
Scaling Up Optimal Heuristic Search in Dec-POMDPs
via Incremental Expansion

Matthijs T.J. Spaan
Inst. for Systems and Robotics

Instituto Superior Técnico
Lisbon, Portugal

mtjspaan@isr.ist.utl.pt

Frans A. Oliehoek
CSAIL

MIT
Cambridge, MA 02139, USA

fao@csail.mit.edu

Christopher Amato
Aptima, Inc.

Woburn, MA 01801, USA
camato@aptima.com

ABSTRACT

Planning under uncertainty for multiagent systems can be
formalized as a decentralized partially observable Markov
decision process. We advance the state of the art for opti-
mal solution of this model, building on the Multiagent A*
heuristic search method. A key insight is that we can avoid
the full expansion of a search node that generates a number
of children doubly exponential in the node’s depth. Instead
we incrementally expand the children of a node only when
a next child might have the highest heuristic value. We tar-
get a subsequent bottleneck by introducing a more memory-
efficient representation for our heuristic functions. Proof is
given that the resulting algorithm is correct and experiments
demonstrate a significant speedup over the state of the art,
allowing for optimal solutions over longer horizons for many
benchmark problems.

Categories and Subject Descriptors

I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—Multiagent systems

General Terms

Algorithms, Theory, Experimentation

Keywords

Planning under uncertainty, Cooperative multiagent systems,
Decentralized POMDPs, Heuristic search

1. INTRODUCTION
Planning under uncertainty for multiagent systems is an

important problem in artificial intelligence, as agents may
often possess uncertain information while sharing their en-
vironment with other agents. Due to stochastic actions and
noisy sensors, agents must reason about many possible out-
comes and the uncertainty surrounding them. Because mul-
tiple agents are present, each agent must also reason about
the choices of the others and how they may affect the en-
vironment. In cooperative systems, finding optimal joint
plans is especially challenging when each agent must choose
actions based solely on local knowledge due to nonexistent or
noisy communication. Possible application domains include
multi-robot teams, communication networks, load balanc-

The Sixth Annual Workshop on Multiagent Sequential
Decision-Making in Uncertain Domains (MSDM-2011), held
in conjunction withAAMAS-2011 on May 3, 2011 in Taipei, Taiwan.

ing, and many other problem settings in which agents need
to coordinate under uncertain conditions.

The decentralized partially observable Markov decision
process (Dec-POMDP) is a formal model for such planning
problems. Unfortunately, optimal solution methods [3] and
even bounded approximations (ǫ-optimal solutions) [12] suf-
fer from doubly-exponential complexity (NEXP-Complete);
the search space for horizon h + 1 is exponentially larger
than the one for horizon h. This means that algorithms
with guarantees on solution quality have difficulties with at
least some problems. Algorithms that are always efficient in
runtime can have no guarantees on the solution quality.

In this paper we consider the optimal solution of Dec-
POMDPs over a finite horizon. Even though the high worst-
case complexity results preclude such methods from being
applicable for some larger problems, there are several rea-
sons to be interested in optimal solutions: 1) As approximate
algorithms come with no guarantees, optimal methods are
necessary as a tool to analyze the performance of approxi-
mate algorithms. 2) Most successful approximate algorithms
(e.g., [4, 14, 17]) are based on optimal solution methods,
so algorithmic improvements to the latter are likely to di-
rectly transfer to the former. 3) Optimal techniques can
give insight in the nature of problems and their solutions.
For instance, previous work on optimal methods generated
the insight that certain properties of the BroadcastChannel
problem make it easier to solve [11]. 4) They are of interest
for solving small problems that arise naturally or as part
of a decomposition. Moreover, many problem instances are
much easier to solve than the worst-case complexity sug-
gests [1], allowing optimal solutions to be practical.

We provide significant advances to the state of the art in
optimal Dec-POMDP solution methods by extending Mul-
tiagent A* (MAA*) [16] —which performs an A* search
through the tree of possible partial joint policies— and de-
rived methods with a new technique for incremental expan-
sion of search tree nodes. Expanding a node in this search
tree entails generating all possible children, which is a major
source of intractability since the number of such children is
doubly exponential in the depth of the node. In practice,
however, only a small number of the generated nodes may
actually be queried during the search. Our key observation
is that if a method is able to incrementally generate chil-
dren in order of their heuristic value, it does not need to
expand all of them at once. We exploit this insight, build-
ing upon recent advances in the solution of collaborative
Bayesian games [9].

As with any A* method, our approach’s performance de-

pends on the tightness of the heuristic. In many problems
the upper bound provided by the value function of the under-
lying MDP (QMDP) is not tight enough for heuristic search
to be effective [10]. Other heuristics are tighter, such as
those based on the underlying POMDP solution (QPOMDP)
or the value function resulting from assuming 1-step-delayed
communication (QBG). However, they require storing values
for all joint action-observation histories or representing them
as a potentially exponential number of vectors. A crucial
insight is that the number of values stored in a tree-based
representation grows exponentially when moving forward in
time, while the size of a vector-based representation grows
in the opposite direction. We exploit this insight by intro-
ducing a hybrid representation that is more compact.
In this work, we integrate the incremental expansion idea

in GMAA* with incremental clustering (GMAA*-IC), an
MAA* extension that uses lossless history clustering for im-
proved scalability [11]. The resulting algorithm is called
GMAA*-ICE as it provides incremental clustering and ex-
pansion. We prove that GMAA*-ICE is correct and ex-
pands search nodes in the same order as the original method.
We show the efficacy of our methods on a suite of bench-

mark problems, demonstrating a significant speedup over
the state of the art. In many cases GMAA*-ICE provides
the optimal solution over longer horizons than those previ-
ously solved. In particular, incremental expansion provides
leverage in those problem domains in which history cluster-
ing is less effective.
The rest of the paper is organized as follows. We begin

in Sec. 2 with background on Dec-POMDPs, their represen-
tation as CBGs as well as on GMAA*-IC. Sec. 3 intro-
duces GMAA*-ICE, and in Sec. 4 we prove its correctness.
The hybrid representation is introduced in Sec. 5 and Sec. 6
presents experimental results. Lastly, Sec. 7 presents con-
clusions and future work.

2. BACKGROUND
Here we provide some background information on Dec-

POMDPs and their optimal solution over a finite horizon.

2.1 Decentralized POMDPs
A decentralized partially observable Markov decision pro-

cess (Dec-POMDP) consists of:

• A set of n agents.

• S is a finite set of states.

• A = ×iAi is the set of joint actions, where Ai is the
set of actions available to agent i. Every time step,
one joint action a = 〈a1,...,an〉 is taken.

• T is the transition function, a mapping from states
and joint actions to probability distributions over next
states: T : S ×A → P(S).

• R is the reward function that maps states and joint
actions to real numbers: R : S ×A → R.

• O = ×iOi is the set of joint observations, with Oi the
set of observations available to agent i. Every time
step, one joint observation o = 〈o1,...,on〉 is received.

• O is the observation function, a mapping from joint ac-
tions and successor states to probability distributions
over joint observations: O : A× S → P(O).

• h is the horizon, the number of time steps.

• b0 the initial state distribution.

The goal of a Dec-POMDP is to find a decentralized de-
terministic joint policy π = 〈π1, . . . ,πn〉. Here each deter-
ministic individual policy πi maps from local observation-
histories (OH) ~o t

i =
(
o1i ,...,o

t
i

)
to actions: πi(~o

t
i) = at

i.
An individual policy πi can be interpreted as a sequence
of decision rules πi = (δ0i ,δ

1
i , . . . ,δ

h−1
i), where δti maps from

length-t OHs to actions. In the remainder of this paper,
we will also consider action-observation histories (AOHs)
~θ t
i =

(
a0
i ,o

1
i ,a

1
i ,...,a

t−1
i ,oti

)
. An AOH for an agent i at stage t

is denoted by ~θ t
i . The optimal joint policy π∗ maximizes the

expected cumulative reward. Computing an optimal joint
policy is provably intractable (NEXP-complete) [3].

The fact that an individual policy πi depends only on the
local information ~oi available to an agent means that the
on-line execution phase is truly decentralized; no commu-
nication is assumed to take place (other than specified via
actions and observations). The planning itself however, may
take place in an off-line phase and be centralized. This is
the assumption we make in this work. For a more detailed
introduction to Dec-POMDPs see, e.g., [10, 15].

2.2 Multiagent A*
We build upon GMAA*-Cluster [11], which in turn is

based on Multiagent A* (MAA*) [16]. These methods per-
form a search over partial, or past, joint policies ϕt that
specify the joint policy up to stage t: ϕt = (δ0,δ1, . . . ,δt−1),
where δi is the joint decision rule for the i-th stage. For such

a ϕt, we can compute a heuristic value V̂ (ϕt) by comput-

ing V 0...(t−1)(ϕt), the actual expected reward over the first t
stages, and adding a heuristic value H(ϕt) for the remaining
stages. When the heuristic is admissible, i.e., a guaranteed
overestimation, it is possible to perform standard A* search:
select the node q = 〈ϕt, v̂〉 with the highest v̂, which is ini-

tialized as v̂← V̂ (ϕt), and expand it by generating all child
nodes ϕt+1 = 〈ϕt ◦ δt〉 that can be formed by appending a
joint decision rule δt to ϕt. We assume that there is a total
ordering over nodes, such that ties in value v̂ are broken in
a consistent way.

A major source of complexity in MAA* is the full expan-
sion of a search node; the number of δt (that can be used to
form the children of a node ϕt at depth t in the search tree)
is doubly exponential in t, because the number of OHs grows
exponentially with t. In an attempt to counter this problem,
for the last stage t = h−1, MAA* generates the child nodes
one by one until a node is found with value equal to its par-
ent’s heuristic value. If this happens, no other siblings will
have to be generated.

Unfortunately, this method does not provide much lever-
age in practice, since it is unlikely that a child node will
have the same heuristic value as its parent and, even if one
does, there is no effective way to find such a child [15]. Also,
this does not address the complexity of intermediate stages.
Therefore Seuken and Zilberstein [15] argue that MAA*

“can at best solve problems whose horizon is only 1 greater
than those that can already be solved by näıve brute force
search.”

In this paper, we address these problems. That is, we pro-
vide efficient incremental expansion through a method that
is able to select the highest ranked child at all stages, not
just at the last stage. Moreover, we combine it with another
method that has brought scaling to MAA*: clustering of
histories.

Algorithm 1 GMAA*-IC [11]

1: vGMAA←−∞
2: ϕ0←(), v̂←+∞, q0←〈ϕ0, v̂〉
3: P←{q0}
4: repeat

5: q← Select(P) {q = 〈ϕt, v̂〉}
6: P.pop(q)
7: B(ϕt−1)←ϕt−1.CBG {Note ϕt = 〈ϕt−1 ◦ βt−1〉 }
8: B(ϕt)←ConstructExtendedCBG(B(ϕt−1),βt−1)
9: B(ϕt)←ClusterCBG(B(ϕt))
10: ΦExpand← Expand(Bt)

11: V̂ (ϕt+1)←V 0...t−1(ϕt) + V̂ (βt)
12: if last stage t = h− 1 then

13: if V (π) > vGMAA then

14: vGMAA←V (π) {found new lower bound}
15: π⋆←π
16: P.prune(vGMAA)
17: else

18: Q←{〈ϕ,V̂ (ϕ)〉 | ϕ ∈ ΦExpand,V̂ (ϕ) > vGMAA}
19: P.insert(Q)
20: until P is empty

2.3 Lossless incremental clustering
GMAA*-Cluster extends MAA* by 1) interpreting nodes

in the search tree as collaborative Bayesian games (CBGs)
and 2) clustering histories and thereby indirectly policies. In
particular, we consider the version that performs incremen-
tal clustering (GMAA*-IC). For a complete introduction to
GMAA* refer to [10], we concisely outline the main ideas.
As discussed, each node in the MAA* search tree corre-

sponds to a ϕt. This can be interpreted as corresponding
to a CBG [10]: given state distribution b0, for each ϕt it is
possible to construct a CBG B(ϕt), which consists of:

• the set of agents {1 . . . n}.

• A is the set of the joint actions.

• Θ, the set of their joint types. A joint type θ specifies
a type for each agent θ = 〈θ1, . . . ,θn〉.

• Pr(·), a probability distribution over joint types.

• Q̂, a heuristic payoff function Q̂(θ,a)→ R.

A type θi of an agent i represents the private information
it holds, so it corresponds to the history of actions and ob-

servations ~θ t
i . This means that Q̂ should provide a heuristic

estimate for each (~θt,a)-pair.
In a CBG, each agent uses a BG-policy βi that maps in-

dividual types to actions: βi(θi) = ai. A joint policy for the
CBG β corresponds to a joint decision rule: β ≡ δt with
heuristic value given by

V̂ (β) =
∑

~θt

Pr(~θt|ϕt
,b

0)Q̂(~θt
,β(~θt)), (1)

where β(~θt) = 〈βi(~θ
t
i)〉i=1...n denotes the joint action that

results from application of the individual BG-policies to the

individual AOH ~θ t
i specified by ~θt.

From this CBG perspective, when expanding a node all
β are returned and appended to ϕt to form the set of all
children:

ΦExpand =
{
〈ϕt ◦ β〉|β is a joint BG policy of B(ϕt)

}
.

The valuation of such a child ϕt+1 = 〈ϕt ◦ β〉 is given by

V̂ (ϕt+1) = V
0...(t−1)(ϕt) + V̂ (β), (2)

where now the expected immediate reward for stage t is

represented within the heuristic V̂ (β). It can be shown when

the heuristic Q̂ faithfully represents the expected immediate
reward, this reformulation is exactly equal to MAA* [10].

This reformulation of MAA* to work on CBGs does not
directly gain any computational advantage. GMAA*-IC

leverages the CBG representation of MAA* by clustering
individual types in a CBG in such a way that the solution
of the clustered CBG corresponds to a solution of the origi-
nal CBG. Clustering also gives an effective way to eliminate
histories with zero probability. Clustering does not always
reduce the CBG’s size, but when it does, it will result in
great computational savings, since the number of β is expo-
nential in the number of types. In particular, it is possible
to perform incremental clustering by bootstrapping from the
clustered CBG for the previous stage [11].

Algorithm 1 shows pseudo-code forGMAA*-IC. At every
iteration, Select returns the best-ranked q = 〈ϕt, v̂〉 from
the open list P. Subsequently, a CBG is constructed, clus-
tered and used to generate all child nodes ϕt+1. This process
continues until a full policy is found with value higher than
the upper bounds of any remaining partial policies.

3. INCREMENTAL EXPANSION
Recently, new methods for solving CBGs have been de-

veloped [7, 9] that can provide speedups of multiple orders
of magnitude over brute force search (enumeration). Un-
fortunately, MAA* has not been able to profit from these
methods: in order to guarantee optimality, it relies on ex-
pansion of all (child nodes corresponding to all) joint BG-
policies β for the intermediate stages.1 However, many of
the expanded child nodes may never be selected for further
expansion. The key observation is the following:

Observation 1. If we have a way to generate the children
in increasing heuristic order and that heuristic is admissible,
we do not have to expand all the children.

We discuss this in more detail below, starting with a formal-
ization of the relative heuristic values of two child nodes.

Lemma 1. Given two joint BG policies β,β′ for a CBG

Bt(ϕt), if V̂ (β) ≥ V̂ (β′), then for the corresponding child

nodes V̂ (ϕt+1) ≥ V̂ (ϕt+1′).

Proof. This holds directly by the definition of V̂ (ϕt)

V̂ (ϕt+1) = V
0...(t−1)(ϕt) + V̂ (β)

≥ V
0...(t−1)(ϕt) + V̂ (β′) = V̂ (ϕt+1′),

as given by (2).

It follows directly that, if for Bt(ϕt) we use a CBG solver
that can generate a sequence of policies β,β′, . . . such that

V̂ (β) ≥ V̂ (β′) ≥ . . .

then, for the sequence of corresponding children

V̂ (ϕt+1) ≥ V̂ (ϕt+1′) ≥

1For the last stage, clearly it is possible to only generate the
best child node of ϕh−1 by appending the optimal solution
of the CBG.

t t+ 1 t+ 2

ϕt

v̂

Legend:

a

a

a

a

b

b

b

d

c

c

β∗

β∗

β′

〈a, 7〉 7

〈b, 6〉
6

6

6

〈a, 6〉

〈a, 6〉

〈c, 4〉

〈c, 4〉

4

4

4

4
〈b, 4〉

〈b, 4〉

〈d, 5.5〉

5.5

〈a, 5.5〉

〈ϕt,v̂〉 nodes
in open list

Root node

New B(a), V̂=6

New B(b), V̂=4

Next solution of
B(a), V̂=5.55.5

Figure 1: Illustration of incremental expansion. On
the left we show the evolution of the open list. Past
joint policies ϕt are indexed by letters.

Exploiting this knowledge, we can expand only the first

child ϕt+1, compute its V̂ (ϕt+1) and set the value of the

parent node to q.v̂← V̂ (ϕt+1), since we know that all the

unexpanded siblings will have V̂ lower or equal to that. As
such, we can reinsert q into P to act as a placeholder for
all its non-expanded children. To ensure that children are
expanded before their parents, we break ties in a consistent
manner, ranking nodes for earlier stages t higher in case of
equal value.2 Fig. 1 illustrates incremental expansion.
We integrate incremental expansion in GMAA*-IC re-

sulting in GMAA* with incremental clustering and expan-
sion (GMAA*-ICE). It performs an A* search over nodes
q = 〈ϕt, v̂,PH〉, where PH is a boolean indicating whether
the node is a placeholder. At every iteration, the heuristi-
cally highest ranked q is selected from an open list P and
expanded. When a new best full joint policy is found, the
lower bound vGMAA is updated. Each time a new CBG is
constructed, it is built by extending the CBG for the par-
ent node and then applying lossless clustering. However,
rather than expanding all children, GMAA*-ICE requests
only the next solution β of an incremental CBG solver. This
next CBG solution β is then used to construct a single child
ϕt+1 = 〈ϕt ◦ β〉.
For the incremental CBG solver, we use the BaGaBaB al-

gorithm [9], which performs a second (nested)A* search, but
now over (partially specified) CBG policies.3 TheBaGaBaB

solver for ϕt is initialized with lower bound

vCBG = vGMAA − V
0...(t−1)(ϕt), (3)

2Furthermore, experiments confirmed that the overhead of
potentially expanding a parent first is negligible.
3In principle GMAA*-ICE can use any CBG solver that
is able to incrementally deliver all β in descending order of

V̂ (β). However, there are not many such CBG solvers that
can avoid enumerating all β before providing the first result.

Algorithm 2 GMAA*-ICE

1: vGMAA←−∞
2: ϕ0←(), v̂←+∞, PH← false, q0←〈ϕ0, v̂,PH〉

3: PIE←{q0}
4: repeat

5: q← Select(PIE) {q = 〈ϕt, v̂,PH〉}

6: PIE.pop(q)
7: if PH then

8: B(ϕt)←ϕt.CBG {reuse stored CBG}
9: else

10: ConstructExtendedBGandSolver(ϕt) {(omitted)}

11: vCBG = vGMAA − V 0...(t−1)(ϕt)
12: v̄CBG = +∞
13: if last stage t = h− 1 then

14: v̄CBG = V̂ (ϕh−1)− V 0...(h−2)(ϕh−1)

15: 〈βt, V̂ (βt)〉←B(ϕt).Solver.NextSolution(vCBG,v̄CBG)
16: if not βt then

17: {fully expanded: no solution s.t. V (βh−1) ≥ vCBG}
18: delete q and continue {(i.e., goto line 5)}
19: ϕt+1←〈ϕt ◦ βt〉

20: V̂ (ϕt+1)←V 0...t−1(ϕt) + V̂ (βt)
21: if last stage t = h− 1 then

22: if V (π) > vGMAA then

23: vGMAA←V (π) {found new lower bound}
24: π⋆←π
25: PIE.prune(vGMAA)
26: else

27: q′←〈ϕt+1, V̂ (ϕt+1), false〉

28: PIE.insert(q′)

29: q←〈ϕt, V̂ (ϕt+1), true〉 { Update parent node q }

30: PIE.insert(q)

31: until PIE is empty

and, in case of the last stage t = h− 1, upperbound

v̄CBG = V̂ (ϕh−1)− V
0...(h−2)(ϕh−1), (4)

since

V̂ (ϕh)− V
0...(h−2)(ϕh−1) = V̂ (β)

V̂ (ϕh−1)− V
0...(h−2)(ϕh−1) ≥ V̂ (β) = V (δh−1|b0,ϕh−1).

This can be used to stop expanding when we find a lower
bound equal to the upper bound v̄CBG = V (β), as in the

original A*. Note that V̂ (β) is only a bound on values when

solving the last stage: the last equality holds if Q̂(~θh−1,a) =

R(~θh−1,a), i.e., the heuristic payoff function for the CBG re-
flects the actual expected reward. This means that the up-
per bound can only be used in solving the last-stage CBGs.
Also note that each time when asking BaGaBaB for a
next solution, vCBG is reset by re-evaluating (3), because
vGMAA may have changed since the last solution was deliv-
ered. Then it continues searching (by selecting the heuris-
tically best-ranked node from its own internal open list and
proceeding as normal).

Algorithm 2 shows the pseudo-code for GMAA*-ICE.
The main differences with Algorithm 1 are seen from line 7
to line 19. In this section, the algorithm first determines
if a placeholder is being used and either reuses the current
CBG solver or constructs a new one. Then, new bounds are
calculated and the next solution is obtained, removing the
node when all children with value above the lower bound
have been expanded. Lastly, only a single child is generated
rather than expanding all children as in Algorithm 1.

4. THEORETICAL GUARANTEES
We shall now prove some properties of GMAA*-ICE. We

say that two search algorithms are search-equivalent if they
select exactly the same set of nodes to expand in the search
tree. That is, that they Select the same q for expansion on
line 5 of Algorithm 1 and 2 (but the set of expanded nodes
can be different). We will show that the IC and ICE variants
are search-equivalent. To do so, we will talk about equiva-
lence of the open lists maintained. The open list P main-
tained by IC only contains non-expanded nodes q. That of
ICE, PIE, contains both non-expanded nodes q and place-
holders (previously expanded nodes), q̄. We use Q and Q̄ to
denote the respective (ordered) subsets of PIE. We think of
these open lists as ordered sets of heuristic values and their
associated nodes.

Definition 1. P and PIE are equivalent, P ≡ PIE, when:

1. Q ⊆ P.

2. The q’s have the same ordering: P.remove(P \Q) = Q.
(A.remove(B) removes the elements of B from A with-
out changing A’s ordering.)

3. Nodes not present in PIE instead have a placeholder,
∀q = 〈ϕt, v̂q, false〉 ∈ (P \Q) : ∃q̄ = 〈ϕt−1, v̂q̄, true〉 ∈
Q̄ such that: q̄ is the parent of q (ϕt = 〈ϕt−1 ◦ β〉),
and q̄ is more highly ranked: v̂q̄ ≥ v̂q.

4

4. There are no other placeholders.

Let us write IT-IC(P) and IT-ICE(PIE) for one iteration of
the respective algorithms. Let IT-ICE* denote the operation
that repeats IT-ICE as long as a placeholder was selected (so
it ends when a q is expanded).

Lemma 2. If P ≡ PIE, then executing IT-IC(P) and IT-
ICE*(PIE) will lead to new open lists that again are equiva-
lent: P ′ ≡ PIE′.

Proof. When IT-ICE* selects a placeholder q̄, it will
generate child q′ that was already present in P (due to prop-
erty 3 and 4 of def. 1) and insert it at the proper location,
thereby preserving properties 1 and 2.5 If there are remain-
ing unexpanded children of q̄, IT-ICE* will reinsert q̄ with
an updated heuristic value q̄.v̂← q′.v̂ which is guaranteed
to upper bound the value of unexpanded siblings q′′ since

q′.v̂ = V̂ (q′.ϕ) ≥ V̂ (q′′.ϕ) = q′′.v̂ (preserving properties 3
and 4).
When IT-ICE* finally selects a non-placeholder q, it is

guaranteed to be the same q as selected by IT-IC (due to
property 1 and 2). Expansion in ICE will generate 1 child q′

(again, inserted at the same relative location as in IC) and
insert placeholder q̄ = 〈q.ϕ, q′.v̂, true〉 for the other siblings
q′′ (again preserving properties 3 and 4).

Theorem 1. GMAA*-ICE and GMAA*-IC are search-
equivalent.

4Again, we assume a total ordering on the nodes such that
ties in value are broken consistently (and, in this particular
case, such that on equality v̂q̄ = v̂q, the child is ranked higher
to ensure it is expanded before its parent).
5This is the same location as IT-IC, as heuristic values are
independent of the search process, and ties are dealt with
consistently: two ϕt with same v̂ are always ordered the
same (in the open list and by the node expansion).

Proof. This follows directly from the proof of Lemma 2:
Both algorithms initialize with the same (equivalent) open
list and therefore maintain equivalent open lists throughout
search. At each point IT-ICE(PIE) will either select a q̄ =
〈ϕ, v̂, true〉—then IC also expanded a node for ϕ—or a q.
In the last case, because of property (2) of def. 1 we know
that the same q is selected by IT-IC(P).

Note that Theorem 1 does not mean that the run time
and space requirements of GMAA*-ICE and GMAA*-IC

are identical: for each expansion, GMAA*-ICE will only
generate one child node to be stored on the open list versus
a number of child nodes that is, in the worst case, doubly
exponential in the depth of the selected node.6 On the other
hand, GMAA*-ICE may select a placeholder for further
expansion (in the worst case all child nodes will still have to
be generated).

We say that a search algorithm is complete if it searches
until it finds an optimal solution.

Corollary 1. When using a heuristic of the form

Q̂(~θt
,a) = E[R(s,a) | ~θt] +E[V̂ (~θt+1) | ~θt

,a], (5)

where V̂ (~θt+1) ≥ Qπ∗(~θt+1,π∗(~θt+1)) is an overestimation
of the value of an optimal joint policy π∗, GMAA*-ICE is
complete.

Proof. Under the stated conditions, GMAA*-IC is com-
plete [10, 11]. Since GMAA*-ICE is search equivalent to
GMAA*-IC, it is also complete.

5. HEURISTIC REPRESENTATION
As with any heuristic search method, the effectiveness of

MAA* and variations depends on a high-quality admissi-
ble heuristic function. First we will briefly review existing
heuristics, after which we introduce new, more scalable, rep-
resentations.

5.1 Existing Heuristics
One way to obtain a heuristic Q̂(θ,a) is via solving the

underlying MDP, known as QMDP [8]. Similar to the un-
derlying MDP, one can define the underlying POMDP of
a Dec-POMDP and its solution can be used as a heuris-
tic, called QPOMDP [13, 16]. QPOMDP computes a value

Qt
P(b

~θt

,a) which can directly be used as a heuristic:

Q̂P(~θ
t
,a) ≡ Q

t
P(b

~θt

,a). (6)

For a finite horizon, there are two approaches to comput-
ing QPOMDP. First, it is possible to construct the ‘belief
MDP tree’: the tree of all joint beliefs (induced by all joint
AOHs, illustrated in Fig. 2(a)(left)). This is conceptually
simple: starting with b0 corresponding to the empty joint

action-observation history ~θt=0, for each a and o compute

the resulting ~θt=1 and corresponding belief b
~θ1

and continue
recursively. Given this tree, it is possible to compute values
for all the nodes by standard dynamic programming.

Second, it is possible to apply vector-based POMDP tech-
niques (Fig. 2(a)(middle)) [6]. The Q-value function for a
stage Qt

P(b,a) can be represented using a set of vectors for

6 When a problem allows clustering, the number of child
nodes grows less dramatically.

t = 0

t = 1

t = 2

t = 3

Tree Vector Hybrid

(a) Comparison of Q representations.

1 2 3 4 5 6
10

0

10
5

10
10

Horizon

M
e

m
o

ry
 r

e
q

u
ir
e

d

Tree
Vector
Hybrid

(b) Dec-Tiger.

1 2 3 4 5 6
10

0

10
5

10
10

Horizon

M
e

m
o

ry
 r

e
q

u
ir
e

d

Tree
Vector
Hybrid

(c) FireFighting.

1 2 3 4 5 6 7 8 9
10

0

10
10

10
20

Horizon

M
e
m

o
ry

 r
e
q
u
ir
e
d

Tree
Vector
Hybrid

(d) Hotel 1.

1 2 3 4 5 6 7 8 9 10
10

0

10
5

10
10

10
15

Horizon

M
e

m
o

ry
 r

e
q

u
ir
e

d

Tree
Vector
Hybrid

(e) Recycling Robots.

Figure 2: Hybrid representations. (a) Comparison
of different representations of heuristic Q functions.
(b)-(e) The number of real numbers stored for dif-
ferent representations of Q

BG
.

each joint action Vt = {Vt
1, . . . ,V

t
|A|}. Qt

P(b,a) is then de-
fined as the maximum inner product:

Q
t
P(b,a) ≡ max

vt
a
∈Vt

a

b · vta.

Given Vh−1, the vector representation of the last stage (one
vector for each joint action), it is possible to compute Vh−2,
etc. In order to limit the growth of the number of vectors
needed to represent the stages, dominated vectors may be
pruned. It is well-known that QMDP is an upper bound to
the POMDP value function. Therefore, QPOMDP provides a
tighter upper bound to Q∗ than QMDP. However, it is also
more costly to compute and store: both approaches may
need to store a number of values exponential in h.
Finally, a third heuristic commonly used in MAA* is QBG:

the value function that results from assuming 1-step-delayed
communication. Such value functions can also be repre-
sented using vectors [5, 10], so the same two methods of
computation apply here. However, note that QBG is tighter
than QPOMDP: Q

∗ ≤ QBG ≤ QPOMDP ≤ QMDP [10].

5.2 Hybrid Representations
Previous research indicated that the upper bound pro-

vided by QMDP is often too loose for effective heuristic search
in MAA* [10]. However, for tighter heuristics such as QBG

or QPOMDP the space needed to store these heuristics grows
exponentially with the horizon, as explained before.
In practice, we experienced that the exponential space re-

quirements to compute the heuristics become a bottleneck

Algorithm 3 Compute Hybrid Q̂ with minimum size.

1: Qh−1←{R1, . . . ,R|A|} {vector representation of last stage}
2: z←|A| × |S| {the size of the |A| vectors}
3: for t = h− 2 to 0 do

4: y←|~Θt| × |A| {size of AOH representation}
5: if z < y then

6: V ←VectorBackup(Qt+1)
7: V ′←Prune(V)
8: Qt←V ′

9: z←|V ′| × |S|
10: else

11: Qt←TreeBackup(Qt+1) {From now on z ≥ y}

regarding the problems we can solve. To mitigate this prob-
lem we introduce heuristics with a hybrid representation,
as illustrated in Fig. 2(a)(right). The key insight is that
the exponential growth of the discussed representations is
in opposite directions. Therefore we can use the low-space-
complexity side of both representations: the later stages use
a vector-based representation (and later stages have fewer
vectors), while the earlier stages use a history-based rep-
resentation (and earlier stages have fewer histories). Al-
gorithm 3 shows how a minimally-sized representation can
easily be computed.

Fig. 2(b)-(e) illustrate the power of combining vector with
tree-based representations, by plotting the memory require-
ments (in terms of number of parameters) of the “Tree”,
the “Vector” (QPOMDP), and the “Hybrid” representation for
QBG, where missing “Vector” bars indicate those represen-
tations grew beyond limits. The hybrid representation is
computed following Algorithm 3, and the vector-based QBG

representation is computed using a variation of Incremental
Pruning. The pruning performance depends on the problem
and the complexity of the value function, which can increase
suddenly, as for instance happens in Fig. 2(d). We see that
for several benchmark problems the hybrid representation
allows for very significant savings in memory space, allow-
ing us to compute tight heuristics for longer horizons.

6. EXPERIMENTS
We performed an empirical evaluation ofGMAA*-ICE by

comparing to GMAA*-IC. This way we are able to assess
the impact of the proposed incremental expansion without
additional differences. Moreover, GMAA*-IC is currently
(one of) the fastest optimal solvers for finite-horizon Dec-
POMDPs.7 Unless noted otherwise, we used QBG with a
hybrid representation. We tested on a suite of benchmark
problems from literature [11], using discount factor γ = 1.0
for all problems.8 GMAA*-IC uses a brute-force solver that
enumerates and evaluates all solutions (as in the original
MAA*), while GMAA*-ICE uses BaGaBaB [9] (with joint
types ordered according to increasing probability). Experi-
ments were run on an Intel iCore5 CPU running Linux, and
we limited each process to 2Gb of RAM and a maximum
computation time of 3,600s. Reported CPU-times are av-
eraged over 10 independent runs and have a resolution of
0.01s. They concern only the MAA* search process, since
computation of the heuristic is the same for both methods

7The method proposed in [2] effectively focuses on state
space reachability in problem structure.
8All problem definitions are available at http://www.isr.
ist.utl.pt/~mtjspaan/decpomdp.

h V ∗ TIC(s) TICE(s)
Dec-Tiger

2 −4.000000 ≤ 0.01 ≤ 0.01
3 5.190812 ≤ 0.01 ≤ 0.01

4 4.802755 0.27 ≤ 0.01

5 7.026451 21.03 0.02
6 10.381625 − 46.43
7 − ∗

FireFighting 〈nh = 3,nf = 3〉
2 −4.383496 ≤ 0.01 ≤ 0.01

3 −5.736969 0.11 0.10
4 −6.578834 950.51 1.00
5 −7.069874 − 4.40
6 −7.175591 0.08 0.07
7 # #

GridSmall
2 0.910000 ≤ 0.01 ≤ 0.01

3 1.550444 0.10 ≤ 0.01

4 2.241577 1.77 ≤ 0.01

5 2.970496 − 0.02
6 3.717168 − 0.04
7 # #

h V ∗ TIC(s) TICE(s)
Hotel 1

2 10.000000 ≤ 0.01 ≤ 0.01
3 16.875000 ≤ 0.01 ≤ 0.01

4 22.187500 ≤ 0.01 ≤ 0.01

5 27.187500 ≤ 0.01 ≤ 0.01
6 32.187500 ≤ 0.01 ≤ 0.01
7 37.187500 ≤ 0.01 ≤ 0.01
8 42.187500 ≤ 0.01 ≤ 0.01
9 47.187500 0.02 ≤ 0.01

10 # #
Recycling Robots

5 16.486000 ≤ 0.01 ≤ 0.01

15 47.248521 ≤ 0.01 ≤ 0.01

18 56.479290 ≤ 0.01 ≤ 0.01

20 62.633136 ≤ 0.01 ≤ 0.01
30 93.402367 0.08 0.05
40 124.171598 0.42 0.25
50 154.940828 2.02 1.27
60 185.710059 9.70 6.00
70 216.479290 − 28.66
80 − −

h V ∗ TIC(s) TICE(s)
Cooperative Box Pushing

2 17.600000 ≤ 0.01 ≤ 0.01

3 66.081000 0.11 ≤ 0.01

4 98.593613 ∗ 313.07
5 # #

BroadcastChannel
5 4.790000 ≤ 0.01 ≤ 0.01

10 9.290000 ≤ 0.01 ≤ 0.01
20 18.313228 ≤ 0.01 ≤ 0.01
25 22.881523 ≤ 0.01 ≤ 0.01
30 27.421850 ≤ 0.01 ≤ 0.01
50 45.501604 ≤ 0.01 ≤ 0.01

53 48.226420 ≤ 0.01 ≤ 0.01

100 90.760423 ≤ 0.01 ≤ 0.01
250 226.500545 0.06 0.07
500 452.738119 0.81 0.94
600 543.228071 11.63 13.84
700 633.724279 0.52 0.63
800 − −
900 814.709393 9.57 11.11

1000 − −

Table 1: Experimental results comparing the computation times of GMAA*-IC (TIC) and GMAA*-ICE
(TICE), using the hybrid Q

BG
representation. Memory limit violations are indicated by “−” while time limit

overruns are shown as “∗”. Furthermore, “#” indicates computing the heuristic exceeded memory or time
limits. Bold entries highlight results for which no previous solution was known in literature. Boxed entries
in the TIC and TICE column indicates the maximum planning horizon that can be solved by GMAA*-IC resp.
GMAA*-ICE when using the Q

MDP
heuristic, given identical memory and time limits.

and can be amortized over multiple runs.9

The main results are listed in Table 1. It clearly shows
that incremental expansion combined with the hybrid rep-
resentations allows for significant improvements over the
state of the art: for the vast majority of problems tested
we provide results for longer horizons than any previously
known (the bold entries). Thus, incorporating the hybrid
representation into GMAA*-IC greatly increases its scala-
bility, while adding the incremental expansion of GMAA*-
ICE results in even more performance improvements. When
comparing against GMAA*-IC, for Dec-Tiger we see that
for h = 5 GMAA*-ICE achieves a speedup of 3 orders of
magnitude, and it is also able to compute a solution for
h = 6, unlike GMAA*-IC. For GridSmall we see a large
speedup for h = 4 and very fast solutions for h = 5, 6, where
GMAA*-IC runs out of memory. Similar positive results
are obtained for Cooperative Box Pushing and FireFighting.
An interesting counter-intuitive behavior can be observed for
FireFighting, h = 6, which could be solved much faster than
h = 5. Analysis reveals that the CBG instances encountered
during the h = 6 search happen to cluster much better than
the CBGs in the h = 5 search, which is possible because the
heuristics vary with the horizon. Also for BroadcastChannel
we can see that the search process is not necessarily mono-
tonic in the planning horizon.
Due to the hybrid representation we can compute QBG

heuristics for all these problems and horizons, and as a con-
sequence our results, also for GMAA∗-IC, are much better.
Previous work often had to resort to QMDP for high hori-

9The heuristics’ computation time ranges from less than a
second to many hours (for high h in some difficult problems).

zons and/or large problems [11]. For instance, for Hotel 1
h = 5 a tree-based QBG representation (as used in [11])
would already occupy 29Gb. The boxed entries in Table 1
show the limits of running GMAA*-IC and GMAA*-ICE

using QMDP instead of QBG: in most of these problems we
can reach longer horizons with QBG. Only for FireFighting
GMAA*-ICE with QMDP can compute solutions for higher h
than possible with QBG (hence the missing box). In fact, the
V ∗ for h > 6 are equal to the one for h = 6, as the optimal
joint policy is guaranteed to extinguish all fires in 6 time
steps, after which no non-zero rewards can be accrued.

The efficacy of a hybrid representation can be clearly
seen for problems like GridSmall, Cooperative Box Pushing,
FireFighting and Hotel 1 (for the latter two see Fig. 2(c)
resp. 2(d)), where neither the tree nor the vector repre-
sentation is able to provide a compact QBG heuristic for
longer horizons. Apart from FireFighting, for these prob-
lems computing and storing QBG (or another tight heuristic)
for longer horizons forms the bottleneck for scaling further.

As a final note regarding Table 1, we point out that only
on the BroadcastChannel problem GMAA*-IC is (slightly)
faster than GMAA*-ICE. Because this problem exhibits
clustering to a single joint type [11], the overhead of incre-
mental expansion does not pay off (cf. footnote 6).

Summarizing our main results, we can conclude that 1)
GMAA*-ICE outperformsGMAA*-IC leading to solutions
of longer horizons in many problems, 2) both methods ben-
efit from the improved heuristic representation, 3) in several
problems computation and representation of the heuristic is
the bottleneck that prevents from scaling further. The last
point implies that our method may scale even further when

0 1 2 3 4
10

0

10
5

10
10

t

N
o
d
e
s
 a

t
d
e
p
th

 t

Dec−Tiger, h=6 − Full Exp.

Dec−Tiger, h=6 − Inc. Exp.

GridSmall, h=6 − Full Exp.

GridSmall, h=6 − Inc. Exp.

FireFighting, h=5 − Full Exp.

FireFighting, h=5 − Inc. Exp.

Figure 3: Number of expanded partial joint policies
ϕt for intermediate stages t = 0, . . . ,h− 2.

the computation of the heuristic is further improved.
Finally, we also investigated the impact of incremental

expansion in terms of the number of nodes that are actually
expanded for intermediate stages t = 0, . . . ,h − 2. Fig. 3
shows the number of nodes expanded in GMAA*-ICE and
the number that would be expanded for GMAA*-IC (which
can be easily computed as they are search-tree equivalent).
There is a clear relation between the results from Fig. 3 and
Table 1. For example, it clearly illustrates why GMAA*-IC

runs out of memory on GridSmall h = 6. The plots confirm
our initial hypothesis that in practice only a small number
of child nodes are being queried.

7. CONCLUSIONS & FUTUREWORK
Decentralized POMDPs offer a rich model for multiagent

coordination under uncertainty. Optimal solution methods
for Dec-POMDPs are of great interest; they are of practi-
cal value for smaller or decomposable problems and lie at
the basis for most successful approximate methods [4, 14,
17]. In this paper, we advance the state of the art by in-
troducing an effective method for incremental expansion of
nodes in the search tree. We proved that the resulting al-
gorithm, GMAA*-ICE, is search-equivalent to GMAA*-IC

and therefore complete. A new bottleneck, the amount of
space needed for representation of the heuristic, was ad-
dressed by introducing representations that are a hybrid be-
tween tree-based and vector-based representations.
We demonstrated our approach experimentally with and

without incremental expansion, showing that its effect is
complementary to clustering of histories. With just the
new heuristic representation, optimal plans could be found
for larger horizons than any known previous work for four
benchmarks. In one case, horizons that are over an order of
magnitude larger could be reached. By exploiting incremen-
tal expansion, GMAA*-ICE achieves further improvements
in scalability. The combination of the hybrid representation
and incremental expansion provides a powerful method for
optimally solving DEC-POMDP over longer horizons.
Some possible extensions of this work the following. First,

to quickly compute good lower bounds GMAA*-ICE may
use weighted heuristics, which were of little practical value
in the original MAA* as expanding single nodes was too
expensive [15]. Second, we may consider improving the cur-
rent CBG solver or try to adapt other CBG solvers, e.g., [7].
Third, incremental solvers for graphical CBGs may allow
for further scaling of optimal solutions of Dec-POMDPs with

multiple agents. Finally, future work should further consider
improved heuristics and methods of computation, which can
allow GMAA*-ICE to scale even further.

Acknowledgments

We would like to thank Anthony Cassandra for his pomdp-
solve code (used for vector pruning), and the reviewers for
their insightful suggestions. This work was funded in part by
Fundação para a Ciência e a Tecnologia (ISR/IST plurian-
nual funding) through the PIDDAC Program funds and was
supported by projects PTDC/EEA-ACR/73266/2006 and
CMU-PT/SIA/0023/2009 (the latter under the Carnegie
Mellon-Portugal Program). Research supported in part by
AFOSR MURI project #FA9550-09-1-0538.

8. REFERENCES
[1] M. Allen and S. Zilberstein. Agent influence as a predictor

of difficulty for decentralized problem-solving. In AAAI,
2007.

[2] C. Amato, J. Dibangoye, and S. Zilberstein. Incremental
policy generation for finite-horizon DEC-POMDPs. In
ICAPS, 2009.

[3] D. S. Bernstein, R. Givan, N. Immerman, and
S. Zilberstein. The complexity of decentralized control of
Markov decision processes. Mathematics of Operations
Research, 27(4):819–840, 2002.

[4] R. Emery-Montemerlo, G. Gordon, J. Schneider, and
S. Thrun. Approximate solutions for partially observable
stochastic games with common payoffs. In AAMAS, 2004.

[5] K. Hsu and S. Marcus. Decentralized control of finite state
Markov processes. IEEE Transactions on Automatic
Control, 27(2):426–431, Apr. 1982.

[6] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra.
Planning and acting in partially observable stochastic
domains. Artificial Intelligence, 101(1-2):99–134, 1998.

[7] A. Kumar and S. Zilberstein. Point-based backup for
decentralized POMDPs: Complexity and new algorithms.
In AAMAS, 2010.

[8] M. L. Littman, A. R. Cassandra, and L. P. Kaelbling.
Learning policies for partially observable environments:
Scaling up. In ICML, 1995.

[9] F. A. Oliehoek, M. T. J. Spaan, J. Dibangoye, and
C. Amato. Heuristic search for identical payoff Bayesian
games. In AAMAS, 2010.

[10] F. A. Oliehoek, M. T. J. Spaan, and N. Vlassis. Optimal
and approximate Q-value functions for decentralized
POMDPs. Journal of Artificial Intelligence Research,
32:289–353, 2008.

[11] F. A. Oliehoek, S. Whiteson, and M. T. J. Spaan. Lossless
clustering of histories in decentralized POMDPs. In
AAMAS, 2009.

[12] Z. Rabinovich, C. V. Goldman, and J. S. Rosenschein. The
complexity of multiagent systems: the price of silence. In
AAMAS, 2003.

[13] M. Roth, R. Simmons, and M. Veloso. Reasoning about
joint beliefs for execution-time communication decisions. In
AAMAS, pages 786–793, 2005.

[14] S. Seuken and S. Zilberstein. Memory-bounded dynamic
programming for DEC-POMDPs. In IJCAI, 2007.

[15] S. Seuken and S. Zilberstein. Formal models and algorithms
for decentralized decision making under uncertainty.
Autonomous Agents and Multi-Agent Systems,
17(2):190–250, 2008.

[16] D. Szer, F. Charpillet, and S. Zilberstein. MAA*: A
heuristic search algorithm for solving decentralized
POMDPs. In UAI, 2005.

[17] F. Wu, S. Zilberstein, and X. Chen. Online planning for
multi-agent systems with bounded communication.
Artificial Intelligence, 175(2):487–511, 2011.

