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Abstract—Network robot systems (NRS) provide many scien-
tific and technological challenges, given that robots interact with
each other as well as with sensors present in the environment to
accomplish certain tasks. In this work, we consider an essential
problem in NRS, namely how to perform task planning given
the limitations both in on-board sensing as well as in the
environment’s sensors. Partially observable Markov decisions
processes (POMDPs) form an attractive framework to address
planning in the uncertain environments that typify NRS. We
show how to model a typical cooperative perception task in a
NRS, namely tracking and classifying people, and we present
experiments that show how the proposed approach results in
an effective interplay between robot and environment sensors.

I. INTRODUCTION

The recently growing interest in Network Robot Systems

(NRS) is driven by contributions from the sensor networks

and the cooperative robotics communities. A NRS is usually

thought to be a distributed system which consists of a

multitude of networked environment sensors and actuators,

including robots and possibly people. They cooperate among

themselves to perform given tasks, and are capable of inter-

acting with the environment through the use of perception

and action [1]. In this work we present a formal approach

for planning for robots in NRS, explicitly modeling the

limitations and noise for each of the environment’s sensors

as well as the robots’ on-board sensors. In particular, we will

consider a tracking and classification task, in which a robot

classifies a target in cooperation with a set of fixed cameras.

Sensor networks consist of a (usually large) number of

sensor devices which measure their environment with the

goal of obtaining an integrated view of an area larger than

can be covered by a single sensor. In sensor networks

typically no actuation is involved, while in NRS decision-

making is explicitly handled, so as to select actions to be per-

formed by network devices, robots, and/or people. Decision-

making in NRS may range from dispatching mobile robots

to detected events (for instance, a fire or an intruder) so as to

help handling them, to improving the accuracy or resolution

of the system’s perception of a given event or activity.

The latter is an instance of Active Cooperative Perception

(ACP) [2], i.e., a scenario in which a (set of) robot(s) actively

selects actions taking into account their effects on its sensors,

in particular to improve system performance. Depending on
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the system’s task, performance can for instance be expressed

as accuracy or confidence degree in detection of an event.

In this paper we propose to handle ACP in NRS using

decision-theoretic methods, in particular partially observable

Markov decision processes (POMDPs) [3]. Such methods

provide a means to quantify and predict results from prob-

abilistic models of decision-making under uncertainty. In

particular, POMDPs model imperfect sensors as well as

uncertainty in action effects, both of which are important

features when planning for robots in real-world scenarios.

POMDPs provide a solid mathematical framework which

can model different ACP problems within NRS, such as

optimization of target tracking accuracy or optimal event

detection (given event priority and detection uncertainty).

In previous work, we considered a POMDP-based ap-

proach to sensor selection in sensor networks [4], another

type of decision-making under uncertainty problem. Here we

focus on optimizing detection and classification of people,

by combining a network of surveillance cameras with robot-

mounted sensors. We discuss how POMDPs can be applied

in such scenarios, and present a POMDP-based framework,

which can serve as an example for many ACP tasks in

NRS. The key benefit is that we can reason about beliefs

over certain features in the environment, without leaving

the classic POMDP framework. We present experiments in

scenarios in which a robot has to classify one or more people,

and which show that the proposed approach results in an

effective interplay between environment and robot sensors.

Applications of decision-theoretic techniques to active

sensing have been reported, although not always explicitly

modeled as POMDPs, including methods for active robot

localization using information gain [5], multi-modal sensor

scheduling [6], and locating objects in large images of office

environments [7]. Other related work using POMDPs has

been presented: in [8] a POMDP framework for active sens-

ing is described, in which the actions are using a particular

sensor (with an associated cost) or outputting a classification

label. In [9] a related setting is considered, but coupled with

the training of Hidden Markov Model classifiers. However,

only myopic solutions are under consideration. Our work

applies non-myopic planning techniques, and considers real-

world scenarios backed up by NRS experiments.

The paper is organized as follows: first Section II presents

some background on POMDPs. In Section III we discuss

POMDP models for active perception, and in Section IV

we introduce the framework for tracking and classification.

Results from several experiments are presented in Section V

while Section VI concludes and discusses future work.



II. BACKGROUND ON POMDPS

We will briefly introduce the POMDP model, while a

more elaborate description is provided in [3], for instance. A

POMDP models the interaction of an agent with a stochastic

and partially observable environment, and it provides a rich

framework for acting optimally in such environments.

A POMDP assumes that at any time step the environment

is in a state s ∈ S, the agent takes an action a ∈ A and

receives a reward r(s, a) from the environment as a result of

this action, while the environment switches to a new state s′

according to a known stochastic transition model p(s′|s, a).
After transitioning to a new state, the agent perceives an

observation o ∈ O, that may be conditional on its action,

which provides information about the state s′ through a

known stochastic observation model p(o|s′, a). The agent’s

task is defined by the reward it receives at each time step t

and its goal is to maximize its expected long-term reward

E[
∑h

t=0
γtr(st, at)], where h is the planning horizon, and

γ is a discount rate, 0 ≤ γ < 1.
Given the transition and observation model the POMDP

can be transformed to a belief-state MDP: the agent summa-

rizes all information about its past using a belief vector b(s).
The initial state of the system is drawn from the initial

belief b0, and every time the agent takes an action a and

observes o, its belief is updated by Bayes’ rule:

bo
a(s′) =

p(o|s′, a)

p(o|a, b)

∑

s∈S

p(s′|s, a)b(s), (1)

where p(o|a, b) =
∑

s′∈S p(o|s′, a)
∑

s∈S p(s′|s, a)b(s) is a

normalizing constant. Solving POMDPs optimally is hard,

and thus algorithms that compute approximate solutions are

used. Recent years have seen much progress in approximate

POMDP solving which can be used in this paper, see for

instance [10], [11], [12]. Furthermore, if a value function has

been computed off-line, the on-line execution of the policy

it implements is computationally cheap.

III. POMDP MODELS FOR ACTIVE PERCEPTION

A belief update scheme is the backbone of many robot

localization techniques, in which case the state is the robot’s

position. In our case however, the state will also be used to

describe the location of people or events in the environment,

as well as some of their properties. From each sensor we will

need to extract a probabilistic sensor model to be plugged in

the observation model. Furthermore, we need to construct the

transition model based on the robot’s available actions. Both

models can either be defined by hand, or can be obtained

using machine learning techniques, for instance [5].

From the perspective of active perception, as the belief is

a probability distribution over the state space, it is natural

to define the quality of information based on it. We could

use the belief to define a measurement of the expected

information gain when executing an action. For instance, a

common technique is to compare the entropy of a belief bt

at time step t with the entropy of future beliefs, for instance

at t + 1. If the entropy of a future belief bt+1 is lower

than bt, the robot has less uncertainty regarding the true

state of the environment. Assuming that the observation

models are correct (unbiased etc), this would mean we gained

information. Given the models, we can predict the set of

beliefs {bt+1} we could have at t + 1, conditional on the

robot’s action a. If we adjust the POMDP model to allow for

reward models that define rewards based on beliefs instead

of states, i.e., r(b, a), we can define a reward model based

on the belief entropy.

However, a reward model defined over beliefs significantly

raises the complexity of planning, as the value function

will no longer be piecewise linear and convex. Such a

compact representation is being exploited by many optimal

and approximate POMDP solvers. Instead, we opt to add

classification actions to the problem definition, which al-

low for rewarding the system to obtain a certain level of

knowledge regarding particular features of the environment.

In this way, we achieve a similar objective as defining reward

functions over belief entropy, while remaining in the classic

POMDP framework.

IV. TRACKING AND CLASSIFICATION WITH POMDPS

First we will detail our problem definition, followed by

the POMDP models we use to tackle the problem.

A. Problem definition

We define our problem as creating a classifier system

which decides whether a detected event is one of interest. For

instance, in a surveillance task, an event of interest might be

to detect a particular person using visual sensors, by running

face detection algorithms. We consider an environment with

mobile and fixed sensors, where mobile sensors increase the

observability of the system at a particular location but, on

the other hand, they have an associated cost of moving.

Furthermore, robot-mounted sensors will take time to arrive

a particular destination, and are a scarce resource: given

a limited number of robots available, the system needs to

choose carefully when to send a robot where. Given these

circumstances, in order to successfully optimize its behavior,

the system needs to consider the sequential decision making

problem, while at the same time trading off benefits and

costs. POMDP planners provide these features, allowing the

system to plan ahead and anticipate the occurrence of future

events.

B. Models

The POMDP model is represented as a two-stage dynamic

Bayesian network, which allows us to use solvers that

exploit (context-specific) independence between variables,

for instance [11]. We will consider a scenario in which a

NRS classifies visual features of a person, though our model

is general, and can be adapted to other situations with the

proper changes in the models. We consider discretized time

and take decisions at predefined intervals. Fig. 1 depicts

a graphical representation of the model for time steps t

and t + 1.
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Fig. 1: Two-stage dynamic Bayesian network representation

of the proposed POMDP model. In this figure for simplicity

we assume m ≡ k, i.e., each person has only one feature.

1) States and transitions: To tackle this problem, we

encode the environment in several state variables, depending

on how many people and features the system needs to handle.

The locations of people and robot are represented by a

discretization of the environment, for instance a topological

map. Graphs can be used to represent topological maps

with stochastic transitions. Hence, we represent the variables

describing the robot location X , k people locations P1

through Pk with a set of nodes. Besides a person’s location,

we represent a set of m features, and each feature f is

associated with a person, for instance whether it matches

a visual feature, or another characteristic. We assume each

person has at least one feature, hence m ≥ k, and features

are represented by variables F1 through Fm. The feature

variables intend to keep track of the belief over an event

of interest being detected in the environment. They form an

important part of the model as the belief over these variables

gives the certainty of an event of interest to be happening.

Finally, the state includes m bookkeeping variables, keeping

track of which features have already been classified or not.

We assume a random motion pattern for each person, as

we do not have prior knowledge on the person’s intended

path, in which the person can either stay in its current node,

or move to neighboring ones. Such a representation allows

us to model movement constraints posed by the environment

(for instance, corridors, walls or other obstacles), which

constrain a person’s possible paths. We also need to take

into account the uncertainty in the robot movement due

to possible errors during navigation or some unexpected

obstacles present in the environment. The value of the feature

nodes F1 . . . Fm have a low probability to change, as it is

unlikely that a particular person’s characteristic changes. For

the remainder, we assume binary features, without loss of

generality.

2) Actions: Two types of actions are available to the

system. First, actions with an effect in the physical world,

that for instance move the robot (node Amove in Fig. 1) or

adjust its sensors to help the system identify some event

at a particular location. The second type of actions do

not influence the environment, but instead announce that

an event f has been classified (nodes Aclassify 1 through

Aclassify m). Besides a reward signal, their only effect is

to switch the corresponding Cf bookkeeping variable to

classified. Initially, each Cf is initialized to not yet classified.

3) Observations and sensor models: For each state vari-

able except the bookkeeping ones we define a set of obser-

vations. Each observation o
p
1 ∈ OP

1 through o
p
k ∈ OP

k and

ox ∈ OX indicates an observation of a person or robot close

to a corresponding pk ∈ PK resp. x ∈ X . The observations

of ∈ OF indicate whether a particular feature is observed.

The key for cooperative perception in this model lies in the

observation model for detecting features. The false negative

and false positive rates are different at each location, depend-

ing on conditions such as the position of sensors, their field

of view, lighting, etc. For detecting certain features, mobile

sensors have a higher accuracy than fixed sensors, although

with a smaller field of view. Therefore, the observation model

differs with respect to person and robot location. Typically

uncertainty on observations is lower when a person is closer

to the sensor (Fig. 2a), or when there are multiple sensors

looking at its location, see Fig. 2b. In particular, if a person

is observed by the robot we might have good observability

(Fig. 2c), and the probability of false negatives P (OF =
of̄ |F = f) or false positives P (OF = of |F = f̄) decreases

in these cases. This is an important issue in decision making,

as the presence of a mobile sensor will be more valuable in

areas where fixed sensors cannot provide high accuracy.

4) Reward model: The reward model should encode the

general goal for the problem, which is to classify an event

as being of interest or not. A POMDP approach provides

an appropriate way to tackle this. Since we include a state

variable to track whether a feature Ff has a particular value,

for instance whether it is present or not, the system maintains

a belief bt(Ff ) for this variable indicating how sure it is

that the feature is present. This belief is updated upon

observations, which depend on robot and person location.

Our reward model is encoded in the classify f actions, one

for each feature f . It depends on the corresponding Ff

variable, assigning a reward rf > 0 when it indicates an

event of interest and a penalty rf̄ < 0 otherwise. This guides

the system to get a high certainty with respect to detected
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Fig. 2: Observation model examples. Each matrix shows the

observation probability for a single feature: p(OF |F ).

features. Furthermore, we only reward the robot one time for

classifying a feature, by using the bookkeeping variable Cf .

Positive reward for classification is awarded only when Cf

still has value not yet classified. This directs the robot to be

sure about a feature before trying to classify it, as it can only

do it once. How sure it should be before classifying is task

specific, and is defined by the values assigned to rf and rf̄ .

Also, different features can be valued differently in this way.

Another problem that this system can model, is the case

when there are different priorities for different areas in

the environment. Then, even if an area has a lower event

detection uncertainty, the system might want the robot to

check there first. This is modeled in the reward model by

giving a higher reward for those areas of high importance.

In this case, the reward model will depend explicitly also on

the person location.

V. EXPERIMENTS

The proposed model is applied to a real scenario, consid-

ering a surveillance task in which the event of interest is to

detect people wearing a red shirt. We implement and test the

system at our lab [13].

A. Experimental setup

The map of the area we use is discretized into a 8-

node topological map, represented as a graph. The system is

composed of a camera network mounted on the ceiling of our

lab and a mobile robot (Pioneer 3-AT) with on-board camera

and laser range finder. Each ceiling camera runs an adaptive

background subtraction method for person localization and

a simple color detection algorithm for shirt color. The robot-

mounted camera runs only the color detection, and although

it has a high accuracy, it only has a low range. Robot location

is observed using a laser range finder, through an off-the-

shelf implementation of Monte Carlo Localization.

Besides the classification actions, the robot four move-

ment actions has available: moveLeft, moveUp, moveRight,

moveDown, whose intended outcome of each action is for

the robot to move towards the closest node in the respective

direction. In this model, for each person we have a feature

called color, with two possible values: red or other. The

observation model for color is obtained by off-line tests in

which we collect detection data of a person with a known
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Fig. 3: Learned observation model for fixed cameras. Each

matrix represents p(OF |F ) and is positioned at a node in the

map, except the one for the mobile camera, which shows the

observation at any location if X = Pi, 1 ≤ i ≤ k.

shirt color walking randomly in the environment. This data

is processed and summarized per node, giving the error rate

and the uncertainty in color detection for each node. The

resulting observation model is shown in Fig. 3, along position

and direction of cameras available at the environment, and

each matrix is positioned at one of the 8 nodes.

The POMDP controllers are computed using Symbolic

Perseus [11], which is an approximate point-based POMDP

solver, based on Perseus [10], but instead of using a flat

POMDP representation, it exploits an Algebraic Decision

Diagram (ADD) representation to tackle large factored

POMDPs. We set a high discount rate, γ = 0.99. A reward

rf = 10 is given when the person is correctly classified, and

rf̄ = −10 if the classification is incorrect. Each movement

is penalized with a reward of −0.1.

B. Experimental results

First, we consider an environment with only one person,

and the belief is initially set to a uniform distribution. In

Experiment A, the person is wearing a red shirt and is

detected in a region where the uncertainty of red detection

is high, see Fig. 3. Fig. 4 (left column) plots the robot’s

path until the person is classified (a), the cumulative reward

awarded (c), and the belief bt(F1 = red) over the color

feature (e). However, the POMDP maintains a belief over

all the state variables, and decides based on this joint belief.

Initially the robot is far from the person, but it moves

to check on the person’s shirt color, which is consistent

with the evolution of belief. As the uncertainty is high, the

belief increases slowly over time and the cumulative reward

is decreasing as the robot is moving, which incurs a negative

reward. Note the quick increase of the belief at time step 20,

when the robot meets the person and has it in its field of

view. Due to the low error in the robot’s camera detections,

bt(F1 = red) increases rapidly, and the system classifies

the detected person as in fact wearing a red shirt. After

classification the system enters in an absorbing state, i.e.,

bookkeeping variable C1 switches to classified. The robot

will not move further since there is nothing left to classify

in the environment and the cumulative reward stabilizes.

In Experiment B a person is detected in a low uncertainty

area, on the other hand, see Fig. 4 (right column). In this
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Fig. 4: Experiments with 1 person wearing red shirt.

case, there is no need for the robot to move to check on

the detected event. When considering the cumulative reward

and belief figures, bt(F1 = red) increases more rapidly than

in Experiment A, which leads to a quicker classification and

less collection of negative rewards, and consequently a higher

cumulative reward. The differences between these first two

experiments show the purpose of our classifier system. A

mobile sensor (the robot in this case) will only spend its

resources if the system really needs its information to make

an informed decision whether to classify the event or not.

It is important to verify that the system is also accurate

when detecting that no event took place. Therefore, Exper-

iment C shows what happens when a person not wearing

a red shirt is detected, see Fig. 5 (left column). A person

has been detected in an area with some uncertainty, and

as such, the belief decreases slowly as the system keeps

receiving observations at every time step. In the meantime,

the robot will follow a path to approach the person until it

can observe the respective color or the observations received

are consistent enough to decide on the classification.

Experiment D (Fig. 5, right column) shows the effects

of noisy observations. This is a situation similar to Experi-

ment A: a person detected in an area with high uncertainty,

such that the robot needs to check it. Note, however, that

the belief does not increase monotonously, since some false

negative detections are received along with correct detec-

tions. This does not influence the system behavior, although
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Fig. 5: Experiments with 1 person.

reduces the belief at that particular time step, the robot

continues to check at the person’s location, and verifies that

indeed, it should be classified.

We also consider more complex scenarios, namely when

instead of a single person we consider to have 2 persons.

The system must reason whether to classify each one, and

if the uncertainty is high and the robot needs to check on

them, in which order to do so. In Experiment E (Fig. 6, left

column) one person is detected in a low uncertainty area

and the other one in a region where uncertainty is higher.

Note that bt(F2 = red) increases faster than bt(F1 = red).
Therefore, it is not necessary to check on person 2, but rather

on person 1, and the robot navigates in its direction and

uncertainty decreases when robot confirms the event at that

location. In the meantime, the system has received enough

information to also classify the other person.

So far, we have assumed that all locations and people

have equal priorities. However, another interesting scenario

is when we consider priority areas, that is, when one or more

areas in the environment require special attention, and hence

are more important. In Experiment F of Fig. 6 (right column),

persons are detected in the same areas as Experiment E

but each location has a different priority, as encoded in the

reward function: r1 = 10 and r2 = 20. Although person 2

is in a low uncertainty area, the robot goes to check on it,

as it is a more important area, and therefore will receive a

higher reward.
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Fig. 6: Experiments with 2 persons.

VI. CONCLUSIONS

In this paper, we presented a POMDP approach to active

cooperative perception in network robot systems. In NRS,

decision making based on incomplete and noisy perception is

often crucial for successful task completion. POMDPs offer

a strong mathematical framework for sequential decision

making under uncertainty, explicitly modeling the imperfect

sensing and actuation capabilities of the overall system.

In particular, we considered the problem of how a robot

should act in order to track and classify a particular target,

considering both its local sensors as well as sensors present

in the environment. We tackled this problem by modeling

movement as well as classification actions.

Classification actions allow us to consider reward func-

tions that are linear in the belief state, and not for instance

based on the entropy of the belief state. In the latter case,

the POMDP is nonstandard, and the optimal value function

is no longer linear. By defining a reward function over states,

we remain in the standard POMDP setting, for which many

results are known and successful approximate algorithms

have been developed. Also, considering a discretized model

allows us to compute closed-loop non-myopic solutions. The

difficulty of solving continuous-state POMDPs in closed

form has obstructed their solution, leading for instance to

open-loop feedback controllers [14], or requiring additional

model assumptions [15]. The experimental results illustrate

that we can successfully trade off the costs of moving a robot

vs. the desired level of confidence regarding an event. MDP-

based heuristic solutions will not work in our scenarios,

as they do not reason about future belief states, which is

crucial for ACP. POMDPs provide a principled approach to

integrating value of information with other costs or rewards,

optimizing task performance directly.

Besides the particular task addressed in our experiments,

many related NRS tasks can be cast in a similar framework.

In future work, we would like to extend this work to

model more types of ACP tasks, as well as scaling up to

larger problems. Scalability can for instance be achieved

by considering mixed-observability models [12], hierarchical

models, as well as on-line optimization of a coarse off-

line POMDP solution. Furthermore, instead of assuming a

single robot, we could model multi-robot scenarios as well,

either by including multiple robot variables in the model or

assigning POMDP tasks to individual robots [16].
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