can start the algorithm by choosing a
belief b∗ = arg maxb maxa r(b, a), and then per-
form value updates as described above. In this
way, we can quickly propagate high rewards over
the sampled belief space.

5 Experiments

We ran experiments applying the proposed al-
gorithm on four problems from the POMDP lit-
erature. Table 1 summarizes these problems in
terms of the size of S, O and A. The Hallway,
Hallway2 and Tiger-grid problems are maze do-
mains commonly used to test scalable POMDP
solution techniques (Littman et al., 1995; Braf-
man, 1997; Zhou and Hansen, 2001; Pineau et
al., 2003). The Tag domain (Pineau et al., 2003)
is an order of magnitude larger than the first
three problems, and models a search and tag
game between two robots.

The maze problems

In (Littman et al., 1995) three larger maze do-
mains were introduced: Tiger-grid, Hallway and
Hallway2. All of them are navigation tasks:
the objective is for an agent to reach a desig-
nated goal state as quickly as possible. The
agent can observe each possible combination of
the presence of a wall in four directions plus a

unique observation indicating the goal state; in
the Hallway problem three other landmarks are
also available. At each step the agent can take
one out of five actions: {stay in place, move for-
ward, turn right, turn left, turn around}. Both
the transition and the observation model are
very noisy. For each of the maze problems we
used a set B of a 1,000 points, collected at ran-
dom by stochastic simulation.

Fig. 1 through 3 show the results of our algo-
rithm on the maze problems: (a) the value as
estimated on B,

∑

b∈B V (b), (b) the expected
discounted reward, (c) the number of vectors
in the value function estimate, |{αi}| and (d)
the number of policy changes: the number of
b ∈ B which had a different optimal action in
Vn−1 compared to Vn. The dashed lines indicate
the performance of PBVI. For all four problems
we repeated our algorithm 10 times with differ-
ent random seeds, the error bars indicate stan-
dard deviation within these 10 runs. To eval-
uate the computed policies we tested each of
them on 10 runs times 100 starting positions
(γ = 0.95; Tiger-grid: maximum 500 steps, re-
set at goal; Hallway and Hallway2: maximum
251 steps, terminate at goal). The results show
our algorithm can reach good control quality
using few vectors (and thus little computation
time). Because we can afford to run the al-
gorithm on large belief sets the (d) subfigures
can be used as an indication of convergence:
if the policy does not change much anymore
as estimated on B one could assume the pol-
icy has converged. Table 2 summarizes our re-
sults, comparing our method to PBVI and QMDP

(Littman et al., 1995). The latter is a simple ap-
proximation technique that treats the POMDP
as if it were fully observable and solves the un-
derlying MDP, e.g., using value iteration (Sut-
ton and Barto, 1998). Then it uses the result-
ing Q(s, a) values to define a control policy as
π(b) = arg maxa

∑

s b(s)Q(s, a). QMDP can be
very effective in some domains, but the policies
it computes will not take informative actions,
as the QMDP solution assumes uncertainty re-
garding the state will disappear after taking one
action.

The Tag domain

The goal in the Tag domain, described in
(Pineau et al., 2003), is for a robot to search
for a moving opponent robot and tag it. The
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Figure 1: Results for the Tiger-grid problem.
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Figure 2: Results for the Hallway problem.
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Figure 3: Results for the Hallway2 problem.
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Figure 4: Results for the Tag problem.



Method Reward Vectors Time (s)

Tiger-grid

ours 2.34 134 104

PBVI 2.25 470 3448

QMDP 0.23 n.a. 2.76

Hallway

ours 0.51 55 35

PBVI 0.53 86 288

QMDP 0.27 n.a. 1.34

Hallway2

ours 0.35 56 10

PBVI 0.34 95 360

QMDP 0.09 n.a. 2.23

Tag

ours −6.85 205 3076

PBVI −9.18 1334 180880

QMDP −16.9 n.a. 16.1

Table 2: Summary of results. PBVI results are
taken from (Pineau et al., 2003), so time com-
parisons are rough.

chasing robot cannot observe the opponent un-
til they occupy the same position, at which time
it should execute the tag action in order to win
the game, and receive a reward of 10. If the
opponent is not present at the same location,
the reward will be −10, and the robot is penal-
ized with a −1 reward for each motion action it
takes. The opponent tries to escape from being
tagged by moving away of the chasing robot,
it however has a 0.2 chance of remaining at its
location. The chasing robot has perfect infor-
mation regarding its own position and its move-
ment actions {north,east,south,west} are deter-
ministic. The state space is represented as the
cross-product of the states of the two robots.
Both robots can be located in one of the 29 po-
sitions depicted in Fig. 5, and the opponent can
also be in a special tagged state. In total the
domain consists of 870 states.

The Tag domain has a high dimensionality
compared to other POMDP problems studied in
literature, but deals with solving the problems
of partial observability on an abstract level. The
transition and observation models are sparse,
and the belief set resulting from experiencing
the environment is also sparse (due to the spe-

O C

Figure 5: The Chasing and Opponent robot in
the Tag domain.

cial structure of the problem). Exploiting this
sparsity is easy by taking advantage of sparse
matrix computation facilities of available soft-
ware.

Fig. 4 shows the performance of our algorithm
when we used a belief set of 10,000 points, sam-
pled by experiencing the environment uniformly
at random. We seeded our algorithm with a be-
lief that has maximal immediate reward. To
compute the expected reward we sampled tra-
jectories of at most 100 steps, other parameters
are the same as in the maze problem experi-
ments. The results show that in the Tag prob-
lem our algorithm displays better control qual-
ity than both QMDP and PBVI, while it uses
fewer vectors than PBVI. A summary of the
results comparing our algorithm to PBVI and
QMDP can be found in Table 2. Our algorithm
reaches very competitive control quality using a
relatively small number of vectors.

6 Conclusions and discussion

We presented a new point-based value iteration
algorithm for POMDPs that performs value up-
date steps, trying to find in each step a minimal
set of vectors Vn+1 that upper bound the current
value function Vn, as estimated on a sampled
set B of belief points. The main difference with
other point-based value iteration algorithms is
that we do not back up the value on each b ∈ B,
but back up on randomly selected points from B
until the value of every b ∈ B has improved (or
at least remained the same). This allows us to
use a large set B of belief points which, in turn,
increases the chance that high-reward beliefs are
utilized in the value update steps. Results indi-
cate that the proposed algorithm achieves com-
petitive performance, both in terms of solution
quality as well as speed.

Our randomized algorithm and the ‘full
backup’ PBVI can be regarded as two extremes
of a spectrum of point-based backup schemes.
One can think of other mechanisms where a



number of points are backed up in each value
backup step in a prioritized manner in order to
approximate HVn. For instance, an idea is to
derive a point-based version of the linear sup-
port algorithm of (Cheng, 1988), where points
are selected from B that are as close as possible
to the corner points of the current approxima-
tion.

As future work, we would like to study the
behavior of our algorithm in more large-scale
problems, and locate the class of problems for
which the algorithm is most appropriate. We
would also like to study multiagent extensions.
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