
DRAFT. To appear in “M. A. Wiering and M. van Otterlo, editors, Reinforcement Learning: State of the Art, Springer Verlag, 2012.”

Partially Observable Markov Decision Processes

Matthijs T.J. Spaan

Abstract For reinforcement learning in environments in which an agent has access
to a reliable state signal, methods based on the Markov decision process (MDP)
have had many successes. In many problem domains, however, an agent suffers
from limited sensing capabilities that preclude it from recovering a Markovian state
signal from its perceptions. Extending the MDP framework, partially observable
Markov decision processes (POMDPs) allow for principled decision making under
conditions of uncertain sensing. In this chapter we presentthe POMDP model by
focusing on the differences with fully observable MDPs, andwe show how optimal
policies for POMDPs can be represented. Next, we give a review of model-based
techniques for policy computation, followed by an overviewof the available model-
free methods for POMDPs. We conclude by highlighting recenttrends in POMDP
reinforcement learning.

1 Introduction

The Markov decision process model has proven very successful for learning how
to act in stochastic environments. In this chapter, we explore methods for reinforce-
ment learning by relaxing one of the limiting factors of the MDP model, namely
the assumption that the agent knows with full certainty the state of the environment.
Put otherwise, the agent’s sensors allow it to perfectly monitor the state at all times,
where the state captures all aspects of the environment relevant for optimal deci-
sion making. Clearly, this is a strong assumption that can restrict the applicability
of the MDP framework. For instance, when certain state features are hidden from

Matthijs T.J. Spaan
Institute for Systems and Robotics, Instituto Superior Técnico,
Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal.
e-mail:mtjspaan@isr.ist.utl.pt
Currently at Delft University of Technology, Delft, The Netherlands.

1

DRAFT. To appear in “M. A. Wiering and M. van Otterlo, editors, Reinforcement Learning: State of the Art, Springer Verlag, 2012.”

2 Matthijs T.J. Spaan

the agent the state signal will no longer be Markovian, violating a key assumption
of most reinforcement-learning techniques (Sutton and Barto, 1998).

One example of particular interest arises when applying reinforcement learning
to embodied agents. In many robotic applications the robot’s on-board sensors do
not allow it to unambiguously identify its own location or pose (Thrun et al, 2005).
Furthermore, a robot’s sensors are often limited to observing its direct surround-
ings, and might not be adequate to monitor those features of the environment’s state
beyond its vicinity, so-called hidden state. Another source of uncertainty regarding
the true state of the system are imperfections in the robot’ssensors. For instance, let
us suppose a robot uses a camera to identify the person it is interacting with. The
face-recognition algorithm processing the camera images is likely to make mistakes
sometimes, and report the wrong identity. Such an imperfectsensor also prevents the
robot from knowing the true state of the system: even if the vision algorithm reports
person A, it is still possible that person B is interacting with the robot. Although
in some domains the issues resulting from imperfect sensingmight be ignored, in
general they can lead to severe performance deterioration (Singh et al, 1994).

Instead, in this chapter we consider an extension of the (fully observable) MDP
setting that also deals with uncertainty resulting from theagent’s imperfect sen-
sors. A partially observable Markov decision process (POMDP) allows for optimal
decision making in environments which are only partially observable to the agent
(Kaelbling et al, 1998), in contrast with the full observability mandated by the MDP
model. In general the partial observability stems from two sources: (i) multiple states
give the same sensor reading, in case the agent can only sensea limited part of the
environment, and (ii) its sensor readings are noisy: observing the same state can
result in different sensor readings. The partial observability can lead to “perceptual
aliasing”: different parts of the environment appear similar to the agent’s sensor sys-
tem, but require different actions. The POMDP captures the partial observability in
a probabilistic observation model, which relates possibleobservations to states.

Classic POMDP examples are the machine maintenance (Smallwood and Sondik,
1973) or structural inspection (Ellis et al, 1995) problems. In these types of prob-
lems, the agent has to choose when to inspect a certain machine part or bridge sec-
tion, to decide whether maintenance is necessary. However,to allow for inspection
the machine has to be stopped, or the bridge to be closed, which has a clear eco-
nomic cost. A POMDP model can properly balance the trade-offbetween expected
deterioration over time and scheduling inspection or maintenance activities. Fur-
thermore, a POMDP can model the scenario that only choosing to inspect provides
information regarding the state of the machine or bridge, and that some flaws are
not always revealed reliably. More recently, the POMDP model has gained in rele-
vance for robotic applications such as robot navigation (Simmons and Koenig, 1995;
Spaan and Vlassis, 2004; Roy et al, 2005; Foka and Trahanias,2007), active sensing
(Hoey and Little, 2007; Spaan et al, 2010), object grasping (Hsiao et al, 2007) or
human-robot interaction (Doshi and Roy, 2008). Finally, POMDPs have been ap-
plied in diverse domains such as treatment planning in medicine (Hauskrecht and
Fraser, 2000), spoken dialogue systems (Williams and Young, 2007), developing

DRAFT. To appear in “M. A. Wiering and M. van Otterlo, editors, Reinforcement Learning: State of the Art, Springer Verlag, 2012.”

Partially Observable Markov Decision Processes 3

Fig. 1 A POMDP agent inter-
acting with its environment.

environment

agent action a

obs. o
reward r

π

state s

navigation aids (Stankiewicz et al, 2007), or invasive species management (Haight
and Polasky, 2010).

The remainder of this chapter is organized as follows. First, in Section 2 we
formally introduce the POMDP model, and we show that the partial observability
leads to a need for memory or internal state on the part of the agent. We discuss
how optimal policies and value functions are represented inthe POMDP framework.
Next, Section 3 reviews model-based techniques for POMDPs,considering optimal,
approximate and heuristic techniques. Section 4 gives an overview of the model-free
reinforcement learning techniques that have been developed for or can be applied
to POMDPs. Finally, Section 5 describes some recent developments in POMDP
reinforcement learning.

2 Decision making in partially observable environments

In this section we formally introduce the POMDP model and related decision-
making concepts.

2.1 POMDP model

A POMDP shares many elements with the fully observable MDP model as described
in the Introduction chapter, which we will repeat for completeness. Time is dis-
cretized in steps, and at the start of each time step the agenthas to execute an action.
We will consider only discrete, finite, models, which are by far the most commonly
used in the POMDP literature given the difficulties involvedwith solving continu-
ous models. For simplicity, the environment is representedby a finite set of states
S = {s1, . . . ,sN}. The set of possible actionsA = {a1, . . . ,aK} represent the possible
ways the agent can influence the system state. Each time step the agent takes an ac-
tion a in states, the environment transitions to states′ according to the probabilistic
transition functionT (s,a,s′) and the agent receives an immediate rewardR(s,a,s′).

DRAFT. To appear in “M. A. Wiering and M. van Otterlo, editors, Reinforcement Learning: State of the Art, Springer Verlag, 2012.”

4 Matthijs T.J. Spaan

What distinguishes a POMDP from a fully observable MDP is thatthe agent
now perceives an observationo ∈ Ω , instead of observings′ directly. The discrete
set of observationsΩ = {o1, . . . ,oM} represent all possible sensor readings the agent
can receive. Which observation the agent receives depends onthe next states′ and
may also be conditional on its actiona, and is drawn according to the observation
function O : S × A × Ω → [0,1]. The probability of observingo in states′ after
executinga is O(s′,a,o). In order forO to be a valid probability distribution over
possible observations it is required that∀s′ ∈ S,a ∈ A,o ∈ Ω O(s′,a,o)≥ 0 and that
∑o∈Ω O(s′,a,o) = 1. Alternatively, the observation function can also be defined as
O : S×Ω → [0,1] reflecting domains in which the observation is independent of the
last action.1

As in an MDP, the goal of the agent is to act in such a way as to maximize some
form of expected long-term reward, for instance

E
[h

∑
t=0

γ tRt

]

, (1)

whereE[·] denotes the expectation operator,h is the planning horizon, andγ is a
discount rate, 0≤ γ < 1.

We define a POMDP as follows.

Definition 2.1
A partially observable Markov decision processis a tuple〈S,A,Ω ,T,O,R〉 in
which S is a finite set of states,A is a finite set of actions,Ω is a finite set of
observations,T is a transition function defined asT : S×A× S → [0,1], O is an
observation function defined asO : S×A×Ω → [0,1] andR is a reward function
defined asR : S×A×S → R.

Fig. 1 illustrates these concepts by depicting a schematic representation of a POMDP
agent interacting with the environment.

To illustrate how the observation function models different types of partial ob-
servability, consider the following examples, which assume a POMDP with 2 states,
2 observations, and 1 action (omitted for simplicity). The case that sensors make
mistakes or are noisy can be modeled as follows. For instance,

O(s1
,o1) = 0.8, O(s1

,o2) = 0.2, O(s2
,o1) = 0.2, O(s2

,o2) = 0.8,

models an agent equipped with a sensor that is correct in 80% of the cases. When
the agent observeso1 or o2, it does not know for sure that the environment is in
states1 resp.s2. The possibility that the state is completely hidden to the agent can
be modeled by assigning the same observation to both states (and observationo2 is
effectively redundant):

O(s1
,o1) = 1.0, O(s1

,o2) = 0.0, O(s2
,o1) = 1.0, O(s2

,o2) = 0.0.

1 Technically speaking, by including the last action taken as a state feature, observation functions
of the formO(s′,o) can express the same models compared toO(s′,a,o) functions.

DRAFT. To appear in “M. A. Wiering and M. van Otterlo, editors, Reinforcement Learning: State of the Art, Springer Verlag, 2012.”

Partially Observable Markov Decision Processes 5

When the agent receives observationo1 it is not able to tell whether the environment
is in states1 or s2, which models the hidden state adequately.

2.2 Continuous and structured representations

As mentioned before, the algorithms presented in this chapter operate on discrete
POMDPs, in which state, action, and observation spaces can be represented by finite
sets. Here we briefly discuss work on continuous as well as structured POMDP
representations, which can be relevant for several applications.

Many real-world POMDPs are more naturally modeled using continuous models
(Porta et al, 2006; Brunskill et al, 2008), for instance a robot’s pose is often de-
scribed by continuous(x,y,θ) coordinates. Standard solution methods such as value
iteration can also be defined for continuous state spaces (Porta et al, 2005), and con-
tinuous observation spaces (Hoey and Poupart, 2005) as wellas continuous actions
(Spaan and Vlassis, 2005b) have been studied. However, beliefs, observation, action
and reward models defined over continuous spaces can have arbitrary forms that may
not be parameterizable. In order to design feasible algorithms it is crucial to work
with models that have simple parameterizations and result in closed belief updates
and Bellman backups. For instance, Gaussian mixtures or particle-based represen-
tations can be used for representing beliefs and linear combinations of Gaussians
for the models (Porta et al, 2006). As an alternative, simulation-based methods are
often capable of dealing with continuous state and action spaces (Thrun, 2000; Ng
and Jordan, 2000; Baxter and Bartlett, 2001).

Returning to finite models, in many domains a more structuredPOMDP repre-
sentation is beneficial compared to a flat representation (inwhich all sets are enu-
merated). Dynamic Bayesian networks are commonly used as a factored POMDP
representation (Boutilier and Poole, 1996; Hansen and Feng, 2000), in addition to
which algebraic decision diagrams can provide compact model and policy represen-
tation (Poupart, 2005; Shani et al, 2008). Relational representations have also been
proposed for the POMDP model (Sanner and Kersting, 2010; Wang and Khardon,
2010). Furthermore, in certain problems structuring the decision making in sev-
eral hierarchical levels can allow for improved scalability (Pineau and Thrun, 2002;
Theocharous and Mahadevan, 2002; Foka and Trahanias, 2007;Sridharan et al,
2010). Finally, in the case when multiple agents are executing a joint task in a par-
tially observable and stochastic environment, the Decentralized POMDP model can
be applied (Bernstein et al, 2002; Seuken and Zilberstein, 2008; Oliehoek et al,
2008).

DRAFT. To appear in “M. A. Wiering and M. van Otterlo, editors, Reinforcement Learning: State of the Art, Springer Verlag, 2012.”

6 Matthijs T.J. Spaan

Fig. 2 A two-state POMDP
from (Singh et al, 1994), in
which the agent receives the
same observation in both
states.

s1 s2

a1 a2
−r−r

a1,+r

a2,+r

2.3 Memory for optimal decision making

As the example in Section 2.1 illustrated, in a POMDP the agent’s observations do
not uniquely identify the state of the environment. However, as the rewards are still
associated with the environment state, as well as the state transitions, a single obser-
vation is not a Markovian state signal. In particular, a direct mapping of observations
to actions is not sufficient for optimal behavior. In order for an agent to choose its
actions successfully in partially observable environments memory is needed.

To illustrate this point, consider the two-state infinite-horizon POMDP depicted
in Fig. 2 (Singh et al, 1994). The agent has two actions, one ofwhich will deter-
ministically transport it to the other state, while executing the other action has no
effect on the state. If the agent jumps to the other state it receives a reward ofr > 0,
and−r otherwise. The optimal policy in the underlying MDP has a value of r

1−γ ,
as the agent can gather a reward ofr at each time step. In the POMDP however, the
agent receives the same observation in both states. As a result, there are only two
memoryless deterministic stationary policies possible: always executea1 or always
executea2. The maximum expected reward of these policies isr− γr

1−γ , when the
agent successfully jumps to the other state at the first time step. If we allow stochas-
tic policies, the best stationary policy would yield an expected discounted reward
of 0, when it chooses either action 50% of the time. However, if the agent could
remember what actions it had executed, it could execute a policy that alternates be-
tween executinga1 anda2. Such a memory-based policy would gatherγr

1−γ − r in
the worst case, which is close to the optimal value in the MDP (Singh et al, 1994).

This example illustrates the need for memory when considering optimal decision
making in a POMDP. A straightforward implementation of memory would be to
simply store the sequence of actions executed and observations received. However,
such a form of memory can grow indefinitely over time, turningit impractical for
long planning horizons. Fortunately, a better option exists, as we can transform the
POMDP to a belief-state MDP in which the agent summarizes allinformation about
its past using a belief vectorb(s) (Stratonovich, 1960; Dynkin, 1965;Åström, 1965).
This transformation requires that the transition and observation functions are known
to the agent, and hence can be applied only in model-based RL methods.

The beliefb is a probability distribution overS, which forms a Markovian signal
for the planning task. Given an appropriate state space, thebelief is a sufficient
statistic of the history, which means the agent could not do any better even if it had
remembered the full history of actions and observations. All beliefs are contained in
a (|S|−1)-dimensional simplex∆(S), hence we can represent a belief using|S|−1
numbers. Each POMDP problem assumes an initial beliefb0, which for instance
can be set to a uniform distribution over all states (representing complete ignorance

DRAFT. To appear in “M. A. Wiering and M. van Otterlo, editors, Reinforcement Learning: State of the Art, Springer Verlag, 2012.”

Partially Observable Markov Decision Processes 7

(a) The environment of the robot.

0

0.25

0.5

(b) Initial belief att = 0.

0

0.25

0.5

(c) Updated belief att = 1 after executingforward and observingdoor.

0

0.25

0.5

(d) Updated belief att = 2 after executingforward and observingdoor.

0

0.25

0.5

(e) Updated belief att = 3 after executingforward and observingcorridor.

Fig. 3 Belief-update example (adapted from Fox et al (1999)). (a) A robot moves in a one-
dimensional corridor with three identical doors. (b)-(e) The evolution of the belief over time, for
details see main text.

regarding the initial state of the environment). Every timethe agent takes an actiona
and observeso, its belief is updated by Bayes’ rule:

bao(s′) =
p(o|s′,a)
p(o|b,a) ∑

s∈S

p(s′|s,a)b(s), (2)

wherep(s′|s,a) andp(o|s′,a) are defined by model parametersT resp.O, and

p(o|b,a) = ∑
s′∈S

p(o|s′,a)∑
s∈S

p(s′|s,a)b(s) (3)

is a normalizing constant.
Fig. 3 shows an example of a sequence of belief updates for a robot navigating

in a corridor with three identical doors. The corridor is discretized in 26 states and
is circular, i.e., the right end of the corridor is connectedto the left end. The robot
can observe eitherdoor or corridor, but its sensors are noisy. When the robot is
positioned in front of a door, it observesdoor with probability 0.9 (andcorridor with
probability 0.1). When the robot is not located in front of a door the probability of
observingcorridor is 0.9. The robot has two actions,forward andbackward (right
resp. left in the figure), which transport the robot 3 (20%), 4(60%), or 5 (20%)
states in the corresponding direction. The initial beliefb0 is uniform, as displayed
in Fig. 3(b). Fig. 3(c) through (e) show how the belief of the robot is updated as it

DRAFT. To appear in “M. A. Wiering and M. van Otterlo, editors, Reinforcement Learning: State of the Art, Springer Verlag, 2012.”

8 Matthijs T.J. Spaan

executes theforward action each time. The true location of the robot is indicatedby
the dark-gray component of its belief. In Fig. 3(c) we see that the robot is located
in front of the first door, and although it is fairly certain itis located in front of a
door, it cannot tell which one. However, after taking another move forward it again
observesdoor, and now can pinpoint its location more accurately, becauseof the
particular configuration of the three doors (Fig. 3(d)). However, in Fig. 3(e) the
belief blurs again, which is due to the noisy transition model and the fact that the
corridor observation is not very informative in this case.

2.4 Policies and value functions

As in the fully observable MDP setting, the goal of the agent is to choose actions
which fulfill its task as well as possible, i.e., to learn an optimal policy. In POMDPs,
an optimal policyπ∗(b) maps beliefs to actions. Note that, contrary to MDPs, the
policy π(b) is a function over a continuous set of probability distributions overS. A
policy π can be characterized by a value functionV π : ∆(S)→ R which is defined
as the expected future discounted rewardV π(b) the agent can gather by followingπ
starting from beliefb:

V π(b) = Eπ

[h

∑
t=0

γ tR(bt ,π(bt))
∣

∣

∣
b0 = b

]

, (4)

whereR(bt ,π(bt)) = ∑s∈S R(s,π(bt))bt(s).
A policy π which maximizesV π is called an optimal policyπ∗; it specifies for

eachb the optimal action to execute at the current step, assuming the agent will also
act optimally at future time steps. The value of an optimal policy π∗ is defined by
the optimal value functionV ∗. It satisfies the Bellman optimality equation

V ∗ = HPOMDPV
∗
, (5)

whereHPOMDP is the Bellman backup operator for POMDPs, defined as:

V ∗(b) = max
a∈A

[

∑
s∈S

R(s,a)b(s)+ γ ∑
o∈O

p(o|b,a)V ∗(bao)
]

, (6)

with bao given by (2), andp(o|b,a) as defined in (3). When (6) holds for every
b ∈ ∆(S) we are ensured the solution is optimal.

Computing value functions over a continuous belief space might seem intractable
at first, but fortunately the value function has a particularstructure that we can ex-
ploit (Sondik, 1971). It can be parameterized by a finite number of vectors and has
a convex shape. The convexity implies that the value of a belief close to one of the
corners of the belief simplex∆(S) will be high. In general, the less uncertainty the
agent has over its true state, the better it can predict the future, and as such take bet-
ter decisions. A belief located exactly at a particular corner of∆(S), i.e.,b(s) = 1 for

DRAFT. To appear in “M. A. Wiering and M. van Otterlo, editors, Reinforcement Learning: State of the Art, Springer Verlag, 2012.”

Partially Observable Markov Decision Processes 9

V

(1,0) (0,1)

(a) Example value function.

AA

A A A

A

A

o1

o1 o2

o2 o|O|

o|O|

. . .

. . .

. . .

.

.

(b) Example policy tree.

Fig. 4 (a) An example of a value function in a two-state POMDP. They-axis shows the value
of each belief, and thex-axis depicts the belief space∆(S), ranging from(1,0) to (0,1). (b) An
example policy tree, where at a node the agent takes an action,and it transitions to a next node
based on the received observationo ∈ {o1,o2, . . . ,o|O|}.

a particulars, defines with full certainty the state of the agent. In this way, the con-
vex shape ofV can be intuitively explained. An example of a convex value function
for a two-state POMDP is shown in Fig. 4(a). As the belief space is a simplex, we
can represent any belief in a two-state POMDP on a line, asb(s2) = 1−b(s1). The
corners of the belief simplex are denoted by(1,0) and(0,1), which have a higher
(or equal) value than a belief in the center of the belief space, e.g.,(0.5,0.5).

An alternative way to represent policies in POMDPs is by considering policy
trees (Kaelbling et al, 1998). Fig. 4(b) shows a partial policy tree, in which the agent
starts at the root node of tree. Each node specifies an action which the agent exe-
cutes at the particular node. Next it receives an observation o, which determines to
what next node the agent transitions. The depth of the tree depends on the planning
horizonh, i.e., if we want the agent to consider takingh steps, the corresponding
policy tree has depthh.

3 Model-based techniques

If a model of the environment is available, it can be used to compute a policy for
the agent. In this section we will discuss several ways of computing POMDP poli-
cies, ranging from optimal to approximate and heuristic approaches. Even when
the full model is known to the agent, solving the POMDP optimally is typically
only computationally feasible for small problems, hence the interest in methods that
compromise optimality for reasons of efficiency. All the methods presented in this
section exploit a belief state representation (Section 2.3), as it provides a compact
representation of the complete history of the process.

DRAFT. To appear in “M. A. Wiering and M. van Otterlo, editors, Reinforcement Learning: State of the Art, Springer Verlag, 2012.”

10 Matthijs T.J. Spaan

3.1 Heuristics based on MDP solutions

First, we discuss some heuristic control strategies that have been proposed which
rely on a solutionπ∗

MDP(s) or Q∗
MDP(s,a) of the underlying MDP (Cassandra et al,

1996). The idea is that solving the MDP is of much lower complexity than solv-
ing the POMDP (P-complete vs. PSPACE-complete) (Papadimitriou and Tsitsiklis,
1987), but by tracking the belief state still some notion of imperfect state perception
can be maintained. Cassandra (1998) provides an extensive experimental compari-
son of MDP-based heuristics.

Perhaps the most straightforward heuristic is to consider for a belief at a given
time step its most likely state (MLS), and use the action the MDP policy prescribes
for the state

πMLS(b) = π∗
MDP(argmax

s
b(s)). (7)

The MLS heuristic completely ignores the uncertainty in thecurrent belief, which
clearly can be suboptimal.

A more sophisticated approximation technique isQMDP (Littman et al, 1995),
which also treats the POMDP as if it were fully observable.QMDP solves the MDP
and defines a control policy

πQMDP(b) = argmax
a

∑
s

b(s)Q∗
MDP(s,a). (8)

QMDP can be very effective in some domains, but the policies it computes will not
take informative actions, as theQMDP solution assumes that any uncertainty regarding
the state will disappear after taking one action. As such,QMDP policies will fail in
domains where repeated information gathering is necessary.

For instance, consider the toy domain in Figure 5, which illustrates how MDP-
based heuristics can fail (Parr and Russell, 1995). The agent starts in the state
markedI, and upon taking any action the system transitions with equal probabil-
ity to one of two states. In both states it would receive observationA, meaning the
agent cannot distinguish between them. The optimal POMDP policy is to take the
actiona twice in succession, after which the agent is back in the samestate. How-
ever, because it observed eitherC or D, it knows in which of the two states markedA
it currently is. This knowledge is important for choosing the optimal action (b or c)
to transition to the state with positive reward, labelled+1. The fact that thea ac-
tions do not change the system state, but only the agent’s belief state (two time steps
later) is very hard for the MDP-based methods to plan for. It forms an example of
reasoning about explicit information gathering effects ofactions, for which methods
based on MDP solutions do not suffice.

One can also expand the MDP setting to model some form of sensing uncer-
tainty without considering full-blown POMDP beliefs. For instance, in robotics the
navigation under localization uncertainty problem can be modeled by the mean and
entropy of the belief distribution (Cassandra et al, 1996; Roy and Thrun, 2000). Al-

DRAFT. To appear in “M. A. Wiering and M. van Otterlo, editors, Reinforcement Learning: State of the Art, Springer Verlag, 2012.”

Partially Observable Markov Decision Processes 11

Fig. 5 A simple domain in
which MDP-based control
strategies fail (Parr and Rus-
sell, 1995).

C

I

A

A

D

+1
c

ba

a

0.5

0.5
b

c

a

ab

b

−1

though attractive from a computational perspective, such approaches are likely to
fail when the belief is not uni-modal but has a more complex shape.

3.2 Value iteration for POMDPs

To overcome the limitations of MDP-based heuristic methods, we now consider
computing optimal POMDP policies via value iteration. The use of belief states al-
lows one to transform the original discrete-state POMDP into a continuous-state
MDP. Recall that we can represent a plan in an MDP by its value function, which
for every state estimates the amount of discounted cumulative reward the agent can
gather when it acts according to the particular plan. In a POMDP the optimal value
function, i.e., the value function corresponding to an optimal plan, exhibits partic-
ular structure (it is piecewise linear and convex) that one can exploit in order to
facilitate computing the solution. Value iteration, for instance, is a method for solv-
ing POMDPs that builds a sequence of value-function estimates which converge to
the optimal value function for the current task (Sondik, 1971). A value function in a
finite-horizon POMDP is parameterized by a finite number of hyperplanes, or vec-
tors, over the belief space, which partition the belief space into a finite amount of
regions. Each vector maximizes the value function in a certain region and has an
action associated with it, which is the optimal action to take for beliefs in its region.

As we explain next, computing the next value-function estimate—looking one
step deeper into the future—requires taking into account allpossible actions the
agent can take and all subsequent observations it may receive. Unfortunately, this
leads to an exponential growth of vectors as the planning horizon increases. Many
of the computed vectors will be useless in the sense that their maximizing region is
empty, but identifying and subsequently pruning them is an expensive operation.

Exact value-iteration algorithms (Sondik, 1971; Cheng, 1988; Cassandra et al,
1994) search in each value-iteration step the complete belief simplex for a minimal
set of belief points that generate the necessary set of vectors for the next-horizon
value function. This typically requires linear programming and is therefore costly
in high dimensions. Other exact value-iteration algorithms focus on generating all
possible next-horizon vectors followed by or interleaved with pruning dominated
vectors in a smart way (Monahan, 1982; Zhang and Liu, 1996; Littman, 1996; Cas-

DRAFT. To appear in “M. A. Wiering and M. van Otterlo, editors, Reinforcement Learning: State of the Art, Springer Verlag, 2012.”

12 Matthijs T.J. Spaan

Fig. 6 Detailed example of a
POMDP value function, c.f.
Fig. 4(a). The value function
is indicated by the solid black
line, and in this case consists
of four α vectors, indicated
by dashed lines. The induced
partitioning of the belief space
into four regions is indicated
by the vertical dotted lines.

V

(1,0) (0,1)

α1

α2

α3

α4

sandra et al, 1997; Feng and Zilberstein, 2004; Lin et al, 2004; Varakantham et al,
2005). However, pruning again requires linear programming.

The value of an optimal policyπ∗ is defined by the optimal value functionV ∗

which we compute by iterating a number of stages, at each stage considering a step
further into the future. At each stage we apply the exact dynamic-programming
operatorHPOMDP (6). If the agent has only one time step left to act, we only have to
consider the immediate reward for the particular beliefb, and can ignore any future
valueV ∗(bao) and (6) reduces to:

V ∗
0 (b) = max

a

[

∑
s

R(s,a)b(s)
]

. (9)

We can view the immediate reward functionR(s,a) as a set of|A| vectorsαa
0 =

(αa
0(1), . . . ,α

a
0(|S|)), one for each actiona: αa

0(s) = R(s,a). Now we can rewrite (9)
as follows, where we viewb as a|S|-dimensional vector:

V ∗
0 (b) = max

a ∑
s

αa
0(s)b(s), (10)

= max
{αa

0}a

b ·αa
0 , (11)

where(·) denotes inner product.
In the general case, forh > 0, we parameterize a value functionVn at stagen by

a finite set of vectors or hyperplanes{αk
n}, k = 1, . . . , |Vn|. Given a set of vectors

{αk
n}

|Vn|
k=1 at stagen, the value of a beliefb is given by

Vn(b) = max
{αk

n}k

b ·αk
n . (12)

Additionally, an actiona(αk
n) ∈ A is associated with each vector, which is the opti-

mal one to take in the current step, for those beliefs for which αk
n is the maximizing

vector. Each vector defines a region in the belief space for which this vector is the
maximizing element ofVn. These regions form a partition of the belief space, in-
duced by the piecewise linearity of the value function, as illustrated by Fig. 6.

The gradient of the value function atb is given by the vector

DRAFT. To appear in “M. A. Wiering and M. van Otterlo, editors, Reinforcement Learning: State of the Art, Springer Verlag, 2012.”

Partially Observable Markov Decision Processes 13

αb
n = argmax

{αk
n}k

b ·αk
n , (13)

and the policy atb is given by

π(b) = a(αb
n). (14)

The main idea behind many value-iteration algorithms for POMDPs is that for
a given value functionVn and a particular belief pointb we can easily compute the
vectorαb

n+1 of HPOMDPVn such that

αb
n+1 = argmax

{αk
n+1}k

b ·αk
n+1, (15)

where{αk
n+1}

|HPOMDPVn|
k=1 is the (unknown) set of vectors forHPOMDPVn. We will de-

note this operationαb
n+1 = backup(b). For this, we definegao vectors

gk
ao(s) = ∑

s′
p(o|s′,a)p(s′|s,a)αk

n(s
′), (16)

which represent the vectors resulting from back-projecting αk
n for a particulara

ando. Starting from (6) we can derive

Vn+1(b) = max
a

[

b ·αa
0 + γb ·∑

o
argmax
{gk

ao}k

b ·gk
ao

]

(17)

= max
{gb

a}a

b ·gb
a, (18)

with gb
a = αa

0 + γ ∑
o

argmax
{gk

ao}k

b ·gk
ao, (19)

which can be re-written as

Vn+1(b) = b ·argmax
{gb

a}a

b ·gb
a. (20)

From (20) we can derive the vectorbackup(b), as this is the vector whose inner
product withb yieldsVn+1(b):

backup(b) = argmax
{gb

a}a∈A

b ·gb
a, (21)

with gb
a defined in (19). Note that in general not only the computedα vector is

retained, but also which actiona was the maximizer in (21), as that is the optimal
action associated withbackup(b).

DRAFT. To appear in “M. A. Wiering and M. van Otterlo, editors, Reinforcement Learning: State of the Art, Springer Verlag, 2012.”

14 Matthijs T.J. Spaan

3.3 Exact value iteration

The Bellman backup operator (21) computes a next-horizon vector for a single be-
lief, and now we will employ this backup operator to compute acomplete value
function for the next horizon, i.e., one that is optimal for all beliefs in the belief
space. Although computing the vectorbackup(b) for a givenb is straightforward,
locating the (minimal) set of pointsb required to computeall vectors∪b backup(b)
of HPOMDPVn is very costly. As eachb has a region in the belief space in which its
αb

n is maximal, a family of algorithms tries to identify these regions (Sondik, 1971;
Cheng, 1988; Kaelbling et al, 1998). The correspondingb of each region is called
a “witness” point, as it testifies to the existence of its region. Other exact POMDP
value-iteration algorithms do not focus on searching in thebelief space. Instead,
they consider enumerating all possible vectors ofHPOMDPVn, followed by pruning
useless vectors (Monahan, 1982; Zhang and Liu, 1996; Littman, 1996; Cassandra
et al, 1997; Feng and Zilberstein, 2004; Lin et al, 2004; Varakantham et al, 2005).
We will focus on the enumeration algorithms as they have seenmore recent devel-
opments and are more commonly used.

3.3.1 Monahan’s enumeration algorithm

First, we consider the most straightforward way of computing HPOMDPVn, due to
Monahan (1982). It involves calculating all possible waysHPOMDPVn could be con-
structed, exploiting the known structure of the value function. Note that in each
HPOMDPVn a finite number of vectors are generated, as we have assumed finite sets
A andO. We operate independently of a particularb now so (19) and hence (21) can
no longer be applied. Instead of maximizing for allo ∈ O over thegk

ao vectors for
the particularb, we now have to include all ways of selectinggk

ao for all o:

HPOMDPVn =
⋃

a

Ga, with Ga =
⊕

o

Go
a, and Go

a =
{ 1
|O|

αa
0 + γgk

ao

}

k
, (22)

where
⊕

denotes the cross-sum operator.2

Unfortunately, at each stage a finite but exponential numberof vectors are gen-
erated:|A||Vn|

|O|. The regions of many of the generated vectors will be empty and
these vectors are useless as they will not influence the agent’s policy. Technically,
they are not part of the value function, and keeping them has no effect on subsequent
value functions, apart from the computational burden. Therefore, all value-iteration
methods in the enumeration family employ some form of pruning. In particular,
Monahan (1982) prunesHPOMDPVn after computing it:

Vn+1 = prune(HPOMDPVn), (23)

2 Cross sum of sets is defined as:
⊕

k Rk = R1⊕R2⊕·· ·⊕Rk, with P⊕Q= { p+q | p∈ P, q∈Q }.

DRAFT. To appear in “M. A. Wiering and M. van Otterlo, editors, Reinforcement Learning: State of the Art, Springer Verlag, 2012.”

Partially Observable Markov Decision Processes 15

with HPOMDPVn as defined in (22). Theprune operator is implemented by solving
a linear program (White, 1991).

3.3.2 Incremental Pruning

Monahan (1982)’s algorithm first generates all|A||Vn|
|O| vectors ofHPOMDPVn be-

fore pruning all dominated vectors. Incremental Pruning methods (Zhang and Liu,
1996; Cassandra et al, 1997; Feng and Zilberstein, 2004; Linet al, 2004; Varakan-
tham et al, 2005) save computation time by exploiting the fact that

prune(G⊕G′⊕G′′) = prune(prune(G⊕G′)⊕G′′). (24)

In this way the number of constraints in the linear program used for pruning grows
slowly (Cassandra et al, 1997), leading to better performance. The basic Incremental
Pruning algorithm exploits (24) when computingVn+1 as follows:

Vn+1 = prune
(
⋃

a

Ga
)

, with (25)

Ga = prune
(
⊕

o

Go
a

)

(26)

= prune(G1
a ⊕G2

a ⊕G3
a ⊕·· ·⊕G|O|

a) (27)

= prune(· · ·prune(prune(G1
a ⊕G2

a)⊕G3
a) · · ·⊕G|O|

a). (28)

In general, however, computing exact solutions for POMDPs is an intractable
problem (Papadimitriou and Tsitsiklis, 1987; Madani et al,2003), calling for ap-
proximate solution techniques (Lovejoy, 1991; Hauskrecht, 2000). Next we present
a family of popular approximate value iteration algorithms.

3.4 Point-based value iteration methods

Given the high computational complexity of optimal POMDP solutions, many meth-
ods for approximate solutions have been developed. One powerful idea has been to
compute solutions only for those parts of the belief simplexthat are reachable, i.e.,
that can be actually encountered by interacting with the environment. This has mo-
tivated the use of approximate solution techniques which focus on the use of a sam-
pled set ofbelief points on which planning is performed (Hauskrecht, 2000; Poon,
2001; Roy and Gordon, 2003; Pineau et al, 2003; Smith and Simmons, 2004; Spaan
and Vlassis, 2005a; Shani et al, 2007; Kurniawati et al, 2008), a possibility already
mentioned by Lovejoy (1991). The idea is that instead of planning over the com-
plete belief space of the agent (which is intractable for large state spaces), planning
is carried out only on a limited set of prototype beliefsB that have been sampled by
letting the agent interact with the environment.

DRAFT. To appear in “M. A. Wiering and M. van Otterlo, editors, Reinforcement Learning: State of the Art, Springer Verlag, 2012.”

16 Matthijs T.J. Spaan

As we described before, a major cause of intractability of exact POMDP solu-
tion methods is their aim of computing the optimal action forevery possible belief
point in the belief space∆(S). For instance, if we use Monahan’s algorithm (22) we
can end up with a series of value functions whose size grows exponentially in the
planning horizon. A natural way to sidestep this intractability is to settle for com-
puting an approximate solution by considering only a finite set of belief points. The
backup stage reduces to applying (21) a fixed number of times,resulting in a small
number of vectors (bounded by the size of the belief set). Themotivation for using
approximate methods is their ability to compute successfulpolicies for much larger
problems, which compensates for the loss of optimality.

The general assumption underlying these so-calledpoint-based methods is that
by updating not only the value but also its gradient (theα vector) at eachb ∈ B, the
resulting policy will generalize well and be effective for beliefs outside the setB.
Whether or not this assumption is realistic depends on the POMDP’s structure and
the contents ofB, but the intuition is that in many problems the set of ‘reachable’
beliefs (reachable by following an arbitrary policy starting from the initial belief)
forms a low-dimensional manifold in the belief simplex, andthus can be covered
densely enough by a relatively small number of belief points.

The basic point-based POMDP update operates as follows. It uses an approxi-
mate backup operator̃HPBVI instead ofHPOMDP, that in each value-backup stage
computes the set

H̃PBVIVn =
⋃

b∈B

backup(b), (29)

using a fixed set of belief pointsB. An alternative randomized backup operator
H̃PERSEUS is provided by PERSEUS(Spaan and Vlassis, 2005a), which increases (or
at least does not decrease) the value of all belief points inB. The key idea is that in
each value-backup stage the value of all points in the beliefsetB can be improved
by only backing up a (randomly selected) subsetB̃ of the points:

H̃PERSEUSVn =
⋃

b∈B̃

backup(b), (30)

ensuring thatVn(b
′)≤Vn+1(b

′),∀b′ ∈ B. (31)

In each backup stage the setB̃ is constructed by sampling beliefs fromB until the
resultingVn+1 upper boundsVn overB, i.e., until condition (31) has been met. The
H̃PERSEUS operator results in value functions with a relatively smallnumber of vec-
tors, allowing for the use of much largerB, which has a positive effect on the ap-
proximation accuracy (Pineau et al, 2003).

Crucial to the control quality of the computed approximate solution is the
makeup ofB. A number of schemes to buildB have been proposed. For instance,
one could use a regular grid on the belief simplex, computed,e.g., by Freudenthal
triangulation (Lovejoy, 1991). Other options include taking all extreme points of
the belief simplex or use a random grid (Hauskrecht, 2000; Poon, 2001). An alter-
native scheme is to include belief points that can be encountered by simulating the
POMDP: we can generate trajectories through the belief space by sampling random

DRAFT. To appear in “M. A. Wiering and M. van Otterlo, editors, Reinforcement Learning: State of the Art, Springer Verlag, 2012.”

Partially Observable Markov Decision Processes 17

actions and observations at each time step (Lovejoy, 1991; Hauskrecht, 2000; Poon,
2001; Pineau et al, 2003; Spaan and Vlassis, 2005a). This sampling scheme focuses
the contents ofB to be beliefs that can actually be encountered while experiencing
the POMDP model.

More intricate schemes for belief sampling have also been proposed. For in-
stance, one can use the MDP solution to guide the belief sampling process (Shani
et al, 2007), but in problem domains which require series of information-gathering
actions such a heuristic will suffer from similar issues as when usingQMDP (Sec-
tion 3.1). Furthermore, the belief setB does not need to be static, and can be updated
while running a point-based solver. HSVI heuristically selects belief points in the
search tree starting from the initial belief, based on upperand lower bounds on the
optimal value function (Smith and Simmons, 2004, 2005). SARSOP takes this idea
a step further by successively approximating the optimal reachable belief space, i.e.,
the belief space that can be reached by following an optimal policy (Kurniawati et al,
2008).

In general, point-based methods compute solutions in the form of piecewise lin-
ear and convex value functions, and given a particular belief, the agent can simply
look up which action to take using (14).

3.5 Other approximate methods

Besides the point-based methods, other types of approximation structure have been
explored as well.

3.5.1 Grid-based approximations

One way to sidestep the intractability of exact POMDP value iteration is to grid the
belief simplex, using either a fixed grid (Drake, 1962; Lovejoy, 1991; Bonet, 2002)
or a variable grid (Brafman, 1997; Zhou and Hansen, 2001). Value backups are per-
formed for every grid point, but only the value of each grid point is preserved and the
gradient is ignored. The value of non-grid points is defined by an interpolation rule.
The grid based methods differ mainly on how the grid points are selected and what
shape the interpolation function takes. In general, regular grids do not scale well
in problems with high dimensionality and non-regular gridssuffer from expensive
interpolation routines.

3.5.2 Policy search

An alternative to computing an (approximate) value function is policy search: these
methods search for a good policy within a restricted class ofcontrollers (Platzman,
1981). For instance, policy iteration (Hansen, 1998b) and bounded policy iteration

DRAFT. To appear in “M. A. Wiering and M. van Otterlo, editors, Reinforcement Learning: State of the Art, Springer Verlag, 2012.”

18 Matthijs T.J. Spaan

(BPI) (Poupart and Boutilier, 2004) search through the space of (bounded-size)
stochastic finite-state controllers by performing policy-iteration steps. Other options
for searching the policy space include gradient ascent (Meuleau et al, 1999a; Kearns
et al, 2000; Ng and Jordan, 2000; Baxter and Bartlett, 2001; Aberdeen and Baxter,
2002) and heuristic methods like stochastic local search (Braziunas and Boutilier,
2004). In particular, the PEGASUS method (Ng and Jordan, 2000) estimates the
value of a policy by simulating a (bounded) number of trajectories from the POMDP
using a fixed random seed, and then takes steps in the policy space in order to max-
imize this value. Policy search methods have demonstrated success in several cases,
but searching in the policy space can often be difficult and prone to local optima
(Baxter et al, 2001).

3.5.3 Heuristic search

Another approach for solving POMDPs is based on heuristic search (Satia and Lave,
1973; Hansen, 1998a; Smith and Simmons, 2004). Defining an initial belief b0 as the
root node, these methods build a tree that branches over(a,o) pairs, each of which
recursively induces a new belief node. Branch-and-bound techniques are used to
maintain upper and lower bounds to the expected return at fringe nodes in the search
tree. Hansen (1998a) proposes a policy-iteration method that represents a policy as
a finite-state controller, and which uses the belief tree to focus the search on areas
of the belief space where the controller can most likely be improved. However, its
applicability to large problems is limited by its use of fulldynamic-programming
updates. As mentioned before, HSVI (Smith and Simmons, 2004, 2005) is an ap-
proximate value-iteration technique that performs a heuristic search through the be-
lief space for beliefs at which to update the bounds, similarto work by Satia and
Lave (1973).

4 Decision making without a-priori models

When no models of the environment are available to the agent a priori, the model-
based methods presented in the previous section cannot be directly applied. Even
relatively simple techniques such asQMDP (Section 3.1) require knowledge of the
complete POMDP model: the solution to the underlying MDP is computed using
the transition and reward model, while the belief update (2)additionally requires
the observation model.

In general, there exist two ways of tackling such a decision-making problem,
known as direct and indirect reinforcement learning methods. Direct methods apply
true model-free techniques, which do not try to reconstructthe unknown POMDP
models, but for instance map observation histories directly to actions. On the other
extreme, one can attempt to reconstruct the POMDP model by interacting with it,
which then in principle can be solved using techniques presented in Section 3. This

DRAFT. To appear in “M. A. Wiering and M. van Otterlo, editors, Reinforcement Learning: State of the Art, Springer Verlag, 2012.”

Partially Observable Markov Decision Processes 19

indirect approach has long been out of favor for POMDPs, as (i) reconstructing (an
approximation of) the POMDP models is very hard, and (ii) even with a recovered
POMDP, model-based methods would take prohibitively long to compute a good
policy. However, advances in model-based methods such as the point-based family
of algorithms (Section 3.4) have made these types of approaches more attractive.

4.1 Memoryless techniques

First, we consider methods for learning memoryless policies, that is, policies that
map each observation that an agent receives directly to an action, without consult-
ing any internal state. Memoryless policies can either be deterministic mappings,
π : Ω → A, or probabilistic mappings,π : Ω → ∆(A). As illustrated by the example
in Section 2.3, probabilistic policies allow for higher payoffs, at the cost of an in-
creased search space that no longer can be enumerated (Singhet al, 1994). In fact,
the problem of finding an optimal deterministic memoryless policy has been shown
to be NP-hard (Littman, 1994), while the complexity of determining the optimal
probabilistic memoryless policy is still an open problem.

Loch and Singh (1998) have demonstrated empirically that using eligibility
traces, in their case in SARSA(λ), can improve the ability of memoryless methods
to handle partial observability. SARSA(λ) was shown to learn the optimal determin-
istic memoryless policy in several domains (for which it waspossible to enumerate
all such policies, of which there are|A||Ω |). Bagnell et al (2004) also consider the
memoryless deterministic case, but using non-stationary policies instead of station-
ary ones. They show that successful non-stationary policies can be found in cer-
tain maze domains for which no good stationary policies exist. Regarding learning
stochastic memoryless policies, an algorithm has been proposed by Jaakkola et al
(1995), and tested empirically by Williams and Singh (1999), showing that it can
successfully learn stochastic memoryless policies. An interesting twist is provided
by Hierarchical Q-Learning (Wiering and Schmidhuber, 1997), which aims to learn
a subgoal sequence in a POMDP, where each subgoal can be successfully achieved
using a memoryless policy.

4.2 Learning internal memory

Given the limitations of memoryless policies in systems without a Markovian state
signal such as POMDPs, a natural evolution in research has been to incorporate
some form of memory, so-called internal state, in each agent. Storing the complete
history of the process, i.e., the vector of actions taken by the agent and observa-
tions received, is not a practical option for several reasons. First of all, as in the
model-free case the agent is not able to compute a belief state, this representation
grows without bounds. A second reason is that such a representation does not allow

DRAFT. To appear in “M. A. Wiering and M. van Otterlo, editors, Reinforcement Learning: State of the Art, Springer Verlag, 2012.”

20 Matthijs T.J. Spaan

(a) T Maze.

Obs.Obs.Obs. ActionAction
at t at t −1at t −1 att −2at t −2

o1

o1

o1

o1

o1

o1

o1

o2

o2

o2

o2

o3

o3

a1

a1a1

a1

a2

a2

a3a3

(b) USM suffix tree.

Fig. 7 (a) Long-term dependency T maze (Bakker, 2002). (b) Example ofa suffix tree used by the
USM algorithm (McCallum, 1995), where fringe nodes are indicated by dashed lines.

for easy generalization, e.g., it is not clear how experience obtained after history
〈a1,o1,a1,o1〉 can be used to update the value for history〈a2,o1,a1,o1〉. To counter
these problems, researchers have proposed many different internal-state representa-
tions, of which we give a brief overview.

First of all, the memoryless methods presented before can beseen as maintaining
a history window of only a single observation. Instead, these algorithms can also be
applied with a history window containing the lastk observations (Littman, 1994;
Loch and Singh, 1998), wherek is typically an a-priori defined parameter. In some
domains such a relatively cheap increase of the policy space(by means of a lowk)
can buy a significant improvement in learning time and task performance. Finite
history windows have also been used as a representation for neural networks (Lin
and Mitchell, 1992).

Finite history windows cannot however capture arbitrary long-term dependen-
cies, such as for instance present in the T Maze in Figure 7(a), an example provided
by Bakker (2002). In this problem the agent starts at S, and needs to navigate to G.
However, the location of G is unknown initially, and might beon the left or on the
right at the end of the corridor. However, in the start state the agent can observe a
road sign X, which depends on the particular goal location. The length of the corri-
dor can be varied (in Figure 7(a) it is 10), meaning that the agent needs to learn to
remember the road sign many time steps. Obviously, such a dependency cannot be
represented well by finite history windows.

Alleviating the problem of fixed history windows, McCallum (1993, 1995, 1996)
proposed several algorithms for variable history windows,among other contribu-
tions. These techniques allow for the history window to havea different depth in

DRAFT. To appear in “M. A. Wiering and M. van Otterlo, editors, Reinforcement Learning: State of the Art, Springer Verlag, 2012.”

Partially Observable Markov Decision Processes 21

different parts of the state space. For instance, Utile Suffix Memory (USM) learns
a short-term memory representation by growing a suffix tree (McCallum, 1995), an
example of which is shown in Figure 7(b). USM groups togetherRL experiences
based on how much history it considers significant for each instance. In this sense,
in different parts of the state space different history lengths can be maintained, in
contrast to the finite history window approaches. A suffix tree representation is de-
picted by solid lines in Figure 7(b), where the leaves cluster instances that have
a matching history up to the corresponding depth. The dashednodes are the so-
called fringe nodes: additional branches in the tree that the algorithm can consider
to add to the tree. When a statistical test indicates that instances in a branch of fringe
nodes come from different distributions of the expected future discounted reward,
the tree is grown to include this fringe branch. Put otherwise, if adding the branch
will help predicting the future rewards, it is worthwhile toextend the memory in
the corresponding part of the state space. More recent work building on these ideas
focuses on better learning behavior in the presence of noisyobservations (Shani and
Brafman, 2005; Wierstra and Wiering, 2004). Along these lines, recurrent neural
networks, for instance based on the Long Short-Term Memory architecture, have
also been successfully used as internal state representation (Hochreiter and Schmid-
huber, 1997; Bakker, 2002).

Other representations have been proposed as well. Meuleau et al (1999b) extend
the VAPS algorithm (Baird and Moore, 1999) to learn policiesrepresented as Fi-
nite State Automata (FSA). The FSA represent finite policy graphs, in which nodes
are labelled with actions, and the arcs with observations. As in VAPS, stochastic
gradient ascent is used to converge to a locally optimal controller. The problem of
finding the optimal policy graph of a given size has also been studied (Meuleau et al,
1999a). However, note that the optimal POMDP policy can require an infinite policy
graph to be properly represented.

Finally, predictive state representations (PSRs) have been proposed as an alter-
native to POMDPs for modeling stochastic and partially observable environments
(Littman et al, 2002; Singh et al, 2004). A PSR dispenses withthe hidden POMDP
states, and only considers sequences of action and observations which are observed
quantities. In a PSR, the state of the system is expressed in possible future event se-
quences, or “core tests”, of alternating actions and observations. The state of a PSR
is defined as a vector of probabilities that each core test canactually be realized,
given the current history. The advantages of PSRs are most apparent in model-free
learning settings, as the model only considers observable events instead of hidden
states.

5 Recent trends

To conclude, we discuss some types of approaches that have been gaining popularity
recently.

DRAFT. To appear in “M. A. Wiering and M. van Otterlo, editors, Reinforcement Learning: State of the Art, Springer Verlag, 2012.”

22 Matthijs T.J. Spaan

Most of the model-based methods discussed in this chapter are offline techniques
that determine a priori what action to take in each situationthe agent might en-
counter. Online approaches, on the other hand, only computewhat action to take at
the current moment (Ross et al, 2008b). Focusing exclusively on the current deci-
sion can provide significant computational savings in certain domains, as the agent
does not have to plan for areas of the state space which it never encounters. How-
ever, the need to choose actions every time step implies severe constraints on the
online search time. Offline point-based methods can be used to compute a rough
value function, serving as the online search heuristic. In asimilar manner, Monte
Carlo approaches are also appealing for large POMDPs, as they only require a gen-
erative model (black box simulator) to be available and theyhave the potential to
mitigate the curse of dimensionality (Thrun, 2000; Kearns et al, 2000; Silver and
Veness, 2010).

As discussed in detail in the chapter on Bayesian reinforcement learning, Bayesian
RL techniques are promising for POMDPs, as they provide an integrated way of ex-
ploring and exploiting models. Put otherwise, they do not require interleaving the
model-learning phases (e.g., using Baum-Welch (Koenig andSimmons, 1996) or
other methods (Shani et al, 2005)) with model-exploitationphases, which could be
a naive approach to apply model-based methods to unknown POMDPs. Poupart and
Vlassis (2008) extended the BEETLE algorithm (Poupart et al, 2006), a Bayesian
RL method for MDPs, to partially observable settings. As other Bayesian RL meth-
ods, the models are represented by Dirichlet distributions, and learning involves
updating the Dirichlet hyper-parameters. The work is more general than the earlier
work by Jaulmes et al (2005), which required the existence ofan oracle that the
agent could query to reveal the true state. Ross et al (2008a)proposed the Bayes-
Adaptive POMDP model, an alternative model for Bayesian reinforcement learning
which extends Bayes-Adaptive MDPs (Duff, 2002). All these methods assume that
the size of the state, observation and action spaces are known.

Policy gradient methods search in a space of parameterized policies, optimizing
the policy by performing gradient ascent in the parameter space (Peters and Bagnell,
2010). As these methods do not require to estimate a belief state (Aberdeen and
Baxter, 2002), they have been readily applied in POMDPs, with impressive results
(Peters and Schaal, 2008).

Finally, a recent trend has been to cast the model-based RL problem as one of
probabilistic inference, for instance using Expectation Maximization for computing
optimal policies in MDPs. Vlassis and Toussaint (2009) showed how such methods
can also be extended to the model-free POMDP case. In general, inference methods
can provide fresh insights in well-known RL algorithms.

DRAFT. To appear in “M. A. Wiering and M. van Otterlo, editors, Reinforcement Learning: State of the Art, Springer Verlag, 2012.”

Partially Observable Markov Decision Processes 23

Acknowledgments

This work was funded by Fundação para a Cîencia e a Tecnologia (ISR/IST pluri-
annual funding) through the PIDDAC Program funds and was supported by project
PTDC/EEA-ACR/73266/2006.

References

Aberdeen D, Baxter J (2002) Scaling internal-state policy-gradient methods for POMDPs. In: In-
ternational Conference on Machine Learning

Åström KJ (1965) Optimal control of Markov processes with incompletestate information. Journal
of Mathematical Analysis and Applications 10(1):174–205

Bagnell JA, Kakade S, Ng AY, Schneider J (2004) Policy search by dynamic programming. In:
Advances in Neural Information Processing Systems 16, MIT Press

Baird L, Moore A (1999) Gradient descent for general reinforcement learning. In: Advances in
Neural Information Processing Systems 11, MIT Press

Bakker B (2002) Reinforcement learning with long short-term memory. In: Advances in Neural
Information Processing Systems 14, MIT Press

Baxter J, Bartlett PL (2001) Infinite-horizon policy-gradient estimation. Journal of Artificial Intel-
ligence Research 15:319–350

Baxter J, Bartlett PL, Weaver L (2001) Experiments with infinite-horizon, policy-gradient estima-
tion. Journal of Artificial Intelligence Research 15:351–381

Bernstein DS, Givan R, Immerman N, Zilberstein S (2002) The complexity of decentralized control
of Markov decision processes. Mathematics of Operations Research27(4):819–840

Bonet B (2002) An epsilon-optimal grid-based algorithm for partially observable Markov decision
processes. In: International Conference on Machine Learning

Boutilier C, Poole D (1996) Computing optimal policies for partially observable decision processes
using compact representations. In: Proc. of the National Conference on Artificial Intelligence

Brafman RI (1997) A heuristic variable grid solution method for POMDPs. In: Proc. of the National
Conference on Artificial Intelligence

Braziunas D, Boutilier C (2004) Stochastic local search for POMDP controllers. In: Proc. of the
National Conference on Artificial Intelligence

Brunskill E, Kaelbling L, Lozano-Perez T, Roy N (2008) Continuous-state POMDPs with hybrid
dynamics. In: Proc. of the Int. Symposium on Artificial Intelligence and Mathematics

Cassandra AR (1998) Exact and approximate algorithms for partially observable Markov decision
processes. PhD thesis, Brown University

Cassandra AR, Kaelbling LP, Littman ML (1994) Acting optimally in partially observable stochas-
tic domains. In: Proc. of the National Conference on ArtificialIntelligence

Cassandra AR, Kaelbling LP, Kurien JA (1996) Acting under uncertainty: Discrete Bayesian mod-
els for mobile robot navigation. In: Proc. of International Conference on Intelligent Robots and
Systems

Cassandra AR, Littman ML, Zhang NL (1997) Incremental pruning: Asimple, fast, exact method
for partially observable Markov decision processes. In: Proc. ofUncertainty in Artificial Intel-
ligence

Cheng HT (1988) Algorithms for partially observable Markov decision processes. PhD thesis,
University of British Columbia

Doshi F, Roy N (2008) The permutable POMDP: fast solutions to POMDPs for preference elicita-
tion. In: Proc. of Int. Conference on Autonomous Agents and Multi Agent Systems

Drake AW (1962) Observation of a Markov process through a noisy channel. Sc.D. thesis, Mas-
sachusetts Institute of Technology

DRAFT. To appear in “M. A. Wiering and M. van Otterlo, editors, Reinforcement Learning: State of the Art, Springer Verlag, 2012.”

24 Matthijs T.J. Spaan

Duff M (2002) Optimal learning: Computational procedures forBayes-adaptive Markov decision
processes. PhD thesis, University of Massachusetts, Amherst

Dynkin EB (1965) Controlled random sequences. Theory of probability and its applications
10(1):1–14

Ellis JH, Jiang M, Corotis R (1995) Inspection, maintenance, andrepair with partial observability.
Journal of Infrastructure Systems 1(2):92–99

Feng Z, Zilberstein S (2004) Region-based incremental pruningfor POMDPs. In: Proc. of Uncer-
tainty in Artificial Intelligence

Foka A, Trahanias P (2007) Real-time hierarchical POMDPs forautonomous robot navigation.
Robotics and Autonomous Systems 55(7):561–571

Fox D, Burgard W, Thrun S (1999) Markov localization for mobile robots in dynamic environ-
ments. Journal of Artificial Intelligence Research 11:391–427

Haight RG, Polasky S (2010) Optimal control of an invasive species with imperfect information
about the level of infestation. Resource and Energy Economics In Press, Corrected Proof

Hansen EA (1998a) Finite-memory control of partially observable systems. PhD thesis, University
of Massachusetts, Amherst

Hansen EA (1998b) Solving POMDPs by searching in policy space. In: Proc. of Uncertainty in
Artificial Intelligence

Hansen EA, Feng Z (2000) Dynamic programming for POMDPs using a factored state representa-
tion. In: Int. Conf. on Artificial Intelligence Planning andScheduling

Hauskrecht M (2000) Value function approximations for partially observable Markov decision
processes. Journal of Artificial Intelligence Research 13:33–95

Hauskrecht M, Fraser H (2000) Planning treatment of ischemic heart disease with partially observ-
able Markov decision processes. Artificial Intelligence in Medicine 18:221–244

Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural Computation 9(8):1735–
1780

Hoey J, Little JJ (2007) Value-directed human behavior analysisfrom video using partially observ-
able Markov decision processes. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence 29(7):1–15

Hoey J, Poupart P (2005) Solving POMDPs with continuous or large discrete observation spaces.
In: Proc. Int. Joint Conf. on Artificial Intelligence

Hsiao K, Kaelbling L, Lozano-Perez T (2007) Grasping pomdps. Proc of the IEEE Int Conf on
Robotics and Automation pp 4685–4692

Jaakkola T, Singh SP, Jordan MI (1995) Reinforcement learning algorithm for partially observable
Markov decision problems. In: Advances in Neural Information Processing Systems 7

Jaulmes R, Pineau J, Precup D (2005) Active learning in partially observable Markov decision
processes. In: Machine Learning: ECML 2005, Lecture Notes in Computer Science, vol 3720,
Springer, pp 601–608

Kaelbling LP, Littman ML, Cassandra AR (1998) Planning and acting in partially observable
stochastic domains. Artificial Intelligence 101:99–134

Kearns M, Mansour Y, Ng AY (2000) Approximate planning in largePOMDPs via reusable tra-
jectories. In: Advances in Neural Information Processing Systems12, MIT Press

Koenig S, Simmons R (1996) Unsupervised learning of probabilistic models for robot navigation.
In: Proc. of the IEEE Int. Conf. on Robotics and Automation

Kurniawati H, Hsu D, Lee W (2008) SARSOP: Efficient point-basedPOMDP planning by approx-
imating optimally reachable belief spaces. In: Robotics: Science and Systems

Lin L, Mitchell T (1992) Memory approaches to reinforcement learning in non-Markovian do-
mains. Tech. rep., Carnegie Mellon University, Pittsburgh, PA,USA

Lin ZZ, Bean JC, White CC (2004) A hybrid genetic/optimizationalgorithm for finite horizon,
partially observed Markov decision processes. INFORMS Journal onComputing 16(1):27–38

Littman ML (1994) Memoryless policies: theoretical limitationsand practical results. In: Proc. of
the 3rd Int. Conf. on Simulation of Adaptive Behavior : from Animals to Animats 3, MIT Press,
Cambridge, MA, USA, pp 238–245

Littman ML (1996) Algorithms for sequential decision making. PhDthesis, Brown University

DRAFT. To appear in “M. A. Wiering and M. van Otterlo, editors, Reinforcement Learning: State of the Art, Springer Verlag, 2012.”

Partially Observable Markov Decision Processes 25

Littman ML, Cassandra AR, Kaelbling LP (1995) Learning policies for partially observable envi-
ronments: Scaling up. In: International Conference on Machine Learning

Littman ML, Sutton RS, Singh S (2002) Predictive representations of state. In: Advances in Neural
Information Processing Systems 14, MIT Press

Loch J, Singh S (1998) Using eligibility traces to find the best memoryless policy in partially
observable Markov decision processes. In: International Conference on Machine Learning

Lovejoy WS (1991) Computationally feasible bounds for partially observed Markov decision pro-
cesses. Operations Research 39(1):162–175

Madani O, Hanks S, Condon A (2003) On the undecidability of probabilistic planning and related
stochastic optimization problems. Artificial Intelligence 147(1-2):5–34

McCallum RA (1993) Overcoming incomplete perception with utile distinction memory. In: Inter-
national Conference on Machine Learning

McCallum RA (1995) Instance-based utile distinctions for reinforcement learning with hidden
state. In: International Conference on Machine Learning

McCallum RA (1996) Reinforcement learning with selective perception and hidden state. PhD
thesis, University of Rochester

Meuleau N, Kim KE, Kaelbling LP, Cassandra AR (1999a) Solving POMDPs by searching the
space of finite policies. In: Proc. of Uncertainty in ArtificialIntelligence

Meuleau N, Peshkin L, Kim KE, Kaelbling LP (1999b) Learning finite-state controllers for par-
tially observable environments. In: Proc. of Uncertainty in Artificial Intelligence

Monahan GE (1982) A survey of partially observable Markov decision processes: theory, models
and algorithms. Management Science 28(1)

Ng AY, Jordan M (2000) PEGASUS: A policy search method for large MDPs and POMDPs. In:
Proc. of Uncertainty in Artificial Intelligence

Oliehoek FA, Spaan MTJ, Vlassis N (2008) Optimal and approximate Q-value functions for de-
centralized POMDPs. Journal of Artificial Intelligence Research 32:289–353

Papadimitriou CH, Tsitsiklis JN (1987) The complexity of Markov decision processes. Mathemat-
ics of Operations Research 12(3):441–450

Parr R, Russell S (1995) Approximating optimal policies for partially observable stochastic do-
mains. In: Proc. Int. Joint Conf. on Artificial Intelligence

Peters J, Bagnell JAD (2010) Policy gradient methods. In: Springer Encyclopedia of Machine
Learning, Springer

Peters J, Schaal S (2008) Natural actor-critic. Neurocomputing 71:1180–1190
Pineau J, Thrun S (2002) An integrated approach to hierarchy and abstraction for POMDPs. Tech.

Rep. CMU-RI-TR-02-21, Robotics Institute, Carnegie MellonUniversity
Pineau J, Gordon G, Thrun S (2003) Point-based value iteration: An anytime algorithm for

POMDPs. In: Proc. Int. Joint Conf. on Artificial Intelligence
Platzman LK (1981) A feasible computational approach to infinite-horizon partially-observed

Markov decision problems. Tech. Rep. J-81-2, School of Industrial and Systems Engineering,
Georgia Institute of Technology, reprinted in working notesAAAI 1998 Fall Symposium on
Planning with POMDPs.

Poon KM (2001) A fast heuristic algorithm for decision-theoretic planning. Master’s thesis, The
Hong-Kong University of Science and Technology

Porta JM, Spaan MTJ, Vlassis N (2005) Robot planning in partiallyobservable continuous do-
mains. In: Robotics: Science and Systems

Porta JM, Vlassis N, Spaan MTJ, Poupart P (2006) Point-based valueiteration for continuous
POMDPs. Journal of Machine Learning Research 7:2329–2367

Poupart P (2005) Exploiting structure to efficiently solve large scale partially observable Markov
decision processes. PhD thesis, University of Toronto

Poupart P, Boutilier C (2004) Bounded finite state controllers. In: Advances in Neural Information
Processing Systems 16, MIT Press

Poupart P, Vlassis N (2008) Model-based Bayesian reinforcement learning in partially observable
domains. In: International Symposium on Artificial Intelligence and Mathematics (ISAIM)

DRAFT. To appear in “M. A. Wiering and M. van Otterlo, editors, Reinforcement Learning: State of the Art, Springer Verlag, 2012.”

26 Matthijs T.J. Spaan

Poupart P, Vlassis N, Hoey J, Regan K (2006) An analytic solution to discrete Bayesian reinforce-
ment learning. In: International Conference on Machine Learning

Ross S, Chaib-draa B, Pineau J (2008a) Bayes-adaptive POMDPs. In: Advances in Neural Infor-
mation Processing Systems 20, MIT Press, pp 1225–1232

Ross S, Pineau J, Paquet S, Chaib-draa B (2008b) Online planning algorithms for POMDPs. Jour-
nal of Artificial Intelligence Research 32:664–704

Roy N, Gordon G (2003) Exponential family PCA for belief compression in POMDPs. In: Ad-
vances in Neural Information Processing Systems 15, MIT Press

Roy N, Thrun S (2000) Coastal navigation with mobile robots. In:Advances in Neural Information
Processing Systems 12, MIT Press

Roy N, Gordon G, Thrun S (2005) Finding approximate POMDP solutions through belief com-
pression. Journal of Artificial Intelligence Research 23:1–40

Sanner S, Kersting K (2010) Symbolic dynamic programming for first-order POMDPs. In: Proc.
of the National Conference on Artificial Intelligence

Satia JK, Lave RE (1973) Markovian decision processes with probabilistic observation of states.
Management Science 20(1):1–13

Seuken S, Zilberstein S (2008) Formal models and algorithms for decentralized decision making
under uncertainty. Autonomous Agents and Multi-Agent Systems

Shani G, Brafman RI (2005) Resolving perceptual aliasing in thepresence of noisy sensors. In:
Saul LK, Weiss Y, Bottou L (eds) Advances in Neural Information Processing Systems 17,
MIT Press, Cambridge, MA, pp 1249–1256

Shani G, Brafman R, Shimony S (2005) Model-based online learning of POMDPs. In: European
Conference on Machine Learning

Shani G, Brafman RI, Shimony SE (2007) Forward search value iteration for POMDPs. In: Proc.
Int. Joint Conf. on Artificial Intelligence

Shani G, Poupart P, Brafman RI, Shimony SE (2008) Efficient ADD operations for point-based
algorithms. In: Int. Conf. on Automated Planning and Scheduling

Silver D, Veness J (2010) Monte-carlo planning in large POMDPs. In: Lafferty J, Williams CKI,
Shawe-Taylor J, Zemel R, Culotta A (eds) Advances in Neural Information Processing Sys-
tems 23, pp 2164–2172

Simmons R, Koenig S (1995) Probabilistic robot navigation in partially observable environments.
In: Proc. Int. Joint Conf. on Artificial Intelligence

Singh S, Jaakkola T, Jordan M (1994) Learning without state-estimation in partially observable
Markovian decision processes. In: International Conference onMachine Learning

Singh S, James MR, Rudary MR (2004) Predictive state representations: A new theory for model-
ing dynamical systems. In: Proc. of Uncertainty in Artificial Intelligence

Smallwood RD, Sondik EJ (1973) The optimal control of partially observable Markov decision
processes over a finite horizon. Operations Research 21:1071–1088

Smith T, Simmons R (2004) Heuristic search value iteration for POMDPs. In: Proc. of Uncertainty
in Artificial Intelligence

Smith T, Simmons R (2005) Point-based POMDP algorithms: Improved analysis and implementa-
tion. In: Proc. of Uncertainty in Artificial Intelligence

Sondik EJ (1971) The optimal control of partially observable Markov processes. PhD thesis, Stan-
ford University

Spaan MTJ, Vlassis N (2004) A point-based POMDP algorithm for robot planning. In: Proc. of the
IEEE Int. Conf. on Robotics and Automation

Spaan MTJ, Vlassis N (2005a) Perseus: Randomized point-based valueiteration for POMDPs.
Journal of Artificial Intelligence Research 24:195–220

Spaan MTJ, Vlassis N (2005b) Planning with continuous actions in partially observable environ-
ments. In: Proc. of the IEEE Int. Conf. on Robotics and Automation

Spaan MTJ, Veiga TS, Lima PU (2010) Active cooperative perception in network robot systems
using POMDPs. In: Proc. of International Conference on Intelligent Robots and Systems

Sridharan M, Wyatt J, Dearden R (2010) Planning to see: A hierarchical approach to planning
visual actions on a robot using POMDPs. Artificial Intelligence174:704–725

DRAFT. To appear in “M. A. Wiering and M. van Otterlo, editors, Reinforcement Learning: State of the Art, Springer Verlag, 2012.”

Partially Observable Markov Decision Processes 27

Stankiewicz B, Cassandra A, McCabe M, Weathers W (2007) Development and evaluation of
a Bayesian low-vision navigation aid. Systems, Man and Cybernetics, Part A: Systems and
Humans, IEEE Transactions on 37(6):970–983

Stratonovich RL (1960) Conditional Markov processes. Theory of probability and its applications
5(2):156–178

Sutton RS, Barto AG (1998) Reinforcement Learning: An Introduction. MIT Press
Theocharous G, Mahadevan S (2002) Approximate planning withhierarchical partially observable

Markov decision processes for robot navigation. In: Proc. of the IEEE Int. Conf. on Robotics
and Automation

Thrun S (2000) Monte Carlo POMDPs. In: Advances in Neural Information Processing Sys-
tems 12, MIT Press

Thrun S, Burgard W, Fox D (2005) Probabilistic Robotics. MIT Press
Varakantham P, Maheswaran R, Tambe M (2005) Exploiting beliefbounds: Practical POMDPs for

personal assistant agents. In: Proc. of Int. Conference on Autonomous Agents and Multi Agent
Systems

Vlassis N, Toussaint M (2009) Model-free reinforcement learningas mixture learning. In: Interna-
tional Conference on Machine Learning, ACM, pp 1081–1088

Wang C, Khardon R (2010) Relational partially observable MDPs. In: Proc. of the National Con-
ference on Artificial Intelligence

White CC (1991) Partially observed Markov decision processes: a survey. Annals of Operations
Research 32

Wiering M, Schmidhuber J (1997) HQ-learning. Adaptive Behavior 6(2):219–246
Wierstra D, Wiering M (2004) Utile distinction hidden Markov models. In: International Confer-

ence on Machine Learning
Williams JD, Young S (2007) Partially observable Markov decision processes for spoken dialog

systems. Computer Speech and Language 21(2):393–422
Williams JK, Singh S (1999) Experimental results on learning stochastic memoryless policies for

partially observable Markov decision processes. In: Advances inNeural Information Processing
Systems 11

Zhang NL, Liu W (1996) Planning in stochastic domains: problem characteristics and approx-
imations. Tech. Rep. HKUST-CS96-31, Department of Computer Science, The Hong Kong
University of Science and Technology

Zhou R, Hansen EA (2001) An improved grid-based approximation algorithm for POMDPs. In:
Proc. Int. Joint Conf. on Artificial Intelligence

