DRAFT. To appear in “M. A. Wiering and M. van Otterlo, editorsgiRforcement Learning: State of the Art, Springer VerIe(ng”‘

Partially Observable Markov Decision Processes

Matthijs T.J. Spaan

Abstract For reinforcement learning in environments in which an agas access
to a reliable state signal, methods based on the Markovidacgsocess (MDP)
have had many successes. In many problem domains, howevagemt suffers
from limited sensing capabilities that preclude it fromaeering a Markovian state
signal from its perceptions. Extending the MDP framewor&tiplly observable
Markov decision processes (POMDPSs) allow for principledisien making under
conditions of uncertain sensing. In this chapter we presenOMDP model by
focusing on the differences with fully observable MDPs, amedshow how optimal
policies for POMDPs can be represented. Next, we give awesfenodel-based
techniques for policy computation, followed by an overvigithe available model-
free methods for POMDPs. We conclude by highlighting re¢esrtds in POMDP
reinforcement learning.

1 Introduction

The Markov decision process model has proven very sucddssflearning how

to act in stochastic environments. In this chapter, we erpieethods for reinforce-
ment learning by relaxing one of the limiting factors of thé® model, namely
the assumption that the agent knows with full certainty theesof the environment.
Put otherwise, the agent’s sensors allow it to perfectlyitoothe state at all times,
where the state captures all aspects of the environmenargléor optimal deci-
sion making. Clearly, this is a strong assumption that catrice the applicability

of the MDP framework. For instance, when certain state featare hidden from

Matthijs T.J. Spaan

Institute for Systems and Robotics, Instituto Superieciico,

Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal.

e-mail:nt j spaan@sr.ist.utl.pt

Currently at Delft University of Technology, Delft, The Nettands.

DRAFT. To appear in “M. A. Wiering and M. van Otterlo, editorsgiRforcement Learning: State of the Art, Springer VerIe(ng”‘

2 Matthijs T.J. Spaan

the agent the state signal will no longer be Markovian, tintaa key assumption
of most reinforcement-learning techniques (Sutton andd34©98).

One example of particular interest arises when applyingfoetement learning
to embodied agents. In many robotic applications the rebmt-board sensors do
not allow it to unambiguously identify its own location orge(Thrun et al, 2005).
Furthermore, a robot’s sensors are often limited to obegrits direct surround-
ings, and might not be adequate to monitor those featurdgeaivironment’s state
beyond its vicinity, so-called hidden state. Another sewtuncertainty regarding
the true state of the system are imperfections in the robetisors. For instance, let
us suppose a robot uses a camera to identify the person teimating with. The
face-recognition algorithm processing the camera imagisely to make mistakes
sometimes, and report the wrong identity. Such an impesttsor also prevents the
robot from knowing the true state of the system: even if tlsgowvi algorithm reports
person A, it is still possible that person B is interactinghathe robot. Although
in some domains the issues resulting from imperfect sensig@t be ignored, in
general they can lead to severe performance deterioragioglf et al, 1994).

Instead, in this chapter we consider an extension of thé/ (@ldservable) MDP
setting that also deals with uncertainty resulting from #dgent’s imperfect sen-
sors. A partially observable Markov decision process (PG Bllows for optimal
decision making in environments which are only partiall\setvable to the agent
(Kaelbling et al, 1998), in contrast with the full obserddbimandated by the MDP
model. In general the partial observability stems from taarses: (i) multiple states
give the same sensor reading, in case the agent can onlyadénsted part of the
environment, and (ii) its sensor readings are noisy: olisgrthe same state can
result in different sensor readings. The partial obsefigalgian lead to “perceptual
aliasing”: different parts of the environment appear samib the agent’s sensor sys-
tem, but require different actions. The POMDP captures #ragh observability in
a probabilistic observation model, which relates possiblgervations to states.

Classic POMDP examples are the machine maintenance (Sooalland Sondik,
1973) or structural inspection (Ellis et al, 1995) probleinsthese types of prob-
lems, the agent has to choose when to inspect a certain neggaihor bridge sec-
tion, to decide whether maintenance is necessary. Howevaliow for inspection
the machine has to be stopped, or the bridge to be closedhwkiais a clear eco-
nomic cost. A POMDP model can properly balance the tradéetifveen expected
deterioration over time and scheduling inspection or negiabce activities. Fur-
thermore, a POMDP can model the scenario that only choosiirgspect provides
information regarding the state of the machine or bridge, that some flaws are
not always revealed reliably. More recently, the POMDP nhbds gained in rele-
vance for robotic applications such as robot navigatiom(8ons and Koenig, 1995;
Spaan and Vlassis, 2004; Roy et al, 2005; Foka and Trah&@i@g), active sensing
(Hoey and Little, 2007; Spaan et al, 2010), object graspithgjgo et al, 2007) or
human-robot interaction (Doshi and Roy, 2008). FinallyMIPs have been ap-
plied in diverse domains such as treatment planning in nregli¢iauskrecht and
Fraser, 2000), spoken dialogue systems (Williams and YoR@g7), developing

DRAFT. To appear in “M. A. Wiering and M. van Otterlo, editorsgiRforcement Learning: State of the Art, Springer VerIe(ng”‘

Partially Observable Markov Decision Processes 3
environment
agent | action a
n _l
obs. o L state SQ
Fig. 1 APOMDP agent inter- reward r
acting with its environment.

navigation aids (Stankiewicz et al, 2007), or invasive ggeemanagement (Haight
and Polasky, 2010).

The remainder of this chapter is organized as follows. FirsSection 2 we
formally introduce the POMDP model, and we show that theiglaobservability
leads to a need for memory or internal state on the part of geata\We discuss
how optimal policies and value functions are representdaai®OMDP framework.
Next, Section 3 reviews model-based techniques for POMEB#sidering optimal,
approximate and heuristic techniques. Section 4 gives aerview of the model-free
reinforcement learning techniques that have been dewlfipeor can be applied
to POMDPs. Finally, Section 5 describes some recent dewedafs in POMDP
reinforcement learning.

2 Decision making in partially observable environments

In this section we formally introduce the POMDP model anctexd decision-
making concepts.

2.1 POMDP model

A POMDP shares many elements with the fully observable MDBehas described
in the Introduction chapter, which we will repeat for contpleess. Time is dis-
cretized in steps, and at the start of each time step the hgsiib execute an action.
We will consider only discrete, finite, models, which are bBythe most commonly
used in the POMDP literature given the difficulties involweith solving continu-
ous models. For simplicity, the environment is represebied finite set of states
S={s!,...,sV}. The set of possible actioss= {al,...,a} represent the possible
ways the agent can influence the system state. Each timehsteygént takes an ac-
tion ain states, the environment transitions to stateaccording to the probabilistic
transition functionT (s,a,s') and the agent receives an immediate revR(isla,).

DRAFT. To appear in “M. A. Wiering and M. van Otterlo, editorsgiRforcement Learning: State of the Art, Springer VerIe(ng”‘

4 Matthijs T.J. Spaan

What distinguishes a POMDP from a fully observable MDP is that agent
now perceives an observationce Q, instead of observing directly. The discrete
set of observation® = {o',...,0M} represent all possible sensor readings the agent
can receive. Which observation the agent receives depenttearext states’ and
may also be conditional on its acti@y and is drawn according to the observation
function O : Sx Ax Q — [0,1]. The probability of observing in states’ after
executinga is O(s,a,0). In order forO to be a valid probability distribution over
possible observations it is required thate Sac Ao € Q O(s,a,0) > 0 and that
Yoco O(S,a,0) = 1. Alternatively, the observation function can also be d=fias
0:Sx Q — [0,1] reflecting domains in which the observation is independétiteo
last actiont

As in an MDP, the goal of the agent is to act in such a way as tamag some
form of expected long-term reward, for instance

h
e[> R}, 1)

whereE][-] denotes the expectation operatoiis the planning horizon, andis a
discount rate, & y < 1.
We define a POMDP as follows.

Definition 2.1

A partially observable Markov decision processis a tuple(S A,Q,T,O,R) in
which S is a finite set of statedh is a finite set of actions2 is a finite set of
observationsT is a transition function defined d8s: Sx Ax S— [0,1], O is an
observation function defined &: Sx Ax Q — [0,1] andR is a reward function
defined aik: Sx Ax S— R.

Fig. Lillustrates these concepts by depicting a schengiesentation of a POMDP
agent interacting with the environment.

To illustrate how the observation function models différgmes of partial ob-
servability, consider the following examples, which assamPOMDP with 2 states,
2 observations, and 1 action (omitted for simplicity). Tlese that sensors make
mistakes or are noisy can be modeled as follows. For instance

O(st,0') = 0.8, O(s!,0?) = 0.2, O(s?,0') =0.2, O(s*,0%) = 0.8,

models an agent equipped with a sensor that is correct in §a#e @ases. When
the agent observes' or 02, it does not know for sure that the environment is in
states! resp.s?. The possibility that the state is completely hidden to tiera can
be modeled by assigning the same observation to both statdbservation? is
effectively redundant):

O(st,0') = 1.0, O(st,0?) = 0.0, O(s?,0%) = 1.0, O(s*,0%) = 0.0.

1 Technically speaking, by including the last action taken asi $eature, observation functions
of the formO(s’,0) can express the same models compared (& a,0) functions.

DRAFT. To appear in “M. A. Wiering and M. van Otterlo, editorsgiRforcement Learning: State of the Art, Springer VerIe(ng”‘

Partially Observable Markov Decision Processes 5

When the agent receives observatidrit is not able to tell whether the environment
is in states® or s?, which models the hidden state adequately.

2.2 Continuous and structured representations

As mentioned before, the algorithms presented in this enayierate on discrete
POMDPs, in which state, action, and observation spaceseepbesented by finite
sets. Here we briefly discuss work on continuous as well astsied POMDP
representations, which can be relevant for several apjgita

Many real-world POMDPs are more naturally modeled usinginapous models
(Porta et al, 2006; Brunskill et al, 2008), for instance aotbpose is often de-
scribed by continuou&, y, 6) coordinates. Standard solution methods such as value
iteration can also be defined for continuous state space&(€al, 2005), and con-
tinuous observation spaces (Hoey and Poupart, 2005) agsvetintinuous actions
(Spaan and Vlassis, 2005b) have been studied. Howevefdalbservation, action
and reward models defined over continuous spaces can hatvargriorms that may
not be parameterizable. In order to design feasible alguositit is crucial to work
with models that have simple parameterizations and reswloised belief updates
and Bellman backups. For instance, Gaussian mixtures &clpabased represen-
tations can be used for representing beliefs and linear c@tibns of Gaussians
for the models (Porta et al, 2006). As an alternative, sitrariebased methods are
often capable of dealing with continuous state and acti@eep (Thrun, 2000; Ng
and Jordan, 2000; Baxter and Bartlett, 2001).

Returning to finite models, in many domains a more structl®{1DP repre-
sentation is beneficial compared to a flat representatiowlfich all sets are enu-
merated). Dynamic Bayesian networks are commonly used astaréd POMDP
representation (Boutilier and Poole, 1996; Hansen and ,F20@P), in addition to
which algebraic decision diagrams can provide compact iraydkpolicy represen-
tation (Poupart, 2005; Shani et al, 2008). Relational regmtations have also been
proposed for the POMDP model (Sanner and Kersting, 2010gVsiad Khardon,
2010). Furthermore, in certain problems structuring theisien making in sev-
eral hierarchical levels can allow for improved scalapi(Pineau and Thrun, 2002;
Theocharous and Mahadevan, 2002; Foka and Trahanias, 30idharan et al,
2010). Finally, in the case when multiple agents are exeguijoint task in a par-
tially observable and stochastic environment, the Deaénérd POMDP model can
be applied (Bernstein et al, 2002; Seuken and Zilberst€)820liehoek et al,
2008).

DRAFT. To appear in “M. A. Wiering and M. van Otterlo, editorsgiRforcement Learning: State of the Art, Springer VerIe(ng”‘

6 Matthijs T.J. Spaan
Fig. 2 A two-state POMDP r _r
from (Singh et al, 1994), in 1 a2, 4r 2
which the agent receives the a . &
same observation in both st O s

states. al, +r

2.3 Memory for optimal decision making

As the example in Section 2.1 illustrated, in a POMDP the Bgebservations do

not uniquely identify the state of the environment. Howewsrthe rewards are still
associated with the environment state, as well as the staigitions, a single obser-
vation is not a Markovian state signal. In particular, aclirmapping of observations
to actions is not sufficient for optimal behavior. In order & agent to choose its
actions successfully in partially observable environraenémory is needed.

To illustrate this point, consider the two-state infiniterizon POMDP depicted
in Fig. 2 (Singh et al, 1994). The agent has two actions, ongha¢h will deter-
ministically transport it to the other state, while exengtthe other action has no
effect on the state. If the agent jumps to the other statedives a reward af > 0,
and—r otherwise. The optimal policy in the underlying MDP has aueabfl%y,
as the agent can gather a reward at each time step. In the POMDP however, the
agent receives the same observation in both states. As I tbeue are only two
memoryless deterministic stationary policies possibieags executa! or always
executea®. The maximum expected reward of these policiesﬁ%, when the
agent successfully jumps to the other state at the first tiepe & we alrow stochas-
tic policies, the best stationary policy would yield an ecteel discounted reward
of 0, when it chooses either action 50% of the time. Howev¥ehe agent could
remember what actions it had executed, it could executeieypblat alternates be-
tween executing! anda?. Such a memory-based policy would gath& —r in
the worst case, which is close to the optimal value in the MBiIRdh et al, 1994).

This example illustrates the need for memory when considexptimal decision
making in a POMDP. A straightforward implementation of meynwould be to
simply store the sequence of actions executed and obsmrsatceived. However,
such a form of memory can grow indefinitely over time, turningmpractical for
long planning horizons. Fortunately, a better option exias we can transform the
POMDP to a belief-state MDP in which the agent summarizesfaimation about
its past using a belief vectbrs) (Stratonovich, 1960; Dynkin, 1968strom, 1965).
This transformation requires that the transition and olzem functions are known
to the agent, and hence can be applied only in model-basedd®toufs.

The beliefb is a probability distribution oves, which forms a Markovian signal
for the planning task. Given an appropriate state spacebelief is a sufficient
statistic of the history, which means the agent could notrgoteetter even if it had
remembered the full history of actions and observationibdllefs are contained in
a (9 — 1)-dimensional simpled (S), hence we can represent a belief usifig- 1
numbers. Each POMDP problem assumes an initial beflefvhich for instance
can be set to a uniform distribution over all states (repressg complete ignorance

DRAFT. To appear in “M. A. Wiering and M. van Otterlo, editorsgiRforcement Learning: State of the Art, Springer VerIe(ng”‘

Partially Observable Markov Decision Processes 7

05 - (a) The environment of the robot.

0.25 |

05 - (b) Initial belief att = 0.
0.25 -
0 C

(c) Updated belief at = 1 after executingorward and observingloor.

05 r

0 | E— — PR N S S | E— — —1 T]

(d) Updated belief at= 2 after executindorward and observingloor.

05

] _ﬂ—\m
0 T P —1 T

(e) Updated belief at= 3 after executingorward and observingorridor.

Fig. 3 Belief-update example (adapted from Fox et al (1999)). (a)oBot moves in a one-
dimensional corridor with three identical doors. (b)-(e) Theletion of the belief over time, for
details see main text.

regarding the initial state of the environment). Every tilmeagent takes an actian
and observes, its belief is updated by Bayes’ rule:

p(ols,a)

a0
b™(s) p(ofb,a)

Zsp (s]s,a)b)

wherep(s|s,a) andp(ols’,a) are defined by model parametdrsesp.O, and
p(olb,a) =3 p(ols,a) Y p(ss.a)b(s) 3)
2P 2,

is a normalizing constant.

Fig. 3 shows an example of a sequence of belief updates fds@ navigating
in a corridor with three identical doors. The corridor isaletized in 26 states and
is circular, i.e., the right end of the corridor is connectedhe left end. The robot
can observe eitheatoor or corridor, but its sensors are noisy. When the robot is
positioned in front of a door, it observdsor with probability Q9 (andcorridor with
probability Q1). When the robot is not located in front of a door the prolighif
observingcorridor is 0.9. The robot has two actionfrward andbackward (right
resp. left in the figure), which transport the robot 3 (20%)68%), or 5 (20%)
states in the corresponding direction. The initial beliis uniform, as displayed
in Fig. 3(b). Fig. 3(c) through (e) show how the belief of tlebot is updated as it

DRAFT. To appear in “M. A. Wiering and M. van Otterlo, editorsgiRforcement Learning: State of the Art, Springer VerIe(ng”‘

8 Matthijs T.J. Spaan

executes thérward action each time. The true location of the robot is indicdied
the dark-gray component of its belief. In Fig. 3(c) we see tha robot is located
in front of the first door, and although it is fairly certainistlocated in front of a
door, it cannot tell which one. However, after taking anotieve forward it again
observedoor, and now can pinpoint its location more accurately, becafishe
particular configuration of the three doors (Fig. 3(d)). Hoer, in Fig. 3(e) the
belief blurs again, which is due to the noisy transition madel the fact that the
corridor observation is not very informative in this case.

2.4 Policies and value functions

As in the fully observable MDP setting, the goal of the ageribi choose actions
which fulfill its task as well as possible, i.e., to learn atim@al policy. In POMDPs,

an optimal policyrt*(b) maps beliefs to actions. Note that, contrary to MDPs, the
policy ri(b) is a function over a continuous set of probability distribos overS. A
policy T can be characterized by a value functiof: A(S) — R which is defined

as the expected future discounted rewafdb) the agent can gather by followirng
starting from belieb:

V)] 3 R0) oo =] @

whereR(by, 7i(br)) = ¥ sesR(s, 71(by))b (9).

A policy mwhich maximizes/™ is called an optimal policyt*; it specifies for
eachb the optimal action to execute at the current step, assurhzngdent will also
act optimally at future time steps. The value of an optimdicyort* is defined by
the optimal value functioR *. It satisfies the Bellman optimality equation

V* = HpomppV ™, 5)

whereHpowmpp is the Bellman backup operator for POMDPSs, defined as:
V*(b) =max| % R(s,a)b(s)+y H p(ob,a)V*(b™)|, (6)
nax| 3, 3]

with b? given by (2), andp(o|b,a) as defined in (3). When (6) holds for every
b € A(S) we are ensured the solution is optimal.

Computing value functions over a continuous belief spagghtseem intractable
at first, but fortunately the value function has a particstaucture that we can ex-
ploit (Sondik, 1971). It can be parameterized by a finite nendd vectors and has
a convex shape. The convexity implies that the value of @belose to one of the
corners of the belief simpleA (S) will be high. In general, the less uncertainty the
agent has over its true state, the better it can predict thiesfuand as such take bet-
ter decisions. A belief located exactly at a particular eofA(S), i.e.,b(s) =1 for

DRAFT. To appear in “M. A. Wiering and M. van Otterlo, editorsgiRforcement Learning: State of the Art, Springer VerIe(ng”‘

Partially Observable Markov Decision Processes 9

\Y

(1,0) 0.1
(a) Example value function. (b) Example policy tree.

Fig. 4 (a) An example of a value function in a two-state POMDP. Vkaxis shows the value
of each belief, and thg-axis depicts the belief spad¥S), ranging from(1,0) to (0,1). (b) An
example policy tree, where at a node the agent takes an aatidni transitions to a next node
based on the received observatioa {o!,0?,...,0/°}.

a particulars, defines with full certainty the state of the agent. In thiywhe con-
vex shape o¥ can be intuitively explained. An example of a convex valugcfion
for a two-state POMDP is shown in Fig. 4(a). As the belief spaca simplex, we
can represent any belief in a two-state POMDP on a lin®(sf3 = 1 —b(st). The
corners of the belief simplex are denoted(ldy0) and (0, 1), which have a higher
(or equal) value than a belief in the center of the belief spad.,(0.5,0.5).

An alternative way to represent policies in POMDPs is by @ering policy
trees (Kaelbling et al, 1998). Fig. 4(b) shows a partial policyetren which the agent
starts at the root node of tree. Each node specifies an actimhwhe agent exe-
cutes at the particular node. Next it receives an observatiavhich determines to
what next node the agent transitions. The depth of the trperdis on the planning
horizonh, i.e., if we want the agent to consider takihgteps, the corresponding
policy tree has depth.

3 Model-based techniques

If a model of the environment is available, it can be used tomate a policy for
the agent. In this section we will discuss several ways offaing POMDP poli-
cies, ranging from optimal to approximate and heuristicrapphes. Even when
the full model is known to the agent, solving the POMDP optiynis typically
only computationally feasible for small problems, heneeittierest in methods that
compromise optimality for reasons of efficiency. All the imads presented in this
section exploit a belief state representation (Sectiol, 28it provides a compact
representation of the complete history of the process.

DRAFT. To appear in “M. A. Wiering and M. van Otterlo, editorsgiRforcement Learning: State of the Art, Springer VerIe(ng”‘

10 Matthijs T.J. Spaan

3.1 Heuristics based on MDP solutions

First, we discuss some heuristic control strategies thet baen proposed which
rely on a solutiorg;pp(S) or Qi pp(s,a) of the underlying MDP (Cassandra et al,
1996). The idea is that solving the MDP is of much lower comipyethan solv-
ing the POMDP (P-complete vs. PSPACE-complete) (Papadiumiand Tsitsiklis,
1987), but by tracking the belief state still some notiomoperfect state perception
can be maintained. Cassandra (1998) provides an extengiegimental compari-
son of MDP-based heuristics.

Perhaps the most straightforward heuristic is to considerfbelief at a given
time step its most likely state (MLS), and use the action tHgR\vpolicy prescribes
for the state

Tius(b) = Thupp(arg Max(s)). @)

The MLS heuristic completely ignores the uncertainty in ¢hierent belief, which
clearly can be suboptimal.

A more sophisticated approximation techniqueQig,» (Littman et al, 1995),
which also treats the POMDP as if it were fully observalidg,, solves the MDP
and defines a control policy

T[QMDP(b) = argamaxz b(S)Q?\(/IDP(S> a)' (8)

Quwor Can be very effective in some domains, but the policies it mates will not
take informative actions, as tli,,» solution assumes that any uncertainty regarding
the state will disappear after taking one action. As si@f, policies will fail in
domains where repeated information gathering is necessary

For instance, consider the toy domain in Figure 5, whictsitlates how MDP-
based heuristics can fail (Parr and Russell, 1995). Thetagjarts in the state
markedl, and upon taking any action the system transitions with leprababil-
ity to one of two states. In both states it would receive olztésn A, meaning the
agent cannot distinguish between them. The optimal POMDieypis to take the
actiona twice in succession, after which the agent is back in the state. How-
ever, because it observed eitl@=or D, it knows in which of the two states markéd
it currently is. This knowledge is important for choosing thptimal actionlf or c)
to transition to the state with positive reward, labelledl. The fact that the ac-
tions do not change the system state, but only the ageni&f btdte (two time steps
later) is very hard for the MDP-based methods to plan forodinfs an example of
reasoning about explicit information gathering effectadions, for which methods
based on MDP solutions do not suffice.

One can also expand the MDP setting to model some form of rsgnsicer-
tainty without considering full-blown POMDP beliefs. Faistance, in robotics the
navigation under localization uncertainty problem can loeleted by the mean and
entropy of the belief distribution (Cassandra et al, 1998y Bnd Thrun, 2000). Al-

DRAFT. To appear in “M. A. Wiering and M. van Otterlo, editorsgiRforcement Learning: State of the Art, Springer VerIe(ng”‘

Partially Observable Markov Decision Processes 11

Fig. 5 A simple domain in
which MDP-based control
strategies fail (Parr and Rus-
sell, 1995).

though attractive from a computational perspective, suagr@aches are likely to
fail when the belief is not uni-modal but has a more complexpgh

3.2 Valueiteration for POMDPs

To overcome the limitations of MDP-based heuristic methads now consider
computing optimal POMDP policies via value iteration. Ttse wf belief states al-
lows one to transform the original discrete-state POMDB mtcontinuous-state
MDP. Recall that we can represent a plan in an MDP by its valnetfon, which
for every state estimates the amount of discounted cumelegivard the agent can
gather when it acts according to the particular plan. In a B®Nhe optimal value
function, i.e., the value function corresponding to anmgli plan, exhibits partic-
ular structure (it is piecewise linear and convex) that oae exploit in order to
facilitate computing the solution. Value iteration, fostance, is a method for solv-
ing POMDPs that builds a sequence of value-function estismahich converge to
the optimal value function for the current task (Sondik, P value function in a
finite-horizon POMDP is parameterized by a finite number gidrplanes, or vec-
tors, over the belief space, which partition the belief gpiato a finite amount of
regions. Each vector maximizes the value function in a geregion and has an
action associated with it, which is the optimal action tcetéde beliefs in its region.
As we explain next, computing the next value-function eater—looking one
step deeper into the future—requires taking into accounpasdkible actions the
agent can take and all subsequent observations it may eedénfortunately, this
leads to an exponential growth of vectors as the planningbioincreases. Many
of the computed vectors will be useless in the sense thatrtieiimizing region is
empty, but identifying and subsequently pruning them isxqreasive operation.
Exact value-iteration algorithms (Sondik, 1971; Cheng8 Cassandra et al,
1994) search in each value-iteration step the completefl®ihplex for a minimal
set of belief points that generate the necessary set of rgeftinthe next-horizon
value function. This typically requires linear programiiand is therefore costly
in high dimensions. Other exact value-iteration algorghiocus on generating all
possible next-horizon vectors followed by or interleavethvpruning dominated
vectors in a smart way (Monahan, 1982; Zhang and Liu, 19%6nkin, 1996; Cas-

DRAFT. To appear in “M. A. Wiering and M. van Otterlo, editorsgiRforcement Learning: State of the Art, Springer VerIe(ng”‘

12 Matthijs T.J. Spaan

Fig. 6 Detailed example of a \
POMDP value function, c.f.

Fig. 4(a). The value function

is indicated by the solid black

line, and in this case consists

of four a vectors, indicated

by dashed lines. The induced i -~
partitioning of the belief space .- a4 -
into four regions is indicated
by the vertical dotted lines. (1,0) (0.1)

sandra et al, 1997; Feng and Zilberstein, 2004; Lin et al42darakantham et al,
2005). However, pruning again requires linear programming

The value of an optimal policyr* is defined by the optimal value functidfn®
which we compute by iterating a number of stages, at eacle stagsidering a step
further into the future. At each stage we apply the exact dyegrogramming
operatoHpowmpp (6). If the agent has only one time step left to act, we onlyettav
consider the immediate reward for the particular bedieind can ignore any future
valueV*(b®) and (6) reduces to:

Vi (b) = maax[Z R(s, a)b(s)} . 9)
We can view the immediate reward functi®s,a) as a set ofA| vectorsag =

(a§(1),...,a8(|S))), one for each actioa: aj(s) = R(s,a). Now we can rewrite (9)
as follows, where we view as a§-dimensional vector:

* o a
V5 () =maxy a(s)b(s) (10)
= maxb- a§, (11)
{ag}a

where(-) denotes inner product.
In the general case, for> 0, we parameterize a value functigp at stagen by
a finite set of vectors or hyperplang¢aX}, k= 1,...,|V,|. Given a set of vectors

{ar'f}l:/:"'l at stagen, the value of a belielh is given by

Vn(b) = maxb- af. (12)
{ak}

Additionally, an actiora(aX) € A is associated with each vector, which is the opti-
mal one to take in the current step, for those beliefs for tvhitis the maximizing
vector. Each vector defines a region in the belief space fachwthis vector is the
maximizing element o¥/,. These regions form a partition of the belief space, in-
duced by the piecewise linearity of the value function, lsitated by Fig. 6.

The gradient of the value function ks given by the vector

DRAFT. To appear in “M. A. Wiering and M. van Otterlo, editorsgiRforcement Learning: State of the Art, Springer VerIe(ng”‘

Partially Observable Markov Decision Processes 13
b __ k
ap =argmavb- ay, (13)
{akik

and the policy ab is given by
n(b) = a(ap). (14)

The main idea behind many value-iteration algorithms foiMB®s is that for
a given value functio¥,, and a particular belief poirit we can easily compute the
vectoray, ; of HpomppVh such that

a,ﬁ)ﬂ =argmax- a,'fﬂ, (15)
{aﬁ+l}k

where{ak 1 L'iprD"V"‘ is the (unknown) set of vectors fétpomppVn. We will de-
note this operatiomr,?+1 = backup(b). For this, we defing,, vectors

G5o(S) = ; p(ols.a)p(s]sa)ax(s), (16)

which represent the vectors resulting from back-proj@ctir}f for a particulara
ando. Starting from (6) we can derive

Va-1(b) = max[b- a8+ yb- Y arg mab - gl | (17)
0 {5tk
= maxb- g, (18)
@a
with g = ad + vy argmavb- o, (19)
o {dko}

which can be re-written as

Vii1(b) = b-argmab- gb. (20)
{d8}a

From (20) we can derive the vectbackup(b), as this is the vector whose inner
product withb yieldsVp1(b):

backup(b) = argmax- g2, (21)
{B}aca

with g2 defined in (19). Note that in general not only the computedector is
retained, but also which actiamwas the maximizer in (21), as that is the optimal
action associated witbackup(b).

DRAFT. To appear in “M. A. Wiering and M. van Otterlo, editorsgiRforcement Learning: State of the Art, Springer VerIe(ng”‘

14 Matthijs T.J. Spaan

3.3 Exact value iteration

The Bellman backup operator (21) computes a next-horizetovéor a single be-
lief, and now we will employ this backup operator to computeoaplete value
function for the next horizon, i.e., one that is optimal fdirkzeliefs in the belief
space. Although computing the vecteickup(b) for a givenb is straightforward,
locating the (minimal) set of pointsrequired to computell vectorsUpbackup(b)

of HpomppVh is very costly. As each has a region in the belief space in which its
ar? is maximal, a family of algorithms tries to identify thesgji@ns (Sondik, 1971,
Cheng, 1988; Kaelbling et al, 1998). The correspondiraf each region is called
a “witness” point, as it testifies to the existence of its oegiOther exact POMDP
value-iteration algorithms do not focus on searching inlibbef space. Instead,
they consider enumerating all possible vector$ipfmppVi, followed by pruning
useless vectors (Monahan, 1982; Zhang and Liu, 1996; Litfrh@96; Cassandra
et al, 1997; Feng and Zilberstein, 2004; Lin et al, 2004; kardham et al, 2005).
We will focus on the enumeration algorithms as they have s recent devel-
opments and are more commonly used.

3.3.1 Monahan’s enumeration algorithm

First, we consider the most straightforward way of commutitpomppVh, due to
Monahan (1982). It involves calculating all possible walgyppVi, could be con-
structed, exploiting the known structure of the value fiorct Note that in each
HpomppVh @ finite number of vectors are generated, as we have assuntedéts
A andO. We operate independently of a particubarow so (19) and hence (21) can
no longer be applied. Instead of maximizing for @k O over theg, vectors for
the particulaib, we now have to include all ways of selectiglf, for all o:

. 1
HpomppVh = U Gy, with Gy = @Gg, and Gg = {@08"‘ Vggo}k7 (22)
a o

where@ denotes the cross-sum operator.

Unfortunately, at each stage a finite but exponential nurobgectors are gen-
erated:|A[Vy|[©l. The regions of many of the generated vectors will be emptly an
these vectors are useless as they will not influence the 'ageaticy. Technically,
they are not part of the value function, and keeping them badfact on subsequent
value functions, apart from the computational burden. &toee, all value-iteration
methods in the enumeration family employ some form of prgnin particular,
Monahan (1982) prunéspomppVh after computing it:

Vht1 = prune(HpomppVh), (23)

2 Cross sum of sets is defined @y R = RIG R @ --- @R, With PO Q= { p+q| peP, qe Q}.

DRAFT. To appear in “M. A. Wiering and M. van Otterlo, editorsgiRforcement Learning: State of the Art, Springer VerIe(ng”‘

Partially Observable Markov Decision Processes 15

with HpomppVh as defined in (22). Thpr une operator is implemented by solving
a linear program (White, 1991).

3.3.2 Incremental Pruning

Monahan (1982)’s algorithm first generates|&l|l\vn\‘°‘ vectors ofHpomppVh be-
fore pruning all dominated vectors. Incremental Pruninghoés (Zhang and Liu,
1996; Cassandra et al, 1997; Feng and Zilberstein, 2004etLah 2004; Varakan-
tham et al, 2005) save computation time by exploiting thé tfaet

prune(G® G' @ G”) = prune(prune(Gp G') & G”). (24)

In this way the number of constraints in the linear prograedusr pruning grows
slowly (Cassandra et al, 1997), leading to better perfoo@ahhe basic Incremental
Pruning algorithm exploits (24) when computivig, 1 as follows:

Vhi1 = prune (U Ga), with (25)
a
Ga = prune((PGy) (26)
(0]
:prune(Gé@Gi@Gg@---@GLO‘) (27)
= prune(---prune(prune(G: & G2) 6 G) - & G). (28)

In general, however, computing exact solutions for POMD#arni intractable
problem (Papadimitriou and Tsitsiklis, 1987; Madani et28103), calling for ap-
proximate solution techniques (Lovejoy, 1991; Hauskre2800). Next we present
a family of popular approximate value iteration algorithms

3.4 Point-based value iteration methods

Given the high computational complexity of optimal POMDRusions, many meth-
ods for approximate solutions have been developed. Onerpdvdea has been to
compute solutions only for those parts of the belief simplet are reachable, i.e.,
that can be actually encountered by interacting with théreninent. This has mo-
tivated the use of approximate solution techniques whichg$mn the use of a sam-
pled set ofbelief points on which planning is performed (Hauskrecht, 2000; Poon,
2001; Roy and Gordon, 2003; Pineau et al, 2003; Smith and 8imn2004; Spaan
and Vlassis, 2005a; Shani et al, 2007; Kurniawati et al, 200®ossibility already
mentioned by Lovejoy (1991). The idea is that instead of mitagn over the com-
plete belief space of the agent (which is intractable faydastate spaces), planning
is carried out only on a limited set of prototype beliBfthat have been sampled by
letting the agent interact with the environment.

DRAFT. To appear in “M. A. Wiering and M. van Otterlo, editorsgiRforcement Learning: State of the Art, Springer VerIe(ng”‘

16 Matthijs T.J. Spaan

As we described before, a major cause of intractability afce?OMDP solu-
tion methods is their aim of computing the optimal actiondwery possible belief
point in the belief spacA(S). For instance, if we use Monahan’s algorithm (22) we
can end up with a series of value functions whose size growsresntially in the
planning horizon. A natural way to sidestep this intradigbis to settle for com-
puting an approximate solution by considering only a finigeaf belief points. The
backup stage reduces to applying (21) a fixed number of tirees|ting in a small
number of vectors (bounded by the size of the belief set).fMbgvation for using
approximate methods is their ability to compute succegxgilities for much larger
problems, which compensates for the loss of optimality.

The general assumption underlying these so-caitedt-based methods is that
by updating not only the value but also its gradient @heector) at eaclb € B, the
resulting policy will generalize well and be effective foellefs outside the sei.
Whether or not this assumption is realistic depends on the PPMstructure and
the contents oB, but the intuition is that in many problems the set of ‘redatea
beliefs (reachable by following an arbitrary policy stagiifrom the initial belief)
forms a low-dimensional manifold in the belief simplex, ahds can be covered
densely enough by a relatively small number of belief points

The basic point-based POMDP update operates as followsel an approxi-
mate backup operatdipgw instead ofHpompp, that in each value-backup stage
computes the set 3

HpeviVa = | J backup(b), (29)
beB
using a fixed set of belief point8. An alternative randomized backup operator
Hperseusis provided by BRSEUS(Spaan and Vlassis, 2005a), which increases (or
at least does not decrease) the value of all belief poinBs the key idea is that in
each value-backup stage the value of all points in the bgéitB can be improved
by only backing up a (randomly selected) suti3ef the points:

H~PERSEUS\/n = U backup(b), (30)
beB
ensuring thav,(b') < Vh,1(b'),vb' € B. (31)

In each backup stage the d®ts constructed by sampling beliefs froBuntil the
resultingVy,+1 upper bound¥/, overB, i.e., until condition (31) has been met. The
Hperseus operator results in value functions with a relatively srmalimber of vec-
tors, allowing for the use of much largBr which has a positive effect on the ap-
proximation accuracy (Pineau et al, 2003).

Crucial to the control quality of the computed approximatduson is the
makeup ofB. A number of schemes to buil have been proposed. For instance,
one could use a regular grid on the belief simplex, compwgeyl, by Freudenthal
triangulation (Lovejoy, 1991). Other options include takiall extreme points of
the belief simplex or use a random grid (Hauskrecht, 2000nPa001). An alter-
native scheme is to include belief points that can be enevedtby simulating the
POMDP: we can generate trajectories through the beliefesppsampling random

DRAFT. To appear in “M. A. Wiering and M. van Otterlo, editorsgiRforcement Learning: State of the Art, Springer VerIe(ng”‘

Partially Observable Markov Decision Processes 17

actions and observations at each time step (Lovejoy, 19atsktecht, 2000; Poon,
2001; Pineau et al, 2003; Spaan and Vlassis, 2005a). Thiglisenscheme focuses
the contents oB to be beliefs that can actually be encountered while expeirig
the POMDP model.

More intricate schemes for belief sampling have also beepgsed. For in-
stance, one can use the MDP solution to guide the belief $saghptocess (Shani
et al, 2007), but in problem domains which require seriesfafrmation-gathering
actions such a heuristic will suffer from similar issues dgew usingQ,,» (Sec-
tion 3.1). Furthermore, the belief $&tdoes not need to be static, and can be updated
while running a point-based solver. HSVI heuristicallyes#$ belief points in the
search tree starting from the initial belief, based on uppel lower bounds on the
optimal value function (Smith and Simmons, 2004, 2005). SAFP takes this idea
a step further by successively approximating the optinsthable belief space, i.e.,
the belief space that can be reached by following an optimlady(Kurniawati et al,
2008).

In general, point-based methods compute solutions in titme & piecewise lin-
ear and convex value functions, and given a particular hehie agent can simply
look up which action to take using (14).

3.5 Other approximate methods

Besides the point-based methods, other types of appraximstructure have been
explored as well.

3.5.1 Grid-based approximations

One way to sidestep the intractability of exact POMDP valegation is to grid the

belief simplex, using either a fixed grid (Drake, 1962; Laygj1991; Bonet, 2002)
or a variable grid (Brafman, 1997; Zhou and Hansen, 2001ueackups are per-
formed for every grid point, but only the value of each gridhp@ preserved and the
gradient is ignored. The value of non-grid points is defingaib interpolation rule.

The grid based methods differ mainly on how the grid poingsssiected and what
shape the interpolation function takes. In general, reguil@s do not scale well

in problems with high dimensionality and non-regular gsdéfer from expensive

interpolation routines.

3.5.2 Policy search

An alternative to computing an (approximate) value funtigpolicy search: these
methods search for a good policy within a restricted clasmafrollers (Platzman,
1981). For instance, policy iteration (Hansen, 1998b) amhided policy iteration

DRAFT. To appear in “M. A. Wiering and M. van Otterlo, editorsgiRforcement Learning: State of the Art, Springer VerIe(ng”‘

18 Matthijs T.J. Spaan

(BPI) (Poupart and Boutilier, 2004) search through the spafc(bounded-size)
stochastic finite-state controllers by performing poligration steps. Other options
for searching the policy space include gradient ascent [d&eLet al, 1999a; Kearns
et al, 2000; Ng and Jordan, 2000; Baxter and Bartlett, 20@Erdeen and Baxter,
2002) and heuristic methods like stochastic local searchz{Bnas and Boutilier,
2004). In particular, the BcAsus method (Ng and Jordan, 2000) estimates the
value of a policy by simulating a (bounded) number of trajees from the POMDP
using a fixed random seed, and then takes steps in the polcg $porder to max-
imize this value. Policy search methods have demonstratsgess in several cases,
but searching in the policy space can often be difficult araherto local optima
(Baxter et al, 2001).

3.5.3 Heuristic search

Another approach for solving POMDPs is based on heuristicchegSatia and Lave,
1973; Hansen, 1998a; Smith and Simmons, 2004). Definingtal ivelief by as the
root node, these methods build a tree that branches(evey pairs, each of which
recursively induces a new belief node. Branch-and-bouoknigues are used to
maintain upper and lower bounds to the expected returmatdmodes in the search
tree. Hansen (1998a) proposes a policy-iteration methaidrdpresents a policy as
a finite-state controller, and which uses the belief treetw$ the search on areas
of the belief space where the controller can most likely bprovied. However, its
applicability to large problems is limited by its use of fdlynamic-programming
updates. As mentioned before, HSVI (Smith and Simmons, 200d5) is an ap-
proximate value-iteration technique that performs a tstiersearch through the be-
lief space for beliefs at which to update the bounds, simdarvork by Satia and
Lave (1973).

4 Decision making without a-priori models

When no models of the environment are available to the agenba, ghe model-
based methods presented in the previous section cannotdmlyliapplied. Even
relatively simple techniques such &g, (Section 3.1) require knowledge of the
complete POMDP model: the solution to the underlying MDPdmputed using
the transition and reward model, while the belief updatea@itionally requires
the observation model.

In general, there exist two ways of tackling such a decisiaking problem,
known as direct and indirect reinforcement learning mesh@irect methods apply
true model-free techniques, which do not try to reconsttiuetunknown POMDP
models, but for instance map observation histories dir¢othctions. On the other
extreme, one can attempt to reconstruct the POMDP modeltbyaicting with it,
which then in principle can be solved using techniques piteskin Section 3. This

DRAFT. To appear in “M. A. Wiering and M. van Otterlo, editorsgiRforcement Learning: State of the Art, Springer VerIe(ng”‘

Partially Observable Markov Decision Processes 19

indirect approach has long been out of favor for POMDPs,)ag¢onstructing (an
approximation of) the POMDP models is very hard, and (ii)rewéth a recovered
POMDP, model-based methods would take prohibitively lomgdmpute a good
policy. However, advances in model-based methods suclegmiht-based family
of algorithms (Section 3.4) have made these types of appesatore attractive.

4.1 Memoryless techniques

First, we consider methods for learning memoryless pdljdieat is, policies that
map each observation that an agent receives directly totaomawithout consult-
ing any internal state. Memoryless policies can either kerdenistic mappings,
m: Q — A, or probabilistic mappingsy: Q — A(A). As illustrated by the example
in Section 2.3, probabilistic policies allow for higher jpdfi, at the cost of an in-
creased search space that no longer can be enumerated ¢Balgth994). In fact,
the problem of finding an optimal deterministic memorylesbqy has been shown
to be NP-hard (Littman, 1994), while the complexity of detering the optimal
probabilistic memoryless policy is still an open problem.

Loch and Singh (1998) have demonstrated empirically thatgusligibility
traces, in their case inARSA(A), can improve the ability of memoryless methods
to handle partial observability.ARSA(A) was shown to learn the optimal determin-
istic memoryless policy in several domains (for which it vgassible to enumerate
all such policies, of which there a¢A||Q‘). Bagnell et al (2004) also consider the
memoryless deterministic case, but using non-stationaligips instead of station-
ary ones. They show that successful non-stationary pslicéa be found in cer-
tain maze domains for which no good stationary policiesteiegarding learning
stochastic memoryless policies, an algorithm has beernopeapby Jaakkola et al
(1995), and tested empirically by Williams and Singh (19%®)owing that it can
successfully learn stochastic memoryless policies. Aer@sting twist is provided
by Hierarchical Q-Learning (Wiering and Schmidhuber, 19%hich aims to learn
a subgoal sequence in a POMDP, where each subgoal can besfutlgeachieved
using a memoryless policy.

4.2 Learning internal memory

Given the limitations of memoryless policies in systemshaitt a Markovian state
signal such as POMDPSs, a natural evolution in research hexs toeincorporate
some form of memory, so-called internal state, in each ag#ating the complete
history of the process, i.e., the vector of actions takenheydgent and observa-
tions received, is not a practical option for several reaséirst of all, as in the
model-free case the agent is not able to compute a belief, ka representation
grows without bounds. A second reason is that such a repgeggendoes not allow

DRAFT. To appear in “M. A. Wiering and M. van Otterlo, editorsgiRforcement Learning: State of the Art, Springer VerIe(ng”‘

20 Matthijs T.J. Spaan

Gl [] L
] aatsl
] QY
] DR,)
- Ntk
L P
u Cial]

L Obs. Action Obs. Action Obs.

XS] att att—1 att—1 att—2 att—2

(@) T Maze. (b) USM suffix tree.

Fig. 7 (a) Long-term dependency T maze (Bakker, 2002). (b) Exampdesaffix tree used by the
USM algorithm (McCallum, 1995), where fringe nodes are iatkd by dashed lines.

for easy generalization, e.g., it is not clear how expegeolstained after history
(at,ot,at,0t) can be used to update the value for hist(a$, o', al, o'). To counter
these problems, researchers have proposed many diffatemal-state representa-
tions, of which we give a brief overview.

First of all, the memoryless methods presented before cardreas maintaining
a history window of only a single observation. Instead, ¢halgorithms can also be
applied with a history window containing the ldsbbservations (Littman, 1994,
Loch and Singh, 1998), wheteis typically an a-priori defined parameter. In some
domains such a relatively cheap increase of the policy s(icmeans of a lovk)
can buy a significant improvement in learning time and tasiop@mance. Finite
history windows have also been used as a representatiorefwalmetworks (Lin
and Mitchell, 1992).

Finite history windows cannot however capture arbitranyglderm dependen-
cies, such as for instance present in the T Maze in Figure &ifagxample provided
by Bakker (2002). In this problem the agent starts at S, aeds i navigate to G.
However, the location of G is unknown initially, and might twe the left or on the
right at the end of the corridor. However, in the start stagedagent can observe a
road sign X, which depends on the particular goal locatidre [Ength of the corri-
dor can be varied (in Figure 7(a) it is 10), meaning that thenageeds to learn to
remember the road sign many time steps. Obviously, suchendepcy cannot be
represented well by finite history windows.

Alleviating the problem of fixed history windows, McCallurh993, 1995, 1996)
proposed several algorithms for variable history windoareapng other contribu-
tions. These techniques allow for the history window to hawdifferent depth in

DRAFT. To appear in “M. A. Wiering and M. van Otterlo, editorsgiRforcement Learning: State of the Art, Springer VerIe(ng”‘

Partially Observable Markov Decision Processes 21

different parts of the state space. For instance, Utile SM&mory (USM) learns

a short-term memory representation by growing a suffix téeGallum, 1995), an

example of which is shown in Figure 7(b). USM groups togefRerexperiences

based on how much history it considers significant for eastairce. In this sense,
in different parts of the state space different history thegcan be maintained, in
contrast to the finite history window approaches. A suffie trepresentation is de-
picted by solid lines in Figure 7(b), where the leaves cluststances that have
a matching history up to the corresponding depth. The dasbdds are the so-
called fringe nodes: additional branches in the tree thaatgorithm can consider
to add to the tree. When a statistical test indicates thadricsss in a branch of fringe
nodes come from different distributions of the expectedreitdiscounted reward,
the tree is grown to include this fringe branch. Put otheewisadding the branch
will help predicting the future rewards, it is worthwhile éxtend the memory in
the corresponding part of the state space. More recent woldimg on these ideas
focuses on better learning behavior in the presence of bisgrvations (Shani and
Brafman, 2005; Wierstra and Wiering, 2004). Along thesedinrecurrent neural
networks, for instance based on the Long Short-Term Memmljitecture, have

also been successfully used as internal state representeitbchreiter and Schmid-
huber, 1997; Bakker, 2002).

Other representations have been proposed as well. Meuleh(1®99b) extend
the VAPS algorithm (Baird and Moore, 1999) to learn policiepresented as Fi-
nite State Automata (FSA). The FSA represent finite poli@pbs, in which nodes
are labelled with actions, and the arcs with observatiorssinAVAPS, stochastic
gradient ascent is used to converge to a locally optimalrotbet. The problem of
finding the optimal policy graph of a given size has also béedied (Meuleau et al,
1999a). However, note that the optimal POMDP policy canirecan infinite policy
graph to be properly represented.

Finally, predictive state representations (PSRs) have pegposed as an alter-
native to POMDPs for modeling stochastic and partially obmlgle environments
(Littman et al, 2002; Singh et al, 2004). A PSR dispenses thighthidden POMDP
states, and only considers sequences of action and oliees/athich are observed
quantities. In a PSR, the state of the system is expressaxtgilphe future event se-
quences, or “core tests”, of alternating actions and ols@ns. The state of a PSR
is defined as a vector of probabilities that each core testactually be realized,
given the current history. The advantages of PSRs are mparagt in model-free
learning settings, as the model only considers observakletg instead of hidden
states.

5 Recent trends

To conclude, we discuss some types of approaches that hanghming popularity
recently.

DRAFT. To appear in “M. A. Wiering and M. van Otterlo, editorsgiRforcement Learning: State of the Art, Springer VerIe(ng”‘

22 Matthijs T.J. Spaan

Most of the model-based methods discussed in this chageffiine techniques
that determine a priori what action to take in each situatf@ agent might en-
counter. Online approaches, on the other hand, only convghaé action to take at
the current moment (Ross et al, 2008b). Focusing exclysielthe current deci-
sion can provide significant computational savings in éedamains, as the agent
does not have to plan for areas of the state space which it eeeeunters. How-
ever, the need to choose actions every time step implieseseoeastraints on the
online search time. Offline point-based methods can be wsedrmhpute a rough
value function, serving as the online search heuristic. $in@lar manner, Monte
Carlo approaches are also appealing for large POMDPs, p®iiyerequire a gen-
erative model (black box simulator) to be available and thaye the potential to
mitigate the curse of dimensionality (Thrun, 2000; Kearhalg2000; Silver and
Veness, 2010).

As discussed in detail in the chapter on Bayesian reinfoecgtearning, Bayesian
RL techniques are promising for POMDPs, as they provide tagiated way of ex-
ploring and exploiting models. Put otherwise, they do nguiee interleaving the
model-learning phases (e.g., using Baum-Welch (Koenig%intnons, 1996) or
other methods (Shani et al, 2005)) with model-exploitapbases, which could be
a naive approach to apply model-based methods to unknown¥3MPoupart and
Vlassis (2008) extended the BEETLE algorithm (Poupart e2@D6), a Bayesian
RL method for MDPs, to partially observable settings. A=otBayesian RL meth-
ods, the models are represented by Dirichlet distributiansl learning involves
updating the Dirichlet hyper-parameters. The work is mameegal than the earlier
work by Jaulmes et al (2005), which required the existencenobracle that the
agent could query to reveal the true state. Ross et al (2q8apsed the Bayes-
Adaptive POMDP model, an alternative model for Bayesianfoecement learning
which extends Bayes-Adaptive MDPs (Duff, 2002). All thesetinods assume that
the size of the state, observation and action spaces arenknow

Policy gradient methods search in a space of parametera&ilgs, optimizing
the policy by performing gradient ascent in the parametacs|jPeters and Bagnell,
2010). As these methods do not require to estimate a betef §berdeen and
Baxter, 2002), they have been readily applied in POMDP4) imilpressive results
(Peters and Schaal, 2008).

Finally, a recent trend has been to cast the model-based étilepn as one of
probabilistic inference, for instance using Expectaticedvhization for computing
optimal policies in MDPs. Vlassis and Toussaint (2009) stabWwow such methods
can also be extended to the model-free POMDP case. In geiméeaénce methods
can provide fresh insights in well-known RL algorithms.

DRAFT. To appear in “M. A. Wiering and M. van Otterlo, editorsgiRforcement Learning: State of the Art, Springer VerIe(ng”‘

Partially Observable Markov Decision Processes 23

Acknowledgments

This work was funded by Fundag para a Gincia e a Tecnologia (ISR/IST pluri-
annual funding) through the PIDDAC Program funds and wagstpd by project
PTDC/EEA-ACR/73266/2006.

References

Aberdeen D, Baxter J (2002) Scaling internal-state poli@dgnt methods for POMDPs. In: In-
ternational Conference on Machine Learning

Astrom KJ (1965) Optimal control of Markov processes with incompétate information. Journal
of Mathematical Analysis and Applications 10(1):174-205

Bagnell JA, Kakade S, Ng AY, Schneider J (2004) Policy seasckhymamic programming. In:
Advances in Neural Information Processing Systems 16, MIT Press

Baird L, Moore A (1999) Gradient descent for general reindonent learning. In: Advances in
Neural Information Processing Systems 11, MIT Press

Bakker B (2002) Reinforcement learning with long short-ternmmgy. In: Advances in Neural
Information Processing Systems 14, MIT Press

Baxter J, Bartlett PL (2001) Infinite-horizon policy-gradiestimation. Journal of Atrtificial Intel-
ligence Research 15:319-350

Baxter J, Bartlett PL, Weaver L (2001) Experiments with inéritorizon, policy-gradient estima-
tion. Journal of Artificial Intelligence Research 15:351-381

Bernstein DS, Givan R, Immerman N, Zilberstein S (2002) The conitglekdecentralized control
of Markov decision processes. Mathematics of Operations Res2a(4)1819-840

Bonet B (2002) An epsilon-optimal grid-based algorithm fortjaélly observable Markov decision
processes. In: International Conference on Machine Learning

Boutilier C, Poole D (1996) Computing optimal policies for fiaty observable decision processes
using compact representations. In: Proc. of the National Cenéeron Atrtificial Intelligence

Brafman RI (1997) A heuristic variable grid solution method f@NRDPs. In: Proc. of the National
Conference on Artificial Intelligence

Braziunas D, Boutilier C (2004) Stochastic local search foMB® controllers. In: Proc. of the
National Conference on Atrtificial Intelligence

Brunskill E, Kaelbling L, Lozano-Perez T, Roy N (2008) Contius-state POMDPs with hybrid
dynamics. In: Proc. of the Int. Symposium on Atrtificial Intelligee and Mathematics

Cassandra AR (1998) Exact and approximate algorithms for partiaservable Markov decision
processes. PhD thesis, Brown University

Cassandra AR, Kaelbling LP, Littman ML (1994) Acting optimaltygartially observable stochas-
tic domains. In: Proc. of the National Conference on Artifitraelligence

Cassandra AR, Kaelbling LP, Kurien JA (1996) Acting under utadety: Discrete Bayesian mod-
els for mobile robot navigation. In: Proc. of Internationar®@erence on Intelligent Robots and
Systems

Cassandra AR, Littman ML, Zhang NL (1997) Incremental pruningiriple, fast, exact method
for partially observable Markov decision processes. In: Protimafertainty in Artificial Intel-
ligence

Cheng HT (1988) Algorithms for partially observable Markowid@®n processes. PhD thesis,
University of British Columbia

Doshi F, Roy N (2008) The permutable POMDP: fast solutions to P@GKIr preference elicita-
tion. In: Proc. of Int. Conference on Autonomous Agents andtiMigent Systems

Drake AW (1962) Observation of a Markov process through a ndigyel. Sc.D. thesis, Mas-
sachusetts Institute of Technology

DRAFT. To appear in “M. A. Wiering and M. van Otterlo, editorsgiRforcement Learning: State of the Art, Springer VerIe(ng”‘

24 Matthijs T.J. Spaan

Duff M (2002) Optimal learning: Computational proceduresBayes-adaptive Markov decision
processes. PhD thesis, University of Massachusetts, Amherst

Dynkin EB (1965) Controlled random sequences. Theory of gitiba and its applications
10(1):1-14

Ellis JH, Jiang M, Corotis R (1995) Inspection, maintenance rapélir with partial observability.
Journal of Infrastructure Systems 1(2):92-99

Feng Z, Zilberstein S (2004) Region-based incremental pruieinBOMDPSs. In: Proc. of Uncer-
tainty in Artificial Intelligence

Foka A, Trahanias P (2007) Real-time hierarchical POMDPsatdonomous robot navigation.
Robotics and Autonomous Systems 55(7):561-571

Fox D, Burgard W, Thrun S (1999) Markov localization for m@bibbots in dynamic environ-
ments. Journal of Artificial Intelligence Research 11:391-427

Haight RG, Polasky S (2010) Optimal control of an invasive spgewith imperfect information
about the level of infestation. Resource and Energy EconomiPsdss, Corrected Proof

Hansen EA (1998a) Finite-memory control of partially obsereayistems. PhD thesis, University
of Massachusetts, Amherst

Hansen EA (1998b) Solving POMDPs by searching in policy spacePioc. of Uncertainty in
Artificial Intelligence

Hansen EA, Feng Z (2000) Dynamic programming for POMDPs usingtarad state representa-
tion. In: Int. Conf. on Atrtificial Intelligence Planning arf@theduling

Hauskrecht M (2000) Value function approximations for pdltimbservable Markov decision
processes. Journal of Atrtificial Intelligence Research 13:33-95

Hauskrecht M, Fraser H (2000) Planning treatment of ischemid Hessrase with partially observ-
able Markov decision processes. Atrtificial Intelligence in Mk 18:221-244

Hochreiter S, Schmidhuber J (1997) Long short-term memory. &lé@mmputation 9(8):1735—
1780

Hoey J, Little JJ (2007) Value-directed human behavior anafyais video using partially observ-
able Markov decision processes. IEEE Transactions on Pattedgsisiand Machine Intelli-
gence 29(7):1-15

Hoey J, Poupart P (2005) Solving POMDPs with continuous gelaiscrete observation spaces.
In: Proc. Int. Joint Conf. on Artificial Intelligence

Hsiao K, Kaelbling L, Lozano-Perez T (2007) Grasping pomdpsc Bfahe IEEE Int Conf on
Robotics and Automation pp 4685-4692

Jaakkola T, Singh SP, Jordan MI (1995) Reinforcement learrigaithm for partially observable
Markov decision problems. In: Advances in Neural Informatioodessing Systems 7

Jaulmes R, Pineau J, Precup D (2005) Active learning in paritddservable Markov decision
processes. In: Machine Learning: ECML 2005, Lecture Notes im@der Science, vol 3720,
Springer, pp 601-608

Kaelbling LP, Littman ML, Cassandra AR (1998) Planning andregiin partially observable
stochastic domains. Atrtificial Intelligence 101:99-134

Kearns M, Mansour Y, Ng AY (2000) Approximate planning in la@®MDPs via reusable tra-
jectories. In: Advances in Neural Information Processing SystEnMIT Press

Koenig S, Simmons R (1996) Unsupervised learning of probalgiiisbdels for robot navigation.
In: Proc. of the IEEE Int. Conf. on Robotics and Automation

Kurniawati H, Hsu D, Lee W (2008) SARSOP: Efficient point-baB&MDP planning by approx-
imating optimally reachable belief spaces. In: Robotics: Seemd Systems

Lin L, Mitchell T (1992) Memory approaches to reinforcemerdrt@ng in non-Markovian do-
mains. Tech. rep., Carnegie Mellon University, Pittsburgh, BP8A

Lin ZZ, Bean JC, White CC (2004) A hybrid genetic/optimizatialgorithm for finite horizon,
partially observed Markov decision processes. INFORMS Journ@lanputing 16(1):27-38

Littman ML (1994) Memoryless policies: theoretical limitatiogsd practical results. In: Proc. of
the 3rd Int. Conf. on Simulation of Adaptive Behavior : fromiArals to Animats 3, MIT Press,
Cambridge, MA, USA, pp 238-245

Littman ML (1996) Algorithms for sequential decision making. Pthigsis, Brown University

DRAFT. To appear in “M. A. Wiering and M. van Otterlo, editorsgiRforcement Learning: State of the Art, Springer VerIe(ng”‘

Partially Observable Markov Decision Processes 25

Littman ML, Cassandra AR, Kaelbling LP (1995) Learning policier partially observable envi-
ronments: Scaling up. In: International Conference on Machiarning

Littman ML, Sutton RS, Singh S (2002) Predictive represeoiastodf state. In: Advances in Neural
Information Processing Systems 14, MIT Press

Loch J, Singh S (1998) Using eligibility traces to find the best msmass policy in partially
observable Markov decision processes. In: International Cenéeron Machine Learning

Lovejoy WS (1991) Computationally feasible bounds for péytiabserved Markov decision pro-
cesses. Operations Research 39(1):162-175

Madani O, Hanks S, Condon A (2003) On the undecidability obabilistic planning and related
stochastic optimization problems. Artificial Intelligence 1%-2):5-34

McCallum RA (1993) Overcoming incomplete perception witheudiistinction memory. In: Inter-
national Conference on Machine Learning

McCallum RA (1995) Instance-based utile distinctions for f@icement learning with hidden
state. In: International Conference on Machine Learning

McCallum RA (1996) Reinforcement learning with selectivegegtion and hidden state. PhD
thesis, University of Rochester

Meuleau N, Kim KE, Kaelbling LP, Cassandra AR (1999a) Solvit@MDPs by searching the
space of finite policies. In: Proc. of Uncertainty in Artificiatelligence

Meuleau N, Peshkin L, Kim KE, Kaelbling LP (1999b) Learningitirstate controllers for par-
tially observable environments. In: Proc. of Uncertainty itiffaial Intelligence

Monahan GE (1982) A survey of partially observable Markov sieci processes: theory, models
and algorithms. Management Science 28(1)

Ng AY, Jordan M (2000) PEGASUS: A policy search method for largeR8 and POMDPs. In:
Proc. of Uncertainty in Artificial Intelligence

Oliehoek FA, Spaan MTJ, Vlassis N (2008) Optimal and approximat@lQ@e functions for de-
centralized POMDPs. Journal of Artificial Intelligence Resbe32:289-353

Papadimitriou CH, Tsitsiklis JN (1987) The complexity of Markacision processes. Mathemat-
ics of Operations Research 12(3):441-450

Parr R, Russell S (1995) Approximating optimal policies for iadlst observable stochastic do-
mains. In: Proc. Int. Joint Conf. on Artificial Intelligence

Peters J, Bagnell JAD (2010) Policy gradient methods. In: §prifEncyclopedia of Machine
Learning, Springer

Peters J, Schaal S (2008) Natural actor-critic. Neurocomguti:1180-1190

Pineau J, Thrun S (2002) An integrated approach to hieranctiyabstraction for POMDPs. Tech.
Rep. CMU-RI-TR-02-21, Robotics Institute, Carnegie Melldmiversity

Pineau J, Gordon G, Thrun S (2003) Point-based value iterafionanytime algorithm for
POMDPs. In: Proc. Int. Joint Conf. on Atrtificial Intelligence

Platzman LK (1981) A feasible computational approach to irdthidrizon partially-observed
Markov decision problems. Tech. Rep. J-81-2, School of Induistnd Systems Engineering,
Georgia Institute of Technology, reprinted in working nofeSAl 1998 Fall Symposium on
Planning with POMDPs.

Poon KM (2001) A fast heuristic algorithm for decision-the@rgtianning. Master’s thesis, The
Hong-Kong University of Science and Technology

Porta JM, Spaan MTJ, Vlassis N (2005) Robot planning in partistigervable continuous do-
mains. In: Robotics: Science and Systems

Porta JM, Vlassis N, Spaan MTJ, Poupart P (2006) Point-based itaha¢ion for continuous
POMDPs. Journal of Machine Learning Research 7:2329-2367

Poupart P (2005) Exploiting structure to efficiently solvegascale partially observable Markov
decision processes. PhD thesis, University of Toronto

Poupart P, Boutilier C (2004) Bounded finite state contrsllér: Advances in Neural Information
Processing Systems 16, MIT Press

Poupart P, Vlassis N (2008) Model-based Bayesian reinforceraantihg in partially observable
domains. In: International Symposium on Artificial Intelligerend Mathematics (ISAIM)

DRAFT. To appear in “M. A. Wiering and M. van Otterlo, editorsgiRforcement Learning: State of the Art, Springer VerIe(ng”‘

26 Matthijs T.J. Spaan

Poupart P, Vlassis N, Hoey J, Regan K (2006) An analytic solutiahiscrete Bayesian reinforce-
ment learning. In: International Conference on Machine hiegy

Ross S, Chaib-draa B, Pineau J (2008a) Bayes-adaptive POMMRPgIMances in Neural Infor-
mation Processing Systems 20, MIT Press, pp 1225-1232

Ross S, Pineau J, Paguet S, Chaib-draa B (2008b) Online ptpaigiarithms for POMDPs. Jour-
nal of Artificial Intelligence Research 32:664—704

Roy N, Gordon G (2003) Exponential family PCA for belief comgsien in POMDPs. In: Ad-
vances in Neural Information Processing Systems 15, MIT Press

Roy N, Thrun S (2000) Coastal navigation with mobile robotsAldvances in Neural Information
Processing Systems 12, MIT Press

Roy N, Gordon G, Thrun S (2005) Finding approximate POMDP swistthrough belief com-
pression. Journal of Artificial Intelligence Research 23:1-40

Sanner S, Kersting K (2010) Symbolic dynamic programming for éirder POMDPs. In: Proc.
of the National Conference on Artificial Intelligence

Satia JK, Lave RE (1973) Markovian decision processes with jitigc observation of states.
Management Science 20(1):1-13

Seuken S, Zilberstein S (2008) Formal models and algorithmseoentralized decision making
under uncertainty. Autonomous Agents and Multi-Agent Systems

Shani G, Brafman RI (2005) Resolving perceptual aliasing inpifesence of noisy sensors. In:
Saul LK, Weiss Y, Bottou L (eds) Advances in Neural Informatiawd@ssing Systems 17,
MIT Press, Cambridge, MA, pp 1249-1256

Shani G, Brafman R, Shimony S (2005) Model-based online legroiiPOMDPs. In: European
Conference on Machine Learning

Shani G, Brafman RI, Shimony SE (2007) Forward search valuatioer for POMDPs. In: Proc.
Int. Joint Conf. on Artificial Intelligence

Shani G, Poupart P, Brafman RI, Shimony SE (2008) Efficient A[pRrations for point-based
algorithms. In: Int. Conf. on Automated Planning and Schedulin

Silver D, Veness J (2010) Monte-carlo planning in large POMDOR: Lafferty J, Williams CKI,
Shawe-Taylor J, Zemel R, Culotta A (eds) Advances in Neuralrinétion Processing Sys-
tems 23, pp 2164-2172

Simmons R, Koenig S (1995) Probabilistic robot navigation irtiplly observable environments.
In: Proc. Int. Joint Conf. on Artificial Intelligence

Singh S, Jaakkola T, Jordan M (1994) Learning without stateresion in partially observable
Markovian decision processes. In: International Conferenddachine Learning

Singh S, James MR, Rudary MR (2004) Predictive state repregsr#af new theory for model-
ing dynamical systems. In: Proc. of Uncertainty in Artificial lligeence

Smallwood RD, Sondik EJ (1973) The optimal control of parnyimbservable Markov decision
processes over a finite horizon. Operations Research 21:1088—-1

Smith T, Simmons R (2004) Heuristic search value iteration for B®®1 In: Proc. of Uncertainty
in Artificial Intelligence

Smith T, Simmons R (2005) Point-based POMDP algorithms: Improvelysis and implementa-
tion. In: Proc. of Uncertainty in Artificial Intelligence

Sondik EJ (1971) The optimal control of partially observablarkbv processes. PhD thesis, Stan-
ford University

Spaan MTJ, Vlassis N (2004) A point-based POMDP algorithm footrpkanning. In: Proc. of the
IEEE Int. Conf. on Robotics and Automation

Spaan MTJ, Vlassis N (2005a) Perseus: Randomized point-basediteshteon for POMDPSs.
Journal of Artificial Intelligence Research 24:195-220

Spaan MTJ, Vlassis N (2005b) Planning with continuous actionmitially observable environ-
ments. In: Proc. of the IEEE Int. Conf. on Robotics and Autonmatio

Spaan MTJ, Veiga TS, Lima PU (2010) Active cooperative peforph network robot systems
using POMDPs. In: Proc. of International Conference on ligiefit Robots and Systems

Sridharan M, Wyatt J, Dearden R (2010) Planning to see: A hibieal approach to planning
visual actions on a robot using POMDPs. Artificial Intelligerg@:704—725

DRAFT. To appear in “M. A. Wiering and M. van Otterlo, editorsgiRforcement Learning: State of the Art, Springer VerIe(ng”‘

Partially Observable Markov Decision Processes 27

Stankiewicz B, Cassandra A, McCabe M, Weathers W (2007) Dpuedot and evaluation of
a Bayesian low-vision navigation aid. Systems, Man and Cybes)dfart A: Systems and
Humans, IEEE Transactions on 37(6):970-983

Stratonovich RL (1960) Conditional Markov processes. Thebprobability and its applications
5(2):156-178

Sutton RS, Barto AG (1998) Reinforcement Learning: An Intrctébn. MIT Press

Theocharous G, Mahadevan S (2002) Approximate planninghigttarchical partially observable
Markov decision processes for robot navigation. In: Proc. eflEEE Int. Conf. on Robotics
and Automation

Thrun S (2000) Monte Carlo POMDPs. In: Advances in Neural imi@tion Processing Sys-
tems 12, MIT Press

Thrun S, Burgard W, Fox D (2005) Probabilistic Robotics. MIES¥

Varakantham P, Maheswaran R, Tambe M (2005) Exploiting bibehds: Practical POMDPs for
personal assistant agents. In: Proc. of Int. Conference on Aotous Agents and Multi Agent
Systems

Vlassis N, Toussaint M (2009) Model-free reinforcement lear@isgnixture learning. In: Interna-
tional Conference on Machine Learning, ACM, pp 1081-1088

Wang C, Khardon R (2010) Relational partially observable MDR: Proc. of the National Con-
ference on Atrtificial Intelligence

White CC (1991) Partially observed Markov decision processesneguAnnals of Operations
Research 32

Wiering M, Schmidhuber J (1997) HQ-learning. Adaptive Beba®(2):219-246

Wierstra D, Wiering M (2004) Utile distinction hidden Markov ohels. In: International Confer-
ence on Machine Learning

Williams JD, Young S (2007) Partially observable Markov decigiwocesses for spoken dialog
systems. Computer Speech and Language 21(2):393-422

Williams JK, Singh S (1999) Experimental results on learninglsistic memoryless policies for
partially observable Markov decision processes. In: Advanceural Information Processing
Systems 11

Zhang NL, Liu W (1996) Planning in stochastic domains: probleraratteristics and approx-
imations. Tech. Rep. HKUST-CS96-31, Department of Computegr8el, The Hong Kong
University of Science and Technology

Zhou R, Hansen EA (2001) An improved grid-based approximatigordhm for POMDPs. In:
Proc. Int. Joint Conf. on Artificial Intelligence

