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Chapter 1

Introduction

A major goal of artificial intelligence (AI) is to build agents: systems that
perceive their environment and execute actions. For instance, a mobile robot
might have a camera to observe its surroundings and wheels to move around. In
particular, AI aims to develop intelligent agents, which attempt to perform an
assigned task as well as possible. An agent is a general concept, which includes
robots, intelligent computer programs, and humans. We can characterize an
agent by its sense–think–act loop: it uses sensors to observe the environment,
considers this information to decide what to do, and executes the chosen action.
The agent influences its environment by acting and can detect the effect of its
actions by sensing: the environment closes the loop. Fig. 1.1(a) shows a diagram
of an agent and its operating loop in an environment.

An intelligent agent should be able to perform a given task autonomously. A
human user defines the task, but the agent should act without further external
control by the human. In the early days of AI, the focus was on tackling ab-
stract problems that (appear to) require high-level cognitive skills to solve, for
instance playing chess or automatic proving of theorems. However, when trying
to implement such skills in a real-world system, it turns out that low-level hu-
man skills, such as recognizing objects using a camera, are major hurdles for a
computer system. As such, when building an intelligent agent, one is confronted
with many scientific and engineering challenges. In this thesis, we will focus on
one such challenge: how should agents act under uncertainty. A real-world sys-
tem such as a robot has to be able to deal with uncertainty from numerous
sources. A major source of uncertainty for a robot are its sensors, which are
often noisy and have only a limited view of the environment. A robot is also of-
ten uncertain about the effect that executing an action has on its environment.
For instance, when driving through a corridor in an office building, the robot
has to deal with issues like potential wheel slip or unforeseen obstacles. We will
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Figure 1.1: (a) A schematic representation of an agent in an environment. The agent
influences the state of the environment by acting, and perceives the environment
through observations. (b) A simple planning problem, in which agent located in
the top-left corner has to reach a certain goal location, indicated by �.

present algorithms that allow an agent to handle these kinds of uncertainty in
a principled way. We will consider single-agent problems as well as multiagent
settings, in which multiple agents cooperate to achieve a common task.

1.1 Planning

In this thesis we will consider the problem of decision making for intelligent
agents: how should an agent act to perform its assigned task as well as possible.
In particular, we are interested in computing plans for agents. Put simply,
a plan tells an agent what to do in order to reach a certain goal, i.e., what
action to take at each time step. Planning considers the problem of sequential

decision making, since reaching a certain goal might require the agent to execute
a particular sequence of actions. For instance, consider the simple planning
problem depicted in Fig. 1.1(b). A robot in a room has to reach a goal location
as fast as possible. The goal is indicated by �, and the robot starts in the top-
left corner. At each time step, the agent can observe its location and choose to
move one square north, east, south, or west. The robot cannot reach the goal
in one step, and has to plan ahead, considering multiple time steps. Given this
problem description, three optimal plans exist: east-east-south, east-south-east
and south-east-east. These types of planning problems are tackled in classic AI
planning: find a sequence of actions that takes the environment from a starting
state to a goal state (Fikes and Nilsson, 1971; Korf, 1987).

However, plans consisting of a fixed sequence of actions have only a limited
applicability. Consider, for instance, the case in which our robot can start in
any of the ten locations, instead of always starting from a fixed position. If
we assume that the robot remains stationary when it tries to move outside its
environment, a fixed-sequence plan exists that will allow the robot to reach
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its goal location from any starting position. However, such a plan is far from
optimal and will often take more actions than necessary. For instance, move
east four times, move south, followed by two times west ensures that the robot
always reaches its goal. A more practical solution would be to compute an
optimal sequence for each possible starting position, and let the robot’s plan be
conditional on the robot’s initial state: select the shortest path for the particular
starting location. Such a conditional plan ensures that the robot will reach the
goal location as fast as possible from any starting location. However, until now
we have assumed that the robot’s motion is perfect: when the robot moves east
it is always transported one square east (unless it hits the wall). In reality, robot
motion is not perfect, and there will be uncertainty regarding the effect of the
robot’s actions.

1.2 Uncertainty

Uncertainty is abundant in real-world planning problems. A major source of
uncertainty is the fact that planning is always performed in a model of the en-
vironment. A model will always be an abstraction of the real world, and the
(expected) discrepancies between the model and the real world lead to uncer-
tainty. For instance, when modeling a robot’s motion, numerous parameters
such as the amount of wheel slip are hard to estimate. The question is how to
compute plans for agents given an uncertain model. One solution is to dispense
with model-based planning altogether, and only react directly on sensory input,
as “the world is its own best model” (Brooks, 1990). However, that will not
be sufficient for the high-level tasks we will attempt to solve, and therefore we
choose to explicitly capture uncertainty in our model. In our planning context,
the dominant paradigm for representing uncertainty is probability theory (Pa-
poulis, 1991; Bertsekas and Tsitsiklis, 2002). Other techniques for tackling un-
certainty have been proposed in the AI literature, for instance Dempster-Shafer
theory (Dempster, 1968; Shafer, 1976) or possibility theory (Zadeh, 1978). In
a way, they extend the probabilistic framework by defining an uncertain event
with two numbers, an upper and lower bound on its probability, which allows for
specifying ignorance or vagueness regarding uncertain knowledge. While such
alternative models of uncertainty are valuable in for instance expert systems,
they are not well suited for planning (Russell and Norvig, 2003).

Returning to our example problem of Fig. 1.1(b), we can now capture the
robot’s imperfect motion by the following model: suppose that if the robot in-
tends to move one square in a particular direction, it only succeeds 80% of the
cases. Due to wheel slip, it will remain stationary in 10% of the cases, and in the
remaining 10% the robot will overshoot and move two squares in the intended
direction. As the outcome of executing a series of actions can no longer be pre-
dicted with full certainty, imperfect motion complicates our planning problem.
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Figure 1.2: Example problem introduced in Fig. 1.1(b). (a) A plan that specifies for
each location the action a robot should take in order to reach the � goal location
as fast as possible. (b) Reward model, which shows the immediate reward for each
of the 10 states.

Plans consisting of fixed action sequences will no longer suffice. Instead a plan
should indicate the optimal action at every location, i.e., the plan is conditional
on the robot’s location. In general, we want an agent to be able to respond
correctly to every possible situation it might encounter. Fig. 1.2(a) shows such
a conditional plan, in which the arrow at each location indicates the action the
robot should take. Using this plan, when the robot accidentally overshoots due
to motion noise, it can simply take the action specified at its resulting location.

Apart from actuator noise, the robot is also likely to suffer from uncertainty
in its sensors. In the discussion so-far, we have assumed that the robot can
detect its own location in the room with full certainty, which is not a realis-
tic assumption for two main reasons. An agent’s sensors might only provide a
limited view of the environment, for instance our robot might be able to detect
objects in its current room, but not in rooms adjacent to it. A second source of
sensor uncertainty is noise, which is common in real-world sensors. If a robot
uses a camera image to locate an object (with respect to itself), it might be
able to get a reliable bearing estimate, but the exact distance of the object to
the robot is much harder to estimate accurately. As for the actuator noise, we
will also capture an agent’s imperfect sensors using a probabilistic model. The
combined uncertainty in sensors and actuators will result in uncertainty in the
robot’s localization. Uncertainty regarding the robot’s location complicates the
direct application of plans that condition on this location, such as the one de-
picted in Fig. 1.2(a). However, in the framework of decision-theoretic planning,
techniques have been developed to cope with actuator and sensor uncertainty.

1.3 Decision-theoretic planning

We have shown why our robot should be able to act under uncertainty. Taking
decisions when there is uncertainty regarding the exact consequence of a par-
ticular decision has been formalized in decision theory (Luce and Raiffa, 1957).
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Decision theory considers the problem of one-step decision making, which in
our case would correspond to choosing a complete (conditional) plan. After
executing one particular plan, the agent will be in a certain state, and it will
have preference relation over all outcome states. In our robot example possible
outcomes are the ten locations of the robot, and the robot prefers the goal lo-
cation above all other locations. For every possible plan, we need to know the
probability that the plan will lead to a certain outcome. Given the preference
relation and the probabilities, we can compute the expected value of a plan,
and the agent selects the plan with the maximum expected value. For instance,
our robot will choose a plan that has a high probability of leading it to the goal
location quickly.

Decision theory provides a way to select among multiple plans with un-
certain outcome states, but does not tackle the problem of how to compute
such plans. Hence, techniques from classic AI planning, which compute plans
in deterministic environments to move the agent from a start state to a goal
state, have been combined with decision theory (Feldman and Sproull, 1977).
In the operations-research community a different framework for planning under
uncertainty has been developed, based on Markov decision processes (MDPs)
(Bellman, 1957; Puterman, 1994). Instead of focusing on finding a plan which
takes the agent from a start state to a goal state, in an MDP the agent receives a
reward signal for every action it takes. The reward associated with a particular
action depends on the state in which the agent took the action. The goal of
the agent is now to maximize its long-term cumulative reward, i.e., the sum of
rewards it expects to receive in the future. To give some intuition, Fig. 1.2(b)
encodes the task of moving to the goal state as fast as possible, according to the
following specifications: first of all, the robot receives a large positive reward
of 10 when it has reached the goal location, in order to entice it to go to the
desired location. As we would like the robot to minimize the number of actions
before reaching the goal, we penalize all other actions by reward −0.1. As each
superfluous action will decrease the total sum of rewards, the robot will prefer
plans that minimize the expected number of steps to reach the goal location.

In general, MDPs provide a flexible framework for encoding decision-making
problems involving uncertainty, and form a basis for a vast body of work in
decision-theoretic planning (Boutilier, Dean, and Hanks, 1999) and reinforce-
ment learning (Sutton and Barto, 1998). Blythe (1999) and Boutilier et al.
(1999) provide overviews of decision-theoretic planning, and discuss methods
based on classic AI planners as well as MDP-based techniques. In this thesis
we adopt (extensions of) the MDP framework as our planning paradigm. The
MDP model as described above allows for planning in stochastic environments,
but assumes the agent knows the state of the environment with full certainty.
As we have seen in Sec. 1.2, due to limited sensing capabilities an agent might
only receive partial information regarding the system’s state. In order to tackle
sensor uncertainty, partially observable MDPs (POMDPs) have been developed.
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As with fully observable MDPs, POMDPs originate from operations research
(Sondik, 1971; Lovejoy, 1991), but in the last decade they have gained popu-
larity in the AI community as well (Kaelbling, Littman, and Cassandra, 1998).
Both MDPs and POMDPs tackle single-agent planning problems, but have been
extended to cooperative multiagent systems, in which multiple agents inhabit-
ing the same environment have to cooperate to achieve an assigned task. We
will consider planning for teams of agents in the decentralized POMDP (DEC-
POMDP) model (Bernstein, Givan, Immerman, and Zilberstein, 2002).

In this thesis we will present experimental results from typical AI appli-
cations such as robot navigation, but decision-theoretic planning in general
and POMDPs in particular have a much wider applicability. For example,
POMDPs have been considered for industrial applications such as machine
maintenance (Smallwood and Sondik, 1973) or inventory control (Treharne and
Sox, 2002), and also for robotic problems (Pineau, Montemerlo, Pollack, Roy,
and Thrun, 2003b), man-machine interaction (Williams, Poupart, and Young,
2005b), marketing (Rusmevichientong and Van Roy, 2001), and medical appli-
cations (Hauskrecht and Fraser, 2000).

1.4 Outlook

Chapter 2 will introduce existing frameworks for single-agent and multiagent
decision-theoretic planning. In the single-agent case we will discuss Markov
decision processes (MDPs) and partially observable MDPs (POMDPs) and their
associated solution concepts, value functions in particular. We will introduce
value iteration as a standard method for computing optimal value functions,
which encode optimal plans. For the cooperate multiagent case we will review
the decentralized POMDP (DEC-POMDP) framework, which is a generalization
of POMDPs to multiple agents.

In Chapter 3 we will present an overview of known techniques for solving
POMDPs. We will discuss exact solution techniques and their poor scalability,
motivating work on approximate POMDP solution methods. We will focus on
a family of approximate algorithms known as point-based POMDP methods.
Point-based approximate techniques for POMDPs compute a policy based on a
finite set of belief points collected in advance from the agent’s belief space. Next
we will describe and discuss Perseus, our randomized point-based approximate
POMDP planner. We will present experimental results in several benchmark
domains and a robotic planning problem.

In Chapter 4 we will present methods to extend approximate POMDP plan-
ning in general (and Perseus in particular) to continuous domains. We will
tackle planning for agents that have a continuous set of actions at their disposal
and propose a technique for planning in continuous state spaces. We will dis-
cuss related work on handling continuous observation spaces, and ideas how to
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extend Perseus along these lines. We will conclude the chapter by highlighting
several third-party extensions to Perseus.

In Chapter 5 we will switch to the multiagent setting, in which we will
consider the problem of cooperative multiagent planning under uncertainty. We
will consider the DEC-POMDP framework to compute plans for a team of agents
that have the ability to communicate, but with limited bandwidth and at a
certain cost. We will propose a decentralized model, in which each agent only
reasons about its own local state and some uncontrollable state features, which
are shared by all team members. In contrast to other approaches, we will model
communication as an integral part of the agent’s reasoning, in which the meaning
of a message is directly encoded in the policy of the communicating agent.

Finally, in Chapter 6 we will present general conclusions, and outline promis-
ing directions of future research. We will also highlight application areas in
which the methods developed in this thesis have been or could be applied.





Chapter 2

An overview of decision-theoretic

planning under uncertainty

In Chapter 1 we introduced the problem of planning under uncertainty, which
is a key problem of intelligent agent design, one of the major goals of artificial
intelligence. We will tackle uncertainty in the agent’s environment by defin-
ing probabilistic models. The agent’s environment reacts stochastically when
the agent executes actions, and also the agent’s sensor readings are related
to the state of the environment in a probabilistic manner. We will focus on
decision-theoretic planning, in which the goal of an agent is to compute a plan
that maximizes expected utility. In this chapter we will provide an overview
of decision-theoretic planning under uncertainty as an introduction for subse-
quent chapters. We will adopt extensions of Markov decision processes (MDPs,
Sec. 2.2) as our planning framework, in particular partially observable MDPs
(POMDPs, Sec. 2.3) and decentralized POMDPs (DEC-POMDPs, Sec. 2.4).

2.1 Introduction

In this thesis, we consider planning as the process of computing a (conditional)
sequence of actions that fulfill a given task as well as possible. It is a crucial part
of any intelligent agent; human, robot or software agent alike. We adopt Russell
and Norvig (2003)’s definition that “an agent is anything that can be viewed as
perceiving its environment through sensors and acting upon that environment
through actuators”. As a running example in this chapter we will consider a
service robot, which has been deployed in an office building to perform janitorial
and other duties. The robot has to keep the building clean and in orderly
condition, by cleaning the floors and emptying garbage cans. Furthermore, it
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Figure 2.1: (a) An office environment with a service robot. The mail room is located
in the top-left corner and next to it is the coffee lounge. Each office is equipped
with a garbage can. (b) An agent in an MDP environment.

has to assist the office staff by delivering mail and making coffee. Fig. 2.1(a)
shows an office environment in which the service robot should perform its duties.

Classic AI planning addresses the problem of finding a sequence of actions
that takes the environment from a starting state to a goal state (Fikes and
Nilsson, 1971; Korf, 1987). However, programming our robot to perform a fixed
sequence of actions every day is not desirable, as the robot should respond to
changes in the environment, e.g., execute a round of mail delivery after the
mailman has stopped by. The robot should also be able to prioritize its duties,
for instance enjoying a fresh pot of coffee is likely to be more important to
its users than having an empty garbage can in their office. Such planning
problems can be framed in (extensions of) the Markov decision process model,
which originates from control theory and operations research (Bellman, 1957;
Howard, 1960; Sondik, 1971), and has gained popularity in the AI community
(Barto, Bradtke, and Singh, 1995; Sutton and Barto, 1998; Kaelbling et al.,
1998; Boutilier et al., 1999; Russell and Norvig, 2003). First we will consider the
problem of computing a plan for a single agent, followed by a characterization
of the multiagent problem.

2.2 Markov decision processes

A Markov decision process (MDP) models the repeated interaction of an agent
with a stochastic environment (Bellman, 1957; Puterman, 1994; Sutton and
Barto, 1998; Boutilier et al., 1999; Bertsekas, 2000). The MDP framework is
defined on the state of the system at hand, where the system consists of both
the agent and the environment. The state is a description of the system at
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a certain point in time, and should contain all information relevant for the
decision making. For example, in our service-robot domain the state should
contain the current location of the robot, the status of the coffee pot and the
garbage cans, whether or not there is mail waiting to be delivered, and how dirty
each floor is. In general, the more detailed the state description is, the better
the modeling of the real world will be, but a larger state space translates into a
higher computational cost for planning. In an MDP the state description should
at least contain enough information to have the Markov property, which means
that an agent only has to consider its current state in order to act optimally.
Given a Markovian state, an agent can forget about its history of states visited
and actions executed, without adverse effects on its performance.

How the environment responds to the repeated interaction of the agent is
modeled by state transitions. The state of the system can change every time
the agent executes an action. For instance, if our robot chooses to clean a dirty
floor, the state of the floor will most likely change from “dirty” to “clean”. We
would like to model the possibility that the robot fails to clean the floor in
a single cleaning action, as the floor might be dirtier than a single wipe can
resolve. The uncertain outcome of executing actions is modeled in the MDP by
a probabilistic transition model, which for instance specifies that after cleaning
a floor it will actually be clean with probability 0.8, while there might still be
some dirt left with probability 0.2. The state can also change due to external
events, i.e., events outside of the agent’s control. External events can also be
modeled in the transition model. For instance, the service robot has no influence
on the arrival of the mailman, but there might be a 0.05 probability at every
time step that the state of the mail room will switch from “no mail” to “mail
waiting for delivery”, indicating that the mailman has stopped by.

The agent’s goal is to perform a task by executing a plan that fulfills the task
best. We will call the expected performance of a plan its value, a concept which
will play a central role in this thesis. In an MDP the agent’s task is defined
by specifying the quality of executing an action in a particular state, which is
modeled as a reward signal. Good actions receive positive reward, bad actions
are punished with negative reward. In our service-robot domain for instance,
making coffee when the coffee pot is empty could fetch the robot a reward of
10, while cleaning a clean floor only wastes energy and receives reward −1.
By specifying different rewards for successfully fulfilling each duty the robot’s
designer can prioritize the robot’s tasks. The performance of a particular plan
is judged by how much reward it is expected to accumulate over time, i.e., the
value of a plan is defined as a sum of all rewards the agent will gather during
its lifetime.

We will now turn to a more formal treatment of the MDP model, which
allows us to describe methods for computing optimal plans. Thorough reviews
of the MDP framework are available (Boutilier et al., 1999; Bertsekas, 2000),
while Sutton and Barto (1998) provide a gentle introduction.
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2.2.1 Formal description

The MDP framework models stochastic environments in which an agent is un-
certain about the exact effect of executing a certain action. This uncertainty is
captured by a probabilistic transition model, which specifies the probabilistic ef-
fect of how each action changes the state. Throughout this thesis we will assume
that time is discretized in time steps of equal length, and at the start of each
step the agent has to execute an action. Continuous-time MDP settings have
been mainly studied in the operations-research community (Puterman, 1994;
Bertsekas, 2000). More formally, an MDP assumes that at any time step t the
environment is in a state s ∈ S , the agent takes an action a ∈ A and receives
a deterministic reward R(s, a) from the environment as a result of this action,
while the environment switches to a new state s′ according to a known stochas-
tic transition model p(s′|s, a). The Markov property entails that the next state
st+1 only depends on the previous state st and action at:

p(st+1|st, st−1, . . . , s0, at, at−1, . . . , a0) = p(st+1|st, at). (2.1)

We will assume that the agent’s initial state s0 is drawn from a probability
distribution over S. In this chapter we will assume that the state space S
and the action space A are discrete and finite sets, but we will consider more
general settings in Chapter 4. Fig. 2.1(b) shows the diagram of an MDP agent
interacting with its environment.

The goal of the agent is to act in such a way as to maximize some form of
long-term reward, i.e., a performance measure. As the problem is stochastic,
we can only maximize the expected long-term reward, and we will consider the
following performance measure:

E
[

h
∑

t=0

γtRt

]

, (2.2)

where E[·] denotes the expectation operator, h is the planning horizon, and γ
is a discount rate, 0 ≤ γ < 1. The discount rate ensures a finite sum when
h = ∞ and is usually chosen close to 1. It captures the notion that a reward
obtained in the near future is more valuable than a reward received in the far
future. If it suffices for the agent to only consider a fixed number of steps in the
future, i.e., when the agent’s lifetime is limited, the horizon h can be set to a
finite number, or to ∞ otherwise. For finite-horizon problems the discount rate
is often discarded (i.e., γ = 1).

The behavior of the agent is defined by its plan, or policy in MDP termi-
nology. A policy π instructs the agent what action it should take at every time
step. A policy that specifies a fixed sequence of actions giving the initial state
at t = 0 without checking the effects of the executed actions is called an open-
loop plan, while a closed-loop plan conditions on the state of the agent at each
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time step t. In an MDP an open-loop plan is generally not sufficiently expres-
sive as the transition model is stochastic. A closed-loop policy can mitigate
the stochastic effects by considering the state of the agent after executing each
action. An optimal policy π∗ maximizes the performance measure, in our case
(2.2). It is well-known that in this case a stationary and deterministic opti-
mal policy exists for the infinite-horizon case (Howard, 1960; Puterman, 1994).
The fact that we can restrict ourselves to non-randomized policies is attractive,
as such policies are easier to evaluate, and we have to search a smaller policy
space. A stationary policy is independent of the particular time step at which
the agent is executing the policy, which also restricts the policy space. For the
finite-horizon case, however, the particular time step is relevant.

Without loss of generality1, the following discussion will focus on the h =∞
case, and define an optimal policy π∗ : S → A, which for every state indicates
the action that is optimal to execute, given that π∗ will also be followed in the
future. One way to characterize an MDP policy is to consider its value function
V π : S → R, which for every state s estimates the amount of discounted reward
the agent can gather when it starts in s and acts according to π, which follows
from (2.2):

V π(s) = R(s, π(s)) + E
[

∞
∑

t=1

γtR(st, π(st))
]

. (2.3)

The expectation operator averages over the stochastic transition model, which
leads to the following recursion, known as the Bellman recursion (1957):

V π(s) = R(s, π(s)) + γ
∑

s′∈S

p(s′|s, π(s))V π(s′). (2.4)

Many solution techniques focus on computing the optimal value function V ∗, as
we can easily extract the policy π corresponding to a particular value function V :

π(s) = arg max
a∈A

[

R(s, a) + γ
∑

s′∈S

p(s′|s, a)V (s′)
]

, (2.5)

which instructs the agent to take the action which maximizes the sum of the
immediate reward and the expected future discounted reward.

2.2.2 Dynamic programming

Bellman (1957) considered the problem of acting optimally in MDPs and intro-
duced a family of techniques known as dynamic programming. The Bellman

1The time step can be encoded in the state description, discounting can be discarded by
setting γ = 1, and if we also add an absorbing terminal state in which no reward can be
obtained any more, we can convert any finite-horizon problem to an infinite-horizon one.
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Algorithm 2.1 Value iteration.

Initialize V arbitrarily, e.g., V (s) = 0,∀s ∈ S
repeat

δ ← 0
for all s ∈ S do

v ← V (s)

V (s)← maxa∈A

[

R(s, a) + γ
∑

s′∈S p(s′|s, a)V (s′)
]

δ ← max(δ, |v − V (s)|)
until δ < ε
Return V

equation (2.4) can be turned into an optimality principle, which specifies the
optimal value function

V ∗(s) = max
a∈A

[

R(s, a) + γ
∑

s′∈S

p(s′|s, a)V ∗(s′)
]

, (2.6)

known as the Bellman equation. Solving this (nonlinear) systems of equations
for each state s yields the optimal value function, and from it an optimal pol-
icy π∗ using (2.5). However, due to the nonlinear max operator solving the
system for each state simultaneously is not efficient for large MDPs (Puterman,
1994, Sec. 6.9), and Bellman introduced a successive approximation technique
called value iteration. The optimal value function V ∗

0 , when the agent can only
take one action, is defined by the reward model:

V ∗
0 (s) = max

a∈A
R(s, a). (2.7)

In order to consider one step deeper into the future, i.e., to compute V ∗
n+1 from

V ∗
n we can turn (2.6) into an update:

V ∗
n+1(s) = max

a∈A

[

R(s, a) + γ
∑

s′∈S

p(s′|s, a)V ∗
n (s′)

]

, (2.8)

which is a contraction mapping that will converge to the fixed point V ∗ (Put-
erman, 1994). This update operation is known as a Bellman backup, and we
denote the operator as HMDP, allowing us to write (2.8) as

V ∗
n+1 = HMDPV ∗

n . (2.9)

Algorithm 2.1 shows pseudocode for the plain value-iteration algorithm, in
which sweeps are made over the full state space, known as exhaustive backups,
backing up every state in turn until convergence (Sutton and Barto, 1998).
Value iteration has converged when the value function stabilizes, i.e., when the
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largest update δ in an iteration is below a certain threshold ε. Value iteration
still converges, however, when instead of exhaustive backups arbitrary states
are backed up in arbitrary order, provided that in the limit all states are visited
infinitely often (Bertsekas and Tsitsiklis, 1989). We can take advantage of this
flexibility in order to speed up the algorithm, for instance by backing up the
most promising states first, a technique known as prioritized sweeping (Moore
and Atkeson, 1993; Peng and Williams, 1993).

Exact dynamic-programming approaches require full knowledge of the sys-
tem’s transition and reward models. If the agent does not possess such knowl-
edge, we can still perform approximate sample-based backups using so-called
reinforcement-learning techniques.

2.2.3 Reinforcement learning

Model-free techniques for sequential decision making focus on learning to act
optimally in unknown environments, and are collectively known as reinforcement
learning (Bertsekas and Tsitsiklis, 1996; Sutton and Barto, 1998). A policy is
learned by experiencing the environment over and over again. The experience
could for instance be used to approximate the unknown MDP model, which
then can be solved by model-based dynamic-programming techniques. A more
common approach, however, is to directly learn a policy. The intuition is that
for learning a successful policy one might not need to have detailed and accurate
knowledge of the underlying MDP model.

Reinforcement learning often considers learning a policy in the form of a Q :
S ×A→ R function, which estimates the value of executing action a in state s,
and the policy defined by a Q-function is simply π(s) = arg maxa∈A Q(s, a). A
commonly used method to learn an optimal Q-function is Q-learning (Watkins,
1989). This starts with an arbitrarily initialized Q-function, and in order to
improve on this policy, the agent executes the policy and uses the experience to
update the Q-values. In particular, every time the agent takes action a in state s,
transitions to state s′ and receives reward R(s, a) it updates its Q-function as
follows:

Q(s, a) = (1− β) Q(s, a) + β
[

R(s, a) + γ max
a′∈A

Q(s′, a′)
]

, (2.10)

where 0 < β ≤ 1 is a learning rate. It can be interpreted as adjusting the Q(s, a)
estimate in the direction of the immediate reward R(s, a) and the discounted
estimated value of the successor state s′. Q-learning is guaranteed to converge
to the optimal Q-values and therefore to π∗ if all Q(s, a) values are updated
infinitely often (Watkins and Dayan, 1992), at which point it will satisfy the
Bellman equation (2.6). In order to make sure all actions will eventually be
tried in all states exploration is necessary. A common exploration method is to
execute a random action instead of the one prescribed by the Q-function with
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small probability ε, which is known as ε-greedy exploration (Sutton and Barto,
1998).

2.2.4 Factorized state representations

In the previous discussion of MDPs we have considered a state space S that
consists of a discrete and finite set of states, without assuming any structure.
Returning to our service-robot example, we can see that its state description is
the combination of a number of state features: the location of the robot, and
the status of the coffee pot, garbage cans, floors, etc. As such, one can also view
the state of the system as the cross-product of all these k features, and represent
the state in a factorized state space S = S1×S2× · · · ×Sk (Boutilier, Dearden,
and Goldszmidt, 2000; Guestrin, Koller, Parr, and Venkataraman, 2003). A
factorized state space allows one to compactly represent the transition function
as a dynamic Bayesian network (Jensen, 2001; Murphy, 2002), and exploits
(assumed) independence relationships between features. For instance, we can
safely assume that the status of the coffee pot at time step t + 1 is independent
of the amount of garbage deposited in a particular garbage can at time t. Apart
from ease of representation, such a compactly represented transition model can
be exploited when solving a factored MDP (Hoey, St-Aubin, Hu, and Boutilier,
1999; Guestrin et al., 2003).

2.3 Partially observable Markov decision pro-

cesses

One of the limiting factors of the MDP model is its assumption that the agent
knows with full certainty the true state of the environment at all times, a strong
assumption that can restrict the applicability of the framework. In our service-
robot domain, for instance, the robot is unlikely to be able to tell whether any
of the garbage cans is full or empty unless it is located near to it. Whether or
not there is mail is waiting to be delivered is only detectable inside the mail
room. When the robot has left the mail room, the mailman might drop by and
deliver mail (without the robot noticing it), and as such, the robot is uncertain
about the status of the mail room, until it visits the room again. Another source
of uncertainty regarding the true state of the system are imperfections in the
robot’s sensors. For instance, let us suppose the robot uses a camera to check
whether a floor is dirty or not. The vision algorithm processing the camera
images is likely to make mistakes sometimes, reporting a clean floor as dirty or
vice versa. Such an imperfect sensor also prevents the robot from knowing the
true state of the system: even if the vision algorithm reports a clean floor, it is
still possible that the floor is actually dirty.
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Extending the MDP setting, a partially observable Markov decision process
(POMDP) also deals with uncertainty resulting from the agent’s imperfect sen-
sors (Stratonovich, 1960; Drake, 1962; Dynkin, 1965; Aoki, 1965; Åström, 1965;
Sondik, 1971; Lovejoy, 1991; Kaelbling et al., 1998). It allows for planning in
environments which are only partially observable to the agent, i.e., environ-
ments in which the agent cannot determine with full certainty the true state of
the environment. In general the partial observability stems from two sources:
(1) multiple states give the same sensor reading, in case the agent can only
sense a limited part of the environment, and (2) its sensor readings are noisy:
observing the same state can result in different sensor readings. The partial
observability can lead to “perceptual aliasing”: different parts of the environ-
ment appear similar to the agent’s sensor system, but require different actions.
The POMDP captures the partial observability by a probabilistic observation
model, which relates possible observations to states.

2.3.1 Formal description

As in the fully observable MDP model, the agent takes an action a in state s,
the environment transitions to state s′ according to p(s′|s, a) and the agent
receives an immediate reward R(s, a). The agent then perceives an observation
o ∈ O, that may be conditional on its action, which provides information about
the state s′ through a known stochastic observation model p(o|s, a). We will
assume throughout this thesis that the observation space O is discrete and finite,
but in Sec. 4.4.3 we will discuss related work that extends POMDP planning to
continuous observation spaces. Fig. 2.2(a) illustrates these concepts by depicting
a schematic representation of a POMDP agent.

2.3.2 Memory

In order for an agent to choose its actions successfully in partially observable
environments some form of memory is needed, as the observations the agent
receives do not provide an unique identification of s. For instance, consider
the two-state infinite-horizon POMDP depicted in Fig. 2.2(b), presented by
Singh, Jaakkola, and Jordan (1994). The agent has two actions, one of which
will deterministically transport it to the other state, while executing the other
action has no effect on the state. If the agent jumps to the other state receives
a reward of r > 0, or −r otherwise. The optimal policy in the underlying MDP
has a value of r

1−γ
, as the agent can gather a reward of r at each time step. In the

POMDP however, the agent receives the same observation in both states. As a
result, there are only two memoryless deterministic stationary policies possible:
always execute a1 or always execute a2. The maximum expected reward of these
policies is r − γr

1−γ
, when the agent successfully jumps to the other state at the

first time step. If we allow stochastic policies, the best stationary policy would
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Figure 2.2: (a) A POMDP agent interacting with its environment. (b) A two-state
POMDP from (Singh et al., 1994), in which the agent receives the same observation
in both states.

yield an expected discounted reward of 0, when it chooses either action 50% of
the time. However, if the agent could remember what actions it had executed,
it could execute a policy that alternates between executing a1 and a2. Such a
memory-based policy would gather γr

1−γ
− r in the worst case, which is close to

the optimal value in the underlying MDP (Singh et al., 1994).

2.3.3 Belief states

The example in the previous section illustrates the need for memory when plan-
ning in a POMDP. A straightforward implementation of memory would be to
simply store the sequence of actions executed and observations received. How-
ever, such a form of memory can grow indefinitely over time, turning it imprac-
tical for large or infinite-horizon problems. Fortunately, a better option exists,
as we can transform the POMDP to a belief-state MDP in which the agent sum-
marizes all information about its past using a belief vector b(s) (Stratonovich,
1960; Dynkin, 1965; Åström, 1965). The belief b is a probability distribution
over S, which forms a Markovian signal for the planning task. The belief is a
sufficient statistic of the history, which means we could not do any better even
if we had remembered the full history of actions and observations. All beliefs
are contained in a (|S|−1)-dimensional simplex ∆(S), hence we can represent a
belief using |S|−1 numbers. Each POMDP problem assumes an initial belief b0,
which for instance can be set to a uniform distribution over all states (represent-
ing complete ignorance regarding the initial state of the environment). Every
time the agent takes an action a and observes o, its belief is updated by Bayes’
rule:

bao(s′) =
p(o|s′, a)

p(o|b, a)

∑

s∈S

p(s′|s, a)b(s), (2.11)
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Figure 2.3: Belief-update example (adapted from Fox et al., 1999). (a) A robot moves
in a one-dimensional corridor with three identical doors. (b)-(e) The evolution of
the belief over time, for details see main text.

where p(o|b, a) =
∑

s′∈S p(o|s′, a)
∑

s∈S p(s′|s, a)b(s) is a normalizing constant.
Fig. 2.3 shows an example of a sequence of belief updates for a robot navi-

gating in a corridor with three identical doors. The corridor is discretized in 26
states and is circular, i.e., the right end of the corridor is connected to the left
end. The robot can observe either door or corridor, but its sensors are noisy.
When the robot is positioned in front of a door, it observes door with probability
0.9 (and corridor with probability 0.1). When the robot is not located in front
of a door the probability of observing corridor is 0.9. The robot has two actions,
forward and backward (right resp. left in the figure), which transport the robot
3 (20%), 4 (60%), or 5 (20%) states in the corresponding direction. The initial
belief b0 is uniform, as displayed in Fig. 2.3(b). Fig. 2.3(c) through (e) show
how the belief of the robot is updated as it executes the forward action each
time. The true location of the robot is indicated by the dark-gray component
of its belief. In Fig. 2.3(c) we see that robot is located in front of the first door,
and although it is fairly certain it is located in front of a door, it cannot tell
which one. However, after taking another move forward it again observes door,
and now can pinpoint its location more accurately, because of the particular
configuration of the three doors (Fig. 2.3(d)). However, in Fig. 2.3(e) the belief
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blurs again, which is due to the noisy transition model and the fact that the
corridor observation is not very informative in this case.

2.3.4 Value functions

As in the fully observable MDP setting, the goal of the agent is to choose
actions which fulfill its task as well as possible, i.e., to compute an optimal
plan. Such a plan is called a policy π(b) and maps beliefs to actions. Note
that, contrary to MDPs, the policy π(b) is a function over a continuous set of
probability distributions over S. A policy π can be characterized by a value
function V π : ∆(S) → R which is defined as the expected future discounted
reward V π(b) the agent can gather by following π starting from belief b:

V π(b) = Eπ

[

h
∑

t=0

γtR(bt, π(bt))
∣

∣

∣
b0 = b

]

, (2.12)

where R(bt, π(bt)) =
∑

s∈S R(s, π(bt))bt(s), and h is the planning horizon.
A policy π which maximizes V π is called an optimal policy π∗; it specifies

for each b the optimal action to execute at the current step, assuming the agent
will also act optimally at future time steps. The value of an optimal policy π∗ is
defined by the optimal value function V ∗, that satisfies the Bellman optimality
equation V ∗ = HPOMDPV ∗:

V ∗(b) = max
a∈A

[

∑

s∈S

R(s, a)b(s) + γ
∑

o∈O

p(o|b, a)V ∗(bao)
]

, (2.13)

with bao given by (2.11). When (2.13) holds for every b ∈ ∆(S) we are ensured
the solution is optimal.

Computing value functions over a continuous belief space might seem in-
tractable at first, but fortunately the value function has a particular structure
that we can exploit (Sondik, 1971). It can be parameterized by a finite number
of vectors and has a convex shape. The convexity implies that the value of a
belief close to one of the corners of the belief simplex ∆(S) will be high. In
general, the less uncertainty the agent has over its true state, the better it can
predict the future, and as such take better decisions. A belief located exactly
at a particular corner of ∆(S), i.e., b(s) = 1 for a particular s, defines with
full certainty the state of the agent. In this way, the convex shape of V can
be intuitively explained. An example of a convex value function for a two-state
POMDP is shown in Fig. 2.4(a). As the belief space is a simplex, we can rep-
resent any belief in a two-state POMDP on a line, as b(s2) = 1 − b(s1). The
corners of the belief simplex are denoted by (1, 0) and (0, 1), which have a higher
value than a belief in center of the belief space, e.g., (0.5, 0.5).

An alternative way to represent policies in POMDPs is by considering policy

trees (Kaelbling et al., 1998). Fig. 2.4(b) shows a partial policy tree, in which
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Figure 2.4: (a) An example of a value function in a two-state POMDP. The y-axis
shows the value of each belief, and the x-axis depicts the belief space ∆(S), ranging
from (1, 0) to (0, 1). (b) An example policy tree, where at node the agent takes
an action, and it transitions to a next node based on the received observation
o ∈ {o1, o2, . . . , o|O|}.

the agent starts at the root node of tree. Each node specifies an action which
the agent executes at the particular node. Next it receives an observation o ∈
{o1, o2, . . . , o|O|}, which determines to what next node the agent transitions.
The depth of the tree depends on the planning horizon h, i.e., if we want the
agent to consider taking h steps, the corresponding policy tree has depth h.
Without going into details, from such a policy tree we can derive a set of vectors
that implement its policy: each vector represents the value of a particular node
in the tree. Certain POMDP solution algorithms search in policy trees (Satia
and Lave, 1973; Hansen, 1998a; Smith and Simmons, 2004), but we will focus
on representing value functions as sets of vectors.

Computing value functions for POMDPs is a major focus of this thesis, and
we will devote Chapters 3 and 4 to it. Next we will turn to the third source of
uncertainty that we will be considering: the behavior of teammates.

2.4 Decentralized partially observable Markov

decision processes

Until sofar we have concerned ourselves with models for computing plans in-
volving a single agent. However, in our service-robot example multiple robots
might be deployed in the same office environment. In this case we would like
the robots to cooperate, instead of acting independently which clearly is subop-
timal. For instance, multiple robots might be trying to make coffee at the same
time. Instead, a better allocation of resources might be for one of them to make
coffee while the others wipe floors or deliver mail. However, in the partially
observable environments that we are considering, planning for multiple agents
becomes significantly harder, even when they cooperate. We will first discuss
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two multiagent MDP extensions, a centralized and a decentralized one.

2.4.1 Multiagent MDPs

The MDP framework traditionally deals with planning problems in which a
single agent is involved, but it can be extended to a cooperative multiagent
setting in a straightforward manner. Boutilier (1996) introduced the multiagent

MDP (MMDP), which considers a set I = {1, . . . ,m} of m agents. Each agent
i has its own action set Ai, but the transitions of the system are governed by
p(s′|s, ā), in which ā ∈ A1× · · · ×Am is the joint action of all agents combined.
The agents act simultaneously and receive the same reward R : S × A1 × · · · ×
Am → R. In this way, the problem of computing an optimal policy for the team
of agents is reduced to planning optimally for a single agent with a large number
of available actions. Such a joint MDP can be readily solved by dynamic-
programming techniques (Sec. 2.2.2), but will be infeasible for large teams, as
the size of the joint action set grows exponentially in the number of agents.

The MMDP model assumes that each agent in the team can observe the true
global state of the system at each time step. However, in such a distributed set-
ting it might be more natural to assume that each agent observes its local state,
and that the global state of the system is composed of the local states of all
agents. Becker, Zilberstein, Lesser, and Goldman (2004) study a decentralized
setting, known as a decentralized MDP (DEC-MDP), in which the system state
space is factored into m+1 components, S = S0×S1×· · ·×Sm. The S0 compo-
nent of the state refers to uncontrollable shared state features, which each agent
can observe and are relevant for the team’s decision making, but are outside
the control of the agents. A good example is the time of the decision process,
which is relevant in finite-horizon tasks or when precisely timed coordination is
required. The Si components (where 1 ≤ i ≤ m) refer to the state of each agent
individually, for instance its location in the world. Each agent bases its deci-
sion making on its local state s̄i ∈ S0 × Si only. In general it will be infeasible
to compute a globally optimal solution based on local state information only,
but Becker et al. (2004) present a technique for computing optimal policies in
decentralized MDPs, assuming transition independence between agents and a
special joint reward structure.

2.4.2 Formal description of decentralized POMDPs

As in the fully observable MDP case, POMDPs have also been extended to
cooperative multiagent settings. The decentralized POMDP (DEC-POMDP)
model is one such straightforward extension (Bernstein et al., 2002). It is essen-
tially equivalent to the multiagent team decision problem framework (Pynadath
and Tambe, 2002) or the partially observable identical payoff stochastic game
(Peshkin, Kim, Meuleau, and Kaelbling, 2000). If the agents are self-interested,
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i.e., have different reward functions, the model is known as a partially observable
stochastic game (POSG) (Hansen, Bernstein, and Zilberstein, 2004).

The DEC-POMDP model considers a set I = {1, . . . ,m} of m agents,
which share the same reward function. Each agent i has its own action set Ai,
observation set Oi, and initial belief b0

i ∈ ∆(S). The joint transition model
p(s′|s, ā) defines the probability of jumping to state s′ ∈ S given that the team
executed joint action ā ∈ A1 × · · · ×Am in s ∈ S. The joint observation model
p(ō|s, ā) defines the probability that after taking joint action ā and ending up
in state s results in joint observation ō ∈ O1 × · · · × Om. The reward function
R : S × A1 × · · · × Am → R gives a scalar reward signal to the team. Fig. 2.5
shows agents i and j interacting with their environment.

2.4.3 Solving decentralized POMDPs

Contrary to the single-agent case, in a DEC-POMDP it is not possible in general
to compute a belief state as an agent only knows its local observation oi but not
the complete observation vector ō, which is required for computing the belief
update (2.11). As such, each agent chooses its action ai at time t based on
its policy πi : ×t−1(Ai × Oi) → Ai, i.e., it only considers its own history of
actions taken and observations received until time t. The goal of the team of
agents is to compute a joint policy π = {π1, . . . , πm} which maximizes the future

discounted reward Eπ

[
∑h

t=0 γtRt

]

, as in the MDP and POMDP case. As the
agents form a team, we assume all static models (including the initial state
distribution) are common knowledge among all agents, as well as each of their
individual policies. Equivalently, we can assume that given the models each
agent can solve independently and in parallel the problem at hand, in which
case the resulting policies will also be common knowledge (Xuan, Lesser, and
Zilberstein, 2001; Kok, Spaan, and Vlassis, 2005).

As solving a DEC-POMDP in a general setting is highly intractable (NEXP-
complete, Bernstein et al., 2002), most research has been devoted to studying
simplified settings, in which additional assumptions are made on the environ-
ment. We will now discuss three possible angles for simplifying DEC-POMDPs:
observability assumptions, the level of centralization, and communication as-
pects.

2.4.4 Observability

In a team of agents each agent will carry its own sensors, and as such will
receive a (possibly noisy) sensor reading related to the part of the state space
it can observe. A common assumption is that each agent’s observations are
independent from those of its teammates (Nair, Tambe, Yokoo, Pynadath, and
Marsella, 2003; Goldman and Zilberstein, 2003; Roth, 2005). In a standard
POMDP setting the agent implicitly observes its own action (as it is used to
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Figure 2.5: Two agents in a DEC-POMDP.

update its belief), but in a multiagent setting an agent cannot observe the
actions chosen by its teammates, and so the agent does not know the executed
joint action. Given only its own observation and action it cannot update the
belief of the complete team, but it can reason about the possible joint beliefs
of the team (Emery-Montemerlo, Gordon, Schneider, and Thrun, 2004; Roth,
2005; Roth, Simmons, and Veloso, 2005).

Another simplifying assumption that can be made is local full observability:
the global state can be factored in a number of components and each agent
observes a local state component with full certainty, which turns the model
into a decentralized MDP (DEC-MDP) (Xuan et al., 2001; Becker et al., 2004).
An advantage of local full observability is the fact that only a finite amount
of policies have to be considered, as there are only a finite number of possible
deterministic mappings from states to actions (Goldman and Zilberstein, 2003;
Becker et al., 2004).

2.4.5 Level of centralization

If a team of agents is allowed to communicate for free and without limitations,
each agent can broadcast at every time step its perceived observation to all of its
teammates. As a result every agent knows the joint observation vector which
it uses to update the joint belief of the team, based on which the next joint
action is selected. As such, free communication reduces the distributed control
problem to a centralized, single-agent one, which can be solved using standard
POMDP solution techniques. However, in reality communication is not free or
unlimited, and modeling a team of agents in this way is not desirable.

Nevertheless, a common approach is to treat the multiagent system as if
communication were free, solve the centralized POMDP, and execute the re-
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sulting joint policy in a distributed fashion while imposing communication con-
straints (Goldman and Zilberstein, 2003; Emery-Montemerlo et al., 2004; Roth,
2005; Roth et al., 2005). The assumption is that the centralized POMDP can be
(approximately) solved, and the focus is on distributed execution of the team’s
policy instead of computing it in a distributed manner. While executing the
policy, a limited form of communication is used to attempt to preserve coherent
behavior of the team. Note that the communication decisions are not part of
the centralized policy, but are made by a separate algorithm which monitors
the uncertainty regarding the joint belief.

Xuan et al. (2001) propose a model that incorporates the communication de-
cision directly in the agent’s policy. It adds a communication sub-stage to the
decision process, in which an agent decides whether it will communicate with
its teammates. In this way an agent can explicitly reason about communica-
tion, instead of relying on an independent instrument to handle communication
issues. Extending this framework, Goldman and Zilberstein (2003) present a
formal model for decentralized control with communication decisions based on
the DEC-POMDP model (Bernstein et al., 2002).

2.4.6 Communication

The communication abilities of each agent can be classified in three categories:
(1) free communication, when an unlimited amount of messages can be send
to teammates at zero cost, (2) no communication, when no messages can be
exchanged between teammates or the cost to do so is prohibitively high, and
(3) general communication, the case when an agent has the capability to com-
municate but sending messages comes at a certain cost (Roth, 2005). The
communication cost is generally modeled as a negative reward signal.

We will focus on the general communication case, which requires deciding
when to communicate, what the message should contain and whom the message
should be sent to. Addressing the last question, two types of communication
are commonly used, broadcast and peer-to-peer. The latter entails sending a
message from one agent to a single other agent, while broadcasting a message
relays the message to all agents in the team. Evidently, broadcast communica-
tion can be expensive, but many distributed POMDP methods rely on it during
policy execution to ensure that all team members have a synchronized model of
the joint belief.

The contents of a message can be arbitrary, but a common approach is to
communicate (part of the) action-observation history of an agent, as this reduces
the uncertainty in the tree of possible joint beliefs. In general a message is sent
when the agent considers the expected gain in future reward to outweigh the cost
of communicating. Most studies assume that communication is instantaneous
and reliable, indicating that every message that is sent out arrives immediately
at its destination and its contents remains unaltered.
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Model Finite horizon Infinite horizon
MDP P-complete P-complete
POMDP PSPACE-complete Undecidable
DEC-POMDP NEXP-complete Undecidable

Table 2.1: Complexity results for solving various MDP models. The infinite-horizon
results refer to the total discounted reward case, and the finite-horizon results
assume that the horizon is lower than the number of states. Sources: MDP and
POMDP finite horizon (Papadimitriou and Tsitsiklis, 1987), POMDP infinite hori-
zon (Madani et al., 2003), and DEC-POMDP (Bernstein et al., 2002).

2.5 Discussion

In this chapter we provided an overview of decision-theoretic planning models,
cast in the Markov decision process framework. POMDPs allow for dealing
with uncertainty in actuators and sensors, extending classic AI planning. We
also discussed a multiagent extension of POMDPs, known as DEC-POMDPs, in
which planning is performed for a team of agents rather than for a single agent.
We focused on the models and basic solution techniques for MDPs, postponing
the discussion of (DEC-)POMDP solution methods to subsequent chapters.

To relate the cost of solving these models, Table 2.1 compares the best
known complexity results (Papadimitriou, 1993) for the three models we have
discussed. We see that MDPs are solvable in polynomial time, thus allowing
for efficient implementation (Papadimitriou and Tsitsiklis, 1987). Adding par-
tial observability to the problem dramatically increases its complexity, as for
the infinite-horizon case it is impossible to tell whether a given discounted re-
ward can be achieved in a particular POMDP (Madani, Hanks, and Condon,
2003), and the finite-horizon complexity is PSPACE-complete indicating there
is no polynomial-time algorithm for solving the POMDP (unless P = PSPACE)
(Papadimitriou and Tsitsiklis, 1987). Moving to multiple agents causes an ex-
ponential jump in complexity, even for the case of only two agents (Bernstein
et al., 2002), where there is provably no polynomial algorithm for solving the
DEC-POMDP. Quoting Madani et al. (2003), the “discovery that interesting
problems are computationally intractable in the worst case should neither be
surprising nor discouraging to the AI researcher”.

In the following chapters we will use the decision-theoretic planning frame-
works presented in this chapter to develop approximate but tractable planning
algorithms. In Chapter 3 we will review exact and approximate algorithms for
solving POMDPs, and present Perseus, our randomized approximate POMDP
solver. In Chapter 4 we will extend approximate POMDP planning in general
and Perseus in particular to continuous action and state spaces. Chapter 5
will switch to the cooperative multiagent setting, in which we will use the DEC-
POMDP framework for planning for teams of communicating agents.



Chapter 3

Planning in partially observable

stochastic environments

The previous chapter introduced models and solution concepts for planning
under various kinds of uncertainty, both for single agents as well as multiagent
teams. In this chapter we will focus exclusively on planning for single agents,
using the partially observable Markov decision process (POMDP) framework.
First we will review exact value-iteration methods for solving POMDPs, followed
by describing a family of approximate POMDP algorithms, known as the point-
based methods. The main contribution of this chapter is our randomized point-
based POMDP solver called Perseus which we will present in Sec. 3.6. After
a review of related work we will present competitive results applying Perseus

on benchmark domains as well as results from an office delivery task involving a
mobile robot with omnidirectional vision in a highly perceptually aliased office
environment.

3.1 Introduction

A major goal of Artificial Intelligence is to build intelligent agents (Russell and
Norvig, 2003). An intelligent agent, whether physical or simulated, should be
able to autonomously perform a given task, and is often characterized by its
sense–think–act loop: it uses sensors to observe the environment, considers this
information to decide what to do, and executes the chosen action. The agent
influences its environment by acting and can detect the effect of its actions by
sensing: the environment closes the loop. We are interested in computing a
plan that maps sensory input to the optimal action to execute a given task.
We consider types of domains in which an agent is uncertain about the exact
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consequence of its actions. Furthermore, it cannot determine with full certainty
the state of the environment with a single sensor reading, i.e., the environment
is only partially observable to the agent.

Planning under these kinds of uncertainty is a challenging problem as it re-
quires reasoning over all possible futures given all possible histories. As we de-
tailed in Chapter 2, partially observable Markov decision processes (POMDPs)
provide a rich mathematical framework for acting optimally in such partially ob-
servable and stochastic environments (Stratonovich, 1960; Dynkin, 1965; Aoki,
1965; Åström, 1965; Sondik, 1971; Lovejoy, 1991; Kaelbling et al., 1998). The
POMDP defines a sensor model specifying the probability of observing a partic-
ular sensor reading in a specific state and a stochastic transition model which
captures the uncertain outcome of executing an action. The agent’s task is rep-
resented by the reward it receives at each time step and its goal is to maximize
the discounted cumulative reward. Assuming discrete models, the POMDP
framework allows for capturing all uncertainty introduced by the transition and
observation model by defining and operating on the belief state of an agent.
A belief state is a probability distribution over all states and summarizes all
information regarding the past.

The use of belief states allows one to transform the original discrete-state
POMDP into a continuous-state Markov decision process (MDP). Recall that
we can represent a plan in an MDP by its value function, which for every state
estimates the amount of discounted reward the agent can gather when it acts
according to the particular plan. In a POMDP the optimal value function,
i.e., the value function corresponding to an optimal plan, exhibits particular
structure (it is piecewise linear and convex) that one can exploit in order to
facilitate the solving. Value iteration, for instance, is a method for solving
POMDPs that builds a sequence of value-function estimates which converge to
the optimal value function for the current task (Sondik, 1971). A value function
in a finite-horizon POMDP is parameterized by a finite number of hyperplanes,
or vectors, over the belief space, which partition the belief space in a finite
amount of regions. Each vector maximizes the value function in a certain region
and has an action associated with it, which is the optimal action to take for
beliefs in its region. As we will explain next, computing the next value-function
estimate—looking one step deeper into the future—requires taking into account
all possible actions the agent can take and all subsequent observations it may
receive. Unfortunately, this leads to an exponential growth of vectors with the
planning horizon. Many of the computed vectors will be useless in the sense
that their maximizing region is empty, but identifying and subsequently pruning
them is an expensive operation.

Exact value-iteration algorithms (Sondik, 1971; Cheng, 1988; Cassandra,
Kaelbling, and Littman, 1994) search in each value-iteration step the complete
belief simplex for a minimal set of belief points that generate the necessary set
of vectors for the next-horizon value function. This typically requires linear pro-
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gramming and is therefore costly in high dimensions. Other exact value-iteration
algorithms focus on generating all possible next-horizon vectors followed by or
interleaved with pruning dominated vectors in a smart way (Monahan, 1982;
Zhang and Liu, 1996; Cassandra, Littman, and Zhang, 1997; Feng and Zil-
berstein, 2004; Lin, Bean, and White, 2004; Varakantham, Maheswaran, and
Tambe, 2005). However, pruning again requires linear programming. Zhang
and Zhang (2001) argued that value iteration still converges to the optimal
value function if exact value-iteration steps are interleaved with approximate
value-iteration steps in which the new value function is an upper bound to the
previously computed value function. This results in a speedup of the total al-
gorithm, however, linear programming is again needed in order to ensure that
the new value function is an upper bound to the previous one over the com-
plete belief simplex. In general, computing exact solutions for POMDPs is an
intractable problem (Sec. 2.5; Papadimitriou and Tsitsiklis, 1987; Madani et al.,
2003), calling for approximate solution techniques (Lovejoy, 1991; Hauskrecht,
2000).

In practical tasks one would like to compute solutions only for those parts
of the belief simplex that are reachable, i.e., that can be actually encountered
by interacting with the environment. This has recently motivated the use of ap-
proximate solution techniques which focus on the use of a sampled set of belief

points on which planning is performed (Hauskrecht, 2000; Poon, 2001; Roy and
Gordon, 2003; Pineau, Gordon, and Thrun, 2003a; Spaan and Vlassis, 2005a),
a possibility already mentioned by Lovejoy (1991). The idea is that instead of
planning over the complete belief space of the agent (which is intractable for
large state spaces), planning is carried out only on a limited set of prototype
beliefs that have been sampled by letting the agent interact (randomly) with the
environment. PBVI, for instance, builds successive estimates of the value func-
tion by updating the value and its gradient only at the points of a (dynamically
growing) belief set (Pineau et al., 2003a).

3.2 Value functions

Computing an optimal plan for an agent means solving the POMDP, and a
classical method is value iteration (Sec. 2.2.2; Puterman, 1994). We transform
the POMDP into an MDP defined over belief states, and the agent’s policy π(b)
maps beliefs to actions. Recall that a policy π can be characterized by a value
function V π : ∆(S) → R which is defined as the expected future discounted
reward V π(b) the agent can gather by following π starting from belief b:

V π(b) = Eπ

[

h
∑

t=0

γtR(bt, π(bt))
∣

∣

∣
b0 = b

]

. (2.12)
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The value of an optimal policy π∗ is defined by the optimal value function V ∗

which we compute by iterating a number of stages, at each stage considering
a step further into the future. At each stage we apply the exact dynamic-
programming operator HPOMDP, or some approximate operator H̃. To simplify
notation we use H instead of HPOMDP to refer to the dynamic-programming
operator for POMDPs, and we repeat it here for convenience:

H : V ∗(b) = max
a∈A

[

∑

s∈S

R(s, a)b(s) + γ
∑

o∈O

p(o|b, a)V ∗(bao)
]

, (2.13)

where bao is the updated belief, which is the result of receiving observation o
after taking action a in belief b. It is computed by Bayes’ rule (see Sec. 2.3.3):

bao(s′) =
p(o|s′, a)

p(o|b, a)

∑

s∈S

p(s′|s, a)b(s). (2.11)

If the agent has only one time step left to act, we only have to consider the
immediate reward for the particular belief b, and can ignore any future value
V ∗(bao) and (2.13) reduces to:

V ∗
0 (b) = max

a

[

∑

s

R(s, a)b(s)
]

. (3.1)

We can view the immediate reward function R(s, a) as a set of |A| vectors
αa

0 = (αa
0(1), . . . , αa

0(|S|)), one for each action a:

αa
0(s) = R(s, a). (3.2)

Now we can rewrite (3.1) as follows, where we view b as an |S|-dimensional
vector:

V ∗
0 (b) = max

a

∑

s

αa
0(s)b(s), (3.3)

= max
{αa

0
}a

b · αa
0 , (3.4)

where (·) denotes inner product. In Fig. 3.1(a) we plotted an example V ∗
0 value

function for a POMDP with two states and three actions, and whose reward
model is defined in Fig. 3.1(b). It illustrates how we can we view the immediate
reward R(s, a) as a set of vectors {αa

0}. In order to compute the value of example
belief b = (0.75, 0.25), we compute its inner product with all three vectors and
maximize, resulting in V ∗

0 (b) = 0.8125. In order to know what the optimal
action is at b, we consider the action associated with the maximizing vector,
which in this case is a1. However, this example only considers the immediate
reward while ignoring reward the agent might gather in the future. In the
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next section we will show how to compute optimal piecewise linear and convex
(PWLC) value functions that also take into account the future.

In summary, we view the immediate reward as a vector αa
0 for each state

and (3.4) averages αa
0 with respect to the belief b. As averaging is a linear

operator and V ∗
0 consists of |A| linear vectors αa

0 , it is piecewise linear. Since
the value function is defined as the upper surface of these vectors, due to the
max operator, V ∗

0 is also convex. In the general case, for h > 0, we parameterize
a value function Vn at stage n by a finite set of vectors or hyperplanes {αk

n},

k = 1, . . . , |Vn|. Given a set of vectors {αk
n}

|Vn|
k=1 at stage n, the value of a belief b

is given by
Vn(b) = max

{αk
n}k

b · αk
n. (3.5)

Additionally, with each vector an action a(αk
n) ∈ A is associated, which is the

optimal one to take in the current step, for those beliefs for which αk
n is the

maximizing vector. Each vector defines a region in the belief space for which
this vector is the maximizing element of Vn. These regions form a partition of
the belief space, induced by the piecewise linearity of the value function. The
gradient of the value function at b is given by the vector αb

n = arg max{αk
n}k

b·αk
n,

and the policy at b is given by π(b) = a(αb
n).

Next, we will show how we can compute Vn+1 from Vn using H, and that
such a backup indeed preserves the piecewise linearity and convexity properties
of Vn.
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3.3 Bellman backups

In this section we will introduce a basic tool used in POMDP planning: the
Bellman backup of a particular belief point. As shown by Smallwood and Sondik
(1973), for problems with a finite planning horizon V ∗ will be piecewise linear
and convex, and for infinite-horizon tasks V ∗ can be approximated arbitrary
well by a PWLC value function.

The main idea behind many value-iteration algorithms for POMDPs is that
for a given value function Vn and a particular belief point b we can easily compute
the vector αb

n+1 of HVn such that

αb
n+1 = arg max

{αk
n+1

}k

b · αk
n+1, (3.6)

where {αk
n+1}

|HVn|
k=1 is the (unknown) set of vectors for HVn. We will denote

this operation αb
n+1 = backup(b).

To compute backup(b) involves a long series of simple maximizations and
sums leading up to (3.18), as we will see next. Starting from (2.13) we have

Vn+1(b) = max
a

[

b · αa
0 + γ

∑

o

p(o|b, a)Vn(bao)
]

, (3.7)

where bao is given by (2.11). Substituting (3.5) leads to

Vn+1(b) = max
a

[

b · αa
0 + γ

∑

o

p(o|b, a) max
{αk

n}k

∑

s′

bao(s′)αk
n(s′)

]

. (3.8)

Plugging in the belief update (2.11) for bao results in

Vn+1(b) = max
a

[

b · αa
0 +

γ
∑

o

p(o|b, a) max
{αk

n}k

∑

s′

p(o|s′, a)

p(o|b, a)

∑

s

p(s′|s, a)b(s)αk
n(s′)

] (3.9)

= max
a

[

b · αa
0 + γ

∑

o

max
{αk

n}k

∑

s

b(s)
[

∑

s′

p(o|s′, a)p(s′|s, a)αk
n(s′)

]

]

,

(3.10)

where the p(o|b, a) terms have canceled each other. At this point we define

gk
ao(s) =

∑

s′

p(o|s′, a)p(s′|s, a)αk
n(s′), (3.11)

and use the fact that the max operator transfers from the αk
n to the gk

ao vectors,
leading to

Vn+1(b) = max
a

[

b · αa
0 + γ

∑

o

max
{gk

ao}k

b · gk
ao

]

. (3.12)
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Using the identity

max
{yj}j

x · yj = x · arg max
{yj}j

x · yj (3.13)

results in

Vn+1(b) = max
a

[

b · αa
0 + γb ·

∑

o

arg max
{gk

ao}k

b · gk
ao

]

(3.14)

= max
{gb

a}a

b · gb
a, (3.15)

with gb
a = αa

0 + γ
∑

o

arg max
{gk

ao}k

b · gk
ao. (3.16)

Using (3.13) again leads to

Vn+1(b) = b · arg max
{gb

a}a

b · gb
a. (3.17)

Finally, from (3.17) we can derive the vector backup(b), as this is the vector
whose inner product with b yields Vn+1(b):

backup(b) = arg max
{gb

a}a∈A

b · gb
a, (3.18)

with gb
a defined in (3.16). Note that in general not only the computed α vector

is retained, but also which action a was the maximizer in (3.18), as that is the
optimal action associated with backup(b).

In the procedure described above we have used the gk
ao vectors (3.11), de-

fined as back-projected copies of αk
n for each a and o to compute gb

a (3.16). An
equivalent way to compute gb

a is to take the forward-projected bao, and to maxi-
mize directly over the αk

n vectors. This alternative derivation starts by applying
the identity (3.13) to (3.8):

Vn+1(b) = max
a

[

b · αa
0 + γ

∑

o

p(o|b, a)bao · arg max
{αk

n}k

bao · αk
n

]

. (3.19)

We define

αb
ao(s

′) = arg max
{αk

n}k

bao · αk
n, (3.20)

and use Bayes’ rule (2.11) to rewrite (3.19) as follows:

Vn+1(b) = max
a

[

b · αa
0 + γ

∑

o

∑

s′

p(o|s′, a)
∑

s

p(s′|s, a)b(s)αb
ao(s

′)
]

(3.21)

Vn+1(b) = max
a

[

b · αa
0 + γb ·

∑

o

hb
ao

]

, where (3.22)

hb
ao(s) =

∑

s′

p(o|s′, a)p(s′|s, a)αb
ao(s

′). (3.23)
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Complexity of β(3.24) Complexity of (3.16)
(2.11) O(|S|2||A||O|) (3.11) O(|S|2||A||O||V |)
(3.20) O(β|S||A||O||V |) (3.16) O(β|S||A||O||V |)
(3.23) O(β|S|2|A||O|)
(3.24) O(β|S||A||O|)
O(|S||A||O|(β|V |+ β|S|)) O(|S||A||O|(β|V |+ |V ||S|))

Table 3.1: Complexity of computing an exhaustive backup using either the back-
projected gk

ao vectors (3.16) or the forward-projected bao beliefs (3.24), where β is
the number of beliefs that need to be backed up for Vn+1.

Analogous to (3.14)-(3.17), we can isolate b, and define

gb
a = αa

0 + γ
∑

o

hb
ao. (3.24)

As a comparison between (3.16) and (3.24) we will discuss the complexity of
computing an exhaustive backup using either. Table 3.1 details the computa-
tional complexity of all steps in computing (3.16) and (3.24). When using the
forward-projected beliefs, we have to compute (3.24) for enough beliefs neces-
sary for Vn+1, resulting in a total time complexity of O(|S||A||O|(β|V |+β|S|)),
where β is the number of beliefs that need to be backed up. The complexity of
computing a backup using (3.16) is O(|S||A||O|(β|V |+ |V ||S|)). The difference
is that using the back-projected vectors gk

ao, (3.16) is linear in the size of Vn,
while (3.24) is linear in β. Typically β will be larger than |Vn|, and as such
computing an exhaustive backup using (3.16) is more efficient in general, but
the backup defined by (3.24) is more amenable to extensions (see Sec. 4.4.3).

The definition of the backup operator involves summing and maximizing over
linear functions, which are trivially convex. Since (1) we started with a PWLC
V0, (2) the PWLC property is preserved when summing or maximizing over two
PWLC functions, and (3) only a finite number of new vectors can be computed
for each Vn+1 as A and O are finite sets, we can see that by induction the value
function for any horizon is also piecewise linear and convex (Smallwood and
Sondik, 1973). Without going into detail, for the infinite-horizon case not all
V ∗
∞ will be PWLC, but those that are not can be approximated arbitrarily close

by a PWLC value function, with a bound that depends on γ (Sondik, 1978).
We will now turn to describing a number of value-iteration methods for

POMDPs, each of which exploits the PWLC property of the value function.

3.4 Exact value iteration

The Bellman backup operator as introduced in the previous section computes a
next-horizon vector for a single belief. Next we will employ this backup operator
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to compute a complete value function for the next horizon, i.e., one that is opti-
mal for all beliefs in the belief space. Although computing the vector backup(b)
for a given b is straightforward, locating the (minimal) set of points b required to
compute all vectors ∪b backup(b) of HVn is very costly. As each b has a region
in the belief space in which its αb

n is maximal, a family of algorithms tries to
identify these regions (Sondik, 1971; Cheng, 1988; Kaelbling et al., 1998). The
corresponding b of each region is called a “witness” point, as it testifies to the
existence of its region. Other exact POMDP value-iteration algorithms do not
focus on searching in the belief space. Instead, they consider enumerating all
possible vectors of HVn, followed by pruning useless vectors (Monahan, 1982;
Zhang and Liu, 1996; Cassandra et al., 1997; Feng and Zilberstein, 2004; Lin
et al., 2004; Varakantham et al., 2005).

3.4.1 Monahan’s enumeration algorithm

Let us start by considering the most straightforward way of computing HVn,
due to Monahan (1982). It involves calculating all possible ways HVn could be
constructed, exploiting the known structure of the value function. Note that in
each HVn a finite number of vectors are generated, as we have assumed finite
sets A and O. We operate independent of a particular b now so (3.16) can no
longer be applied. Instead of maximizing for all o ∈ O over the gk

ao vectors for
the particular b, we now have to include all ways of selecting gk

ao for all o:

HVn =
⋃

a

Ga, with Ga =
⊕

o

Go
a, and Go

a =
{ 1

|O|
αa

0 + γgk
ao

}

k
, (3.25)

where
⊕

denotes the cross-sum operator.1

Unfortunately, at each stage a finite but exponential number of vectors are
generated: |A||Vn|

|O|. The regions of many of the generated vectors will be
empty and these vectors are useless as they will not influence the agent’s policy.
Technically, they are not part of the value function, and keeping them has no
effect on subsequent value functions, apart from the very high computational
burden. Therefore, all value-iteration methods in the enumeration family em-
ploy some form of pruning. In particular, Monahan (1982) prunes HVn after
computing it:

Vn+1 = prune(HVn), (3.26)

with HVn as defined in (3.25). We will now discuss how to implement the prune
operator.

1Cross sum of sets is defined as:
L

k
Rk = R1⊕R2⊕· · ·⊕Rk, with P ⊕Q = { p+ q | p ∈

P, q ∈ Q }.
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(a) Pruning example.
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maximize: x
subject to:

b · (α−α′) ≥ x,∀α′ ∈ V, α′ 6= α
b ∈ ∆(S)

(b) Linear program for prune.

Figure 3.2: (a) A vector pruning example of a value function V in a two-state POMDP.
The y-axis shows the value of each belief, and the x-axis depicts the belief space
∆(S). Shown are five α vectors, but {α1, α2, α3} already suffice for defining V , as
the other two have no region for which they are the maximizing α vector. Pruning
α4 is relatively easy and computationally cheap, as it is completely dominated by
a single other α vector (Eagle, 1984). However, the pruning of α5 requires solving
a linear program, for instance the one provided in (b). Solving the linear program
for α = α5 results in a negative x at b2, indicating it is dominated and hence can
be pruned. Solving for {α1, α2, α3} results in positive x values, at (1, 0), b1 and
(0, 1) respectively, which are witness points as such.

3.4.2 Pruning of α vectors

One way of pruning spurious vectors is to compare each αk and αl (αk 6= αl)
in V , and to discard αk if αk(s) ≤ αl(s),∀s ∈ S (or αl if αl(s) ≤ αk(s),∀s ∈ S)
(Eagle, 1984). Such a check at each state is computationally cheap, and will
prune α4 in example value function shown in Fig. 3.2(a), but not α5. Identi-
fying and subsequently pruning all dominated vectors requires solving a linear
program (Bertsimas and Tsitsiklis, 1997). Lark (White, 1991) provided such a
linear program, shown in Fig. 3.2(b). It computes for a particular α the belief
that has the largest difference x with all other vectors in V . When x ≤ 0 (or
when the linear program is infeasible) there is always another vector or a con-
vex combination of other vectors dominating α, and therefore α can be safely
pruned.

Algorithm 3.1 shows an algorithm for pruning a set of vectors G, based on
Lark’s algorithm (White, 1991). The set G′ contains only vectors that have
a non-empty witness region, and is constructed incrementally. The algorithm
starts with a low-cost check at each corner point es of ∆(S), defined as a vector
with all zeros except es(s) = 1. The maximizing vector of G for each es is copied
to G′, after which we can remove G′ from G. For all the vectors remaining in G
we solve the linear program described above to move all other non-dominated
vectors to G′.
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Algorithm 3.1 Pruning a set of vectors G, based on Lark’s algorithm.

prune(G)
G′ ← ∅
for all s ∈ S do

α← arg maxα′∈G es · α
′, G′ ← G′ ∪ {α}

G← G \G′

while G 6= ∅ do

b, x← solve linear program Fig. 3.2(b) for α ∈ G and V = G′

if x ≤ 0 then

G← G \ {α}
else

α′ ← arg maxα∈G b · α, G′ ← G′ ∪ {α′}, G← G \ {α′}
Return G′

However, the added cost of linear programming is substantial; Cassandra
(1998a) reports that on a range of problems solved by exact value iteration,
90% to 95% of the computation time is spent in linear-programming routines,
either for pruning or searching the belief space (as in Sec. 3.4.4).

3.4.3 Incremental Pruning

Recall that Monahan (1982)’s algorithm first generates all |A||Vn|
|O| vectors

of HVn before pruning all dominated vectors. Incremental Pruning methods
(Zhang and Liu, 1996; Cassandra et al., 1997; Feng and Zilberstein, 2004; Lin
et al., 2004; Varakantham et al., 2005) save computation time by exploiting the
fact that

prune(G⊕G′ ⊕G′′) = prune(prune(G⊕G′)⊕G′′). (3.27)

In this way the number of constraints in the linear program of Fig. 3.2(b) grows
slowly (Cassandra et al., 1997), leading to better performance. The basic Incre-
mental Pruning algorithm exploits (3.27) when computing Vn+1 as follows:

Vn+1 = prune
(

⋃

a

Ga

)

, with (3.28)

Ga = prune
(

⊕

o

Go
a

)

(3.29)

= prune(G1
a ⊕G2

a ⊕G3
a ⊕ · · · ⊕G|O|

a ) (3.30)

= prune(· · · prune(prune(G1
a ⊕G2

a)⊕G3
a) · · · ⊕G|O|

a ). (3.31)

This concludes our brief review of exact value-iteration algorithms that focus
on enumerating vectors and pruning dominated ones. In the next section we
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will shift our focus to algorithms that search the belief space for a set of witness
points sufficient for computing an exhaustive backup (Sondik, 1971; Cheng,
1988; Cassandra et al., 1994).

3.4.4 Sondik’s One-Pass algorithm

In Sec. 3.3 we have seen that it is straightforward to compute the next-horizon
vector αb

n+1 for a particular b given the current value function Vn, using the
backup operator (3.18). Specifically, focusing on a particular belief b reduces
the cross-sum of the Gao sets to a simple maximization. We know that Vn+1

will consist of only a finite number of vectors {αk
n+1} (and possibly much less

than |A||Vn|
|O|), and if we knew in advance a witness point bk for each of them,

we could compute Vn+1 = ∪bk
backup(bk). This insight gives rise to a series of

algorithms that search the belief space for a set {bk}, sufficient for generating
all vectors of Vn+1 (Sondik, 1971; Cheng, 1988; Cassandra et al., 1994).

Our focus will be on the One-Pass algorithm (Sondik, 1971; Smallwood and
Sondik, 1973), as it is the first and most straightforward algorithm that searches
the belief space. It is based on the concept that a particular witness point bk has
a witness region, i.e., the region for which its αk

n+1 will dominate all other vectors
in Vn+1, some of which will still need to be computed. If we could compute bk’s
witness region, we could pick a new witness point b′k just outside bk’s witness
region, compute b′k’s witness region and iterate until we have covered the entire
belief space. At that point we would have all vectors of Vn+1, completing the
exhaustive backup stage.

Sondik’s One-Pass algorithm is initialized with an empty set G = ∅ vectors
and an empty search list. It starts by backing up an arbitrary belief point b0.
The computed vector α0

n+1 is optimal for b0, but we do not know for which
other b ∈ ∆(S) it is also optimal. However, without going into details, Sondik
defined a number of constraints which define a region (or volume) in the belief
space around b0, and α0

n+1 is guaranteed to be optimal for this region. Linear
programming is performed to compute the region, and belief points that lie on
the edge of the region are added to its search list. The algorithm proceeds by
backing up a belief point from its search list, compute its region, add the new
edge beliefs to the list, etc., until the regions form a complete partition of the
belief space. At that point the algorithm has computed all vectors of Vn+1.

However, Sondik’s regions are rather conservative, i.e., its borders are still
inside the true witness region, which will result in duplicate vectors being com-
puted. Subsequent algorithms that search the belief space such as Relaxed
Region, Linear Support (Cheng, 1988) and Witness (Cassandra et al., 1994) im-
prove on the computation time of the One-Pass algorithm by relaxing Sondik’s
constraints, resulting in fewer but larger regions (while not exceeding the true
witness region).
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3.4.5 Speeding up exact value iteration with approximate

backups

Zhang and Zhang (2001) proposed an alternative approach to exact value iter-
ation, building on the work of Cheng (1988), designed to speed up each exact
value-iteration step. It turns out that value iteration still converges to the opti-
mal value function if exact value-update steps are interleaved with approximate
update steps in which a new value function Vn+1 is computed from Vn such that

Vn(b) ≤ Vn+1(b) ≤ HVn(b), for all b ∈ ∆(S). (3.32)

This additionally requires that the value function is appropriately initialized, by
choosing V0 to be a vector with all its components equal to 1

1−γ
mins,a R(s, a).

Such a single vector represents the minimum of cumulative discounted reward
obtainable in the POMDP, and is guaranteed to be below V ∗. Zhang and Zhang
(2001) compute Vn+1 by backing up witness points of Vn for a number of steps.
As we saw above, backing up a set of belief points is a relatively cheap operation.
Thus, given Vn, a number of vectors of HVn are created by applying backup

to the witness points of Vn, and then a set of linear programs are solved to
ensure that Vn+1(b) ≥ Vn(b), ∀b ∈ ∆(S). This is repeated for a number of
steps, before an exact value-update step takes place. The authors demonstrate
experimentally that a combination of approximate and exact backup steps can
speed up exact value iteration.

In general, however, computing optimal planning solutions for POMDPs
is an intractable problem for any reasonably sized task, as we discussed in
Sec. 2.5 (Papadimitriou and Tsitsiklis, 1987; Madani et al., 2003). This calls
for approximate solution techniques. We will describe next a line of research
on approximate POMDP algorithms which focus on planning on a fixed set of
belief points.

3.5 Approximate value iteration

The major cause of intractability of exact POMDP solution methods is their
aim of computing the optimal action for every possible belief point in ∆(S). For
instance, if we use (3.25) we can end up with a series of value functions whose
size grows exponentially in the planning horizon. A natural way to sidestep this
intractability is to settle for computing an approximate solution by considering
only a finite set of belief points. The backup stage reduces to applying (3.18)
a fixed number of times, resulting in a small number of vectors (bounded by
the size of the belief set). The motivation for using approximate methods is
their ability to compute successful policies for much larger problems, which
compensates for the loss of optimality.
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Approximate POMDP value-iteration methods operating on a fixed set of
points are explored by Lovejoy (1991) and in subsequent works (Hauskrecht,
2000; Poon, 2001; Pineau et al., 2003a; Spaan and Vlassis, 2005a). For instance,
Pineau et al. (2003a) use an approximate backup operator H̃PBVI instead of H,
that computes in each value-backup stage the set

H̃PBVIVn =
⋃

b∈B

backup(b), (3.33)

using a fixed set of belief points B. The general assumption underlying these
so-called point-based methods is that by updating not only the value but also its
gradient (the α vector) at each b ∈ B, the resulting policy will generalize well
and be effective for beliefs outside the set B. Whether or not this assumption
is realistic depends on the POMDP’s structure and the contents of B, but
the intuition is that in many problems the set of ‘reachable’ beliefs (reachable
by following an arbitrary policy starting from the initial belief) forms a low-
dimensional manifold in the belief simplex, and thus can be covered densely
enough by a relatively small number of belief points.

Crucial to the control quality of the computed approximate solution is the
makeup of B. A number of schemes to build B have been proposed. For
instance, one could use a regular grid on the belief simplex, computed, e.g.,
by Freudenthal triangulation (Lovejoy, 1991). Other options include taking all
extreme points of the belief simplex or use a random grid (Hauskrecht, 2000;
Poon, 2001). An alternative scheme is to include belief points that can be
encountered by simulating the POMDP: we can generate trajectories through
the belief space by sampling random actions and observations at each time step
(Lovejoy, 1991; Hauskrecht, 2000; Poon, 2001; Pineau et al., 2003a; Spaan and
Vlassis, 2005a). This sampling scheme focuses the contents of B to be beliefs
that can actually be encountered while experiencing the POMDP model.

The PBVI algorithm (Pineau et al., 2003a) is an instance of such a point-
based POMDP algorithm. PBVI starts by selecting a small set of beliefs B0,
performs a number of backup stages (3.33) on B0, expands B0 to B1 by sampling
more beliefs, performs again a series of backups, and repeats this process until a
satisfactory solution has been found (or the allowed computation time expires).
The set Bt+1 grows by simulating actions for every b ∈ Bt, maintaining only
the new belief points that are furthest away from all other points already in
Bt+1. This scheme is a heuristic to let Bt cover a wide area of the belief space,
but comes at a cost as it requires computing distances between all b ∈ Bt. By
backing up all b ∈ Bt the PBVI algorithm generates at each stage approximately
|Bt| vectors, which can lead to slow performance in domains requiring large Bt.

In the next section we will present a point-based POMDP value-iteration
method which does not require backing up all b ∈ B. We compute backups for
a subset of B only, but seeing to it that the computed solution will be effective
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for the complete set B. As a result we limit the growth of the number of vectors
in the successive value-function estimates, leading to significant speedups.

3.6 Perseus: a randomized point-based value-

iteration method

We have discussed exact and approximate methods for solving POMDPs, which
allow us to compute successful plans for agents in stochastic and partially ob-
servable environments. Below we describe Perseus, an approximate solution
method capable of computing competitive solutions in large POMDP domains.

Perseus is a point-based value-iteration algorithm for POMDPs (Vlassis
and Spaan, 2004; Spaan and Vlassis, 2004, 2005a). The value-update scheme of
Perseus implements a randomized approximate backup operator H̃Perseus that
increases (or at least does not decrease) the value of all belief points in B. Such
an operator can be implemented very efficiently in POMDPs given the shape
of the value function. The key idea is that in each value-backup stage we can
improve the value of all points in the belief set by only updating the value and
its gradient of a (randomly selected) subset of the points. In each backup stage,
given a value function Vn, we compute a value function Vn+1 that improves the
value of all b ∈ B, i.e., we build a value function Vn+1 = H̃PerseusVn that upper
bounds Vn over B (but not necessarily over ∆(S) which would require linear
programming):

Vn(b) ≤ Vn+1(b), for all b ∈ B. (3.34)

We first let the agent randomly explore the environment and collect a set B
of reachable belief points, which remains fixed throughout the complete algo-
rithm. We initialize the value function V0 as a single vector with all its compo-
nents equal to 1

1−γ
mins,a R(s, a) (Zhang and Zhang, 2001). Starting with V0,

Perseus performs a number of backup stages until some convergence criterion
is met. The backup stage is defined in Algorithm 3.2.

In Perseus, often a small number of vectors will be sufficient to improve
Vn(b) ∀b ∈ B, especially in the first steps of value iteration. The idea is to com-
pute these vectors in a randomized greedy manner by sampling from increasingly
smaller subsets of B. We keep track of the set of non-improved points during a
backup stage, consisting of those b ∈ B whose new value Vn+1(b) is still lower
than Vn(b). At the start of each backup stage, Vn+1 is set to ∅ which means B̃
is initialized to B, indicating that all b ∈ B still need to be improved in this
backup stage. As long as B̃ is not empty, we sample a point b from B̃ and
compute α = backup(b). If α improves the value of b (i.e., if b · α ≥ Vn(b) at
line 3), we add α to Vn+1 and update Vn+1(b) for all b ∈ B by computing their
inner product with the new α. The hope is that α improves the value of many
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Algorithm 3.2 Perseus backup stage: Vn+1 = H̃PerseusVn.

1: Vn+1 ← ∅, B̃ ← B
2: Sample belief b uniformly at random from B̃ and compute α = backup(b).
3: if b · α < Vn(b) then

4: α = arg max{αk
n}k

b · αk
n

5: Vn+1 ← Vn+1 ∪ {α}
6: B̃ = {b ∈ B : Vn+1(b) < Vn(b)}
7: if B̃ 6= ∅ then

8: Goto 2
9: Return Vn+1

other points in B, and all these points are removed from B̃. As long as B̃ is not
empty we sample belief points from it and add their α vectors.

To ensure termination of each backup stage we have to enforce that B̃ shrinks
when adding vectors, i.e., that each α actually improves at least the value of the
b that generated it. If not (i.e., b ·α < Vn(b) at line 3), we ignore α and insert a
copy of the maximizing vector of b from Vn in Vn+1. Point b is now considered
improved and is removed from B̃ (line 6), together with any other belief points
which had the same vector as maximizing one in Vn. This procedure ensures
that B̃ shrinks and the backup stage will terminate. A pictorial example of a
backup stage is presented in Fig. 3.3.

Perseus performs backup stages until some convergence criterion is met.
For point-based methods several convergence criteria can be considered, one
could for instance bound the difference between successive value-function esti-
mates maxb∈B(Vn+1(b)−Vn(b)). Another option would be to track the number
of policy changes: the number of b ∈ B which had a different optimal action in
Vn compared to Vn+1 (Lovejoy, 1991).

3.7 Related Work

In Sec. 3.5 we reported on a class of approximate solution methods for POMDPs
that focus on computing a value-function approximation based on a fixed set of
prototype belief points. Here we will broaden the picture to other approximate
POMDP solution techniques. A related overview is provided by Hauskrecht
(2000).

3.7.1 MDP-based heuristics

A few heuristic control strategies have been proposed which rely on a solution
π∗(s) or Q∗(s, a) of the underlying MDP (Cassandra, Kaelbling, and Kurien,
1996). Perhaps the most straightforward heuristic is for every belief to consider
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Figure 3.3: Example of a Perseus backup stage in a two-state POMDP. The belief
space is depicted on the x-axis and the y-axis represents V (b). Solid lines are
αk

n vectors from the current stage n and dashed lines are αk
n−1 vectors from the

previous stage. We operate on a B of 7 beliefs, indicated by the tick marks. The
backup stage computing Vn+1 from Vn proceeds as follows: (a) value function
at stage n; (b) start computing Vn+1 by sampling b6, add α = backup(b6) to
Vn+1 which improves the value of b6 and b7; (c) sample b3 from {b1, . . . , b5}, add
backup(b3) to Vn+1 which improves b1 through b5; and (d) the value of all b ∈ B

has improved, the backup stage is finished.

its most likely state (MLS), and use the action the MDP policy prescribes for
the state

πMLS(b) = π∗(arg max
s

b(s)). (3.35)

The MLS heuristic completely ignores the uncertainty in the current belief,
which clearly can be suboptimal.

A simple approximation technique is QMDP (Littman, Cassandra, and Kael-
bling, 1995), which also treats the POMDP as if it were fully observable. QMDP

solves the MDP and defines a control policy

πQMDP
(b) = arg max

a

∑

s

b(s)Q∗(s, a). (3.36)

QMDP can be very effective in some domains, but the policies it computes will not
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take informative actions, as the QMDP solution assumes that any uncertainty re-
garding the state will disappear after taking one action. As such, QMDP policies
will fail in domains where repeated information gathering is necessary. Cassan-
dra (1998a) provides an extensive experimental comparison of MLS, QMDP, and
other MDP-based heuristics.

One can also expand the MDP setting to model some form of uncertainty
without considering full-blown POMDP beliefs. For instance, in robotics the
navigation under localization uncertainty problem can be modeled by the mean
and entropy of the belief distribution (Cassandra et al., 1996; Roy and Thrun,
2000). Although attractive from a computational perspective, such approaches
are likely to fail when the belief is not uni-modal but has a more complex shape.

3.7.2 Grid-based approximations

One way to sidestep the intractability of exact POMDP value iteration is to
grid the belief simplex, using either a fixed grid (Drake, 1962; Lovejoy, 1991;
Bonet, 2002) or a variable grid (Brafman, 1997; Zhou and Hansen, 2001). Value
backups are performed for every grid point, but only the value of each grid
point is preserved and the gradient is ignored. The value of non-grid points is
defined by an interpolation rule. The grid based methods differ mainly on how
the grid points are selected and what shape the interpolation function takes.
In general, regular grids do not scale well in problems with high dimensionality
and non-regular grids suffer from expensive interpolation routines.

3.7.3 Policy search

An alternative to computing an (approximate) value function is policy search:
these methods search for a good policy within a restricted class of controllers
(Platzman, 1981). For instance, policy iteration (Hansen, 1998b) and bounded
policy iteration (BPI) (Poupart and Boutilier, 2004) search through the space of
(bounded-size) stochastic finite-state controllers by performing policy-iteration
steps. Other options for searching the policy space include gradient ascent
(Meuleau, Kim, Kaelbling, and Cassandra, 1999a; Kearns, Mansour, and Ng,
2000; Ng and Jordan, 2000; Baxter and Bartlett, 2001; Aberdeen and Bax-
ter, 2002) and heuristic methods like stochastic local search (Braziunas and
Boutilier, 2004). In particular, the Pegasus method (Ng and Jordan, 2000) es-
timates the value of a policy by simulating a (bounded) number of trajectories
from the POMDP using a fixed random seed, and then takes steps in the policy
space in order to maximize this value. Policy search methods have demonstrated
success in several cases, but searching in the policy space can often be difficult
and prone to local optima.



3.8 Experimental results 45

3.7.4 Heuristic search

Another approach for solving POMDPs is based on heuristic search (Satia and
Lave, 1973; Hansen, 1998a; Smith and Simmons, 2004). Defining an initial
belief b0 as the root node, these methods build a tree that branches over (a, o)
pairs, each of which recursively induces a new belief node. These methods
bear a similarity to Perseus since they also focus on reachable beliefs from b0.
However, they differ in the way belief points are selected to back up; in the
above methods branch-and-bound techniques are used to maintain upper and
lower bounds to the expected return at fringe nodes in the search tree. Hansen
(1998a) proposes a policy-iteration method that represents a policy as a finite-
state controller, and which uses the belief tree to focus the search on areas of
the belief space where the controller can most likely be improved. However, its
applicability to large problems is limited by its use of full dynamic-programming
updates. HSVI (Smith and Simmons, 2004) is an approximate value-iteration
technique that performs a heuristic search through the belief space for beliefs
at which to update the bounds, similar to work by Satia and Lave (1973). An
alternative approach to maintaining uncertainty estimates of an approximate
value function is based on Gaussian Processes (Tuttle and Ghahramani, 2004).

3.7.5 Compression techniques

Compression techniques can be applied to large POMDPs to reduce the di-
mensionality of the belief space, facilitating the computation of an approximate
solution. Roy, Gordon, and Thrun (2005) apply Exponential family PCA to a
sample set of beliefs to find a low-dimensional representation, based on which
an approximate solution is sought. Such a nonlinear compression can be very
effective, but requires learning a reward and transition model in the reduced
space. After such a model is learned, one can compute an approximate solution
for the original POMDP using, e.g., MDP value iteration. Alternatively linear
compression techniques can be used which preserve the shape of value function
(Poupart and Boutilier, 2003a). Such a property is desirable as it allows one to
exploit the existing POMDP machinery. For instance, linear compression has
been applied as a preprocessing step for BPI (Poupart and Boutilier, 2005) as
well as Perseus (Poupart, 2005).

3.8 Experimental results

We will show experimental results applying Perseus on benchmark problems
from the POMDP literature, and a robot planning domain, TRC. Table 3.2
summarizes these domains in terms of the size of S, O and A. Each belief set
was gathered by simulating trajectories of interactions of the agent with the
POMDP environment starting at a random state sampled from b0, and at each
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Name |S| |O| |A|
Tiger-grid 33 17 5
Hallway 57 21 5
Hallway2 89 17 5
Tag 870 30 5
TRC 1000 10 4

Table 3.2: Characteristics of problem domains.

time step the agent picked an action uniformly at random. In all domains the
discount factor γ was set to 0.95.

3.8.1 Benchmark domains

The Hallway, Hallway2 and Tiger-grid problems (introduced by Littman et al.,
1995) are maze domains that have been commonly used to test scalable POMDP
solution techniques (Littman et al., 1995; Brafman, 1997; Zhou and Hansen,
2001; Pineau et al., 2003a; Smith and Simmons, 2004; Spaan and Vlassis, 2005a;
Poupart, 2005). The Tag domain (Pineau et al., 2003a) is an order of magnitude
larger than the first three problems, and is a recent benchmark problem (Pineau
et al., 2003a; Smith and Simmons, 2004; Braziunas and Boutilier, 2004; Poupart
and Boutilier, 2004; Spaan and Vlassis, 2005a; Poupart, 2005).

3.8.1.1 Benchmark Mazes

Littman et al. (1995) introduced three benchmark maze domains: Tiger-grid,
Hallway, and Hallway2. All of them are navigation tasks: the objective for
an agent is to reach a designated goal state as quickly as possible. The agent
observes each possible combination of the presence of a wall in four directions
plus a unique observation indicating the goal state; in the Hallway problem
three other landmarks are also available. At each step the agent can take one
out of five actions: {stay in place, move forward, turn right, turn left, turn

around}. Both the transition and the observation model are noisy. Table 3.3(a)
through (c) compares the performance of Perseus to other algorithms. For
each problem we sampled a set B of 1,000 beliefs, and executed Perseus 10
times for each problem using different random seeds. The average expected
discounted reward R is computed from 1,000 trajectories starting from random
states (drawn according to b0) for each of the 10 Perseus runs, and following
the computed policy. The reported reward R is the average over these 10,000
trajectories. Perseus reaches competitive control quality using a small number
of vectors resulting in a considerable speedup.1

1Perseus and QMDP results were computed in Matlab on an Intel Pentium IV 2.4 GHz;
other results were obtained on different platforms, so time comparisons are rough.
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Tiger-grid R |π| T
HSVI 2.35 4860 10341

Perseus 2.34 134 104
PBUA 2.30 660 12116
PBVI 2.25 470 3448

BPI w/b 2.22 120 1000
Grid 0.94 174 n.a.

QMDP 0.23 n.a. 2.76

(a) Results for Tiger-grid.

Hallway R |π| T
PBVI 0.53 86 288

PBUA 0.53 300 450
HSVI 0.52 1341 10836

Perseus 0.51 55 35
BPI w/b 0.51 43 185

QMDP 0.27 n.a. 1.34

(b) Results for Hallway.

Hallway2 R |π| T
Perseus 0.35 56 10

HSVI 0.35 1571 10010
PBUA 0.35 1840 27898
PBVI 0.34 95 360

BPI w/b 0.32 60 790
QMDP 0.09 n.a. 2.23

(c) Results for Hallway2.

Tag R |π| T
Perseus −6.17 280 1670

HSVI −6.37 1657 10113
BPI w/b −6.65 17 250
BBSLS ≈ −8.3 30 105

BPI n/b −9.18 940 59772
PBVI −9.18 1334 180880
QMDP −16.9 n.a. 16.1

(d) Results for Tag.

Table 3.3: Experimental comparisons of Perseus with other algorithms. Perseus

results are averaged over 10 runs. Each table lists the method, the average expected
discounted reward R, the size of the solution |π| (value function or controller size),
and the time T (in seconds) used to compute the solution. Sources: PBVI (Pineau
et al., 2003a), BPI no bias (Poupart and Boutilier, 2004), BPI with bias (Poupart,
2005), HSVI (Smith and Simmons, 2004), Grid (Brafman, 1997), PBUA (Poon,
2001) and BBSLS (Braziunas and Boutilier, 2004) (approximate, read from figure).

3.8.1.2 Tag

The goal in the Tag domain, described by Pineau et al. (2003a), is for a robot
to search for a moving opponent robot and tag it. The chasing robot cannot
observe the opponent until they occupy the same position, at which time it
should execute the tag action in order to win the game, and receive a reward
of 10. If the opponent is not present at the same location, the reward will be
−10, and the robot is penalized with a −1 reward for each motion action it
takes. The opponent tries to escape from being tagged by moving away of the
chasing robot, however, it has a 0.2 probability of remaining at its location. The
chasing and opponent robot both start at a random location. The chasing robot
has perfect information regarding its own position and its movement actions
{north, east, south, west} are deterministic. The state space is represented as
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Figure 3.4: Tag domain. (a) State space with chasing and opponent robot; (b)–(e)
performance of Perseus.

the cross-product of the states of the two robots. Both robots can be located
in one of the 29 positions depicted in Fig. 3.4(a), and the opponent can also
be in a tagged state, resulting in a total of 870 states. Tag is a rather large
benchmark problem compared to other POMDP problems studied in literature,
but it exhibits a sparse structure. We applied Perseus to a belief set B of
10,000 points.

In Fig. 3.4(b)–(e) we show the performance of Perseus averaged over 10
runs, where error bars indicate standard deviation within these runs. To eval-
uate the computed policies we tested each of them on 10 trajectories (of at
most 100 steps) times 100 starting positions (sampled from the starting belief
b0). Fig. 3.4(b) displays the value as estimated on B,

∑

b∈B V (b); (c) the ex-
pected discounted reward averaged over the 1,000 trajectories; (d) the number
of vectors in the value-function estimate, |{αk

n}|; and (e) the number of policy
changes: the number of b ∈ B which had a different optimal action in Vn−1

compared to Vn. The latter can be regarded as a measure of convergence for
point-based solution methods (Lovejoy, 1991). We can see that in almost all
experiments Perseus reaches solutions of virtually equal quality and size.

Table 3.3(d) compares the performance of Perseus with other state-of-the-
art methods. The results show that in the Tag problem Perseus displays better
control quality than any other method and computes its solution an order of
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Figure 3.5: TRC domain. (a) The TRC environment, in which the markers {·, +,×}
denote the grid positions of the problem. The positions × (close to P ) are the
pickup locations, the ones marked by + (below D) are the delivery (goal) positions.
(b) An example panoramic images, corresponding to a particular observation ok.
(c) The induced p(x|ok), where the darker the disk, the higher the probability.

magnitude faster than most other methods. Specifically, its solution computed
on |B| = 10,000 beliefs consists of only 280 vectors, much less than PBVI which
maintains a vector for each of its 1334 b ∈ B. This indicates that the randomized
backup stage of Perseus is justified: it takes advantage of a large B while the
size of the value function grows moderately with the planning horizon, leading
to significant speedups. It is interesting to compare the two variations of BPI,
with bias (w/b) (Poupart, 2005) or without (n/b) (Poupart and Boutilier, 2004).
The bias focuses on the reachable belief space by incorporating the initial belief
which dramatically increases its performance in solution size and computation
time, but it does not reach the control quality of Perseus.

3.8.2 TRC robot planning domain

We applied Perseus on a problem based on data obtained in a realistic setting.
The TRC domain is a delivery task in an office environment with 1000 states
(Spaan and Vlassis, 2004). The task is to pick up mail at the entrance of the
office (P, see Fig. 3.5(a)) and deliver it to a certain room (D). At the start of
the task the robot is uncertain about its location, and whether it has picked
up the mail. The observation model is based on panoramic images taken by an
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omnidirectional camera mounted on the robot. We used the MEMORABLE1

robot database that contains a set of approximately 8000 images collected man-
ually by driving the robot around in a 17 × 17 meters office environment with
constant orientation, with a sampling resolution of 0.1 meters. Fig. 3.5(b) shows
an example image from this database.

As we assume finite and discrete sets S and O in this chapter we need to
discretize the state space and the observation space. The state space is defined
as the cross-product of the robot’s location x and a single bit, indicating whether
the robot has already successfully picked up the mail which needs delivery. For
discretizing the positions in the map of the environment we performed a k-
means clustering (Likas, Vlassis, and Verbeek, 2003) on a subset of all possible
positions, resulting in a grid of 500 positions X = {xk}, which are depicted in
Fig. 3.5(a).

For the discretization of the observation space one should choose the number
of prototype observations carefully. A large number of observations can provide
more discriminant information on the true position of the robot and thus lead
to more peaked beliefs. The more peaked the reachable beliefs are, the more
the problem resembles the underlying MDP and the easier it would be to find
a good policy. On the other hand, a large number of observations will not solve
the problem of perceptual aliasing. Furthermore, the number of observation
prototypes determines the size of the set {αk

n+1} used in the backup operations
in (3.18). As such, the number of observation prototypes increases the computa-
tional requirements of the algorithm. We applied Principal Component Analysis
(PCA) on the image data in order to reduce their dimensionality (Vlassis, Ter-
wijn, and Kröse, 2002). We computed a three-dimensional feature vector for
each one of a (randomly chosen) set of 1000 images, by projecting them to the
first three eigenvectors (those with the largest eigenvalues) of their covariance
matrix. Finally, to discretize this feature space, we used k-means clustering
resulting in 10 three-dimensional prototype feature vectors {o1, . . . , o10}.

We constructed the discrete observation model p(o|s) as follows (where we
dropped the dependence on a for simplicity). We projected each image in the
database to the feature space and found its nearest prototype feature vector
among {ok}k=1...10. We also associated each robot position in the database
with its nearest prototype position in X. Then the probability of observing a
prototype feature vector oi from a prototype robot location xk can be computed
by a histogram operation as follows

p(ok|xk) =
p(ok, xk)

∑

ol
p(ol, xk)

(3.37)

where p(ok, xk) is simply the fraction of pairs {oi, xi} in the database such that
oi ∈ ok and xi ∈ xk, where ‘∈’ denotes nearest-cluster membership. Finally,

1The MEMORABLE database has been provided by the Tsukuba Research Center in
Japan, for the Real World Computing project.
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Figure 3.6: Results for the TRC domain.

we duplicated this model for both instances of the bit indicating whether the
mail has been picked up. Fig. 3.5(b) displays a panoramic images closest to a
particular ok ∈ O, Fig. 3.5(c) shows the corresponding p(x|ok).

The robot can execute four basic motion commands {north, east, south,

west} which transports it according to a Gaussian distribution centered on the
expected resulting position (translated two meters in the corresponding direc-
tion), with the probability mass distributed over the discrete states. In order to
accomplish its task the robot must first execute the pickup action in one of the
five pickup states near the entrance of the office (marked by P in Fig. 3.5(a)).
Only in one of these states the action results in flipping the pickup bit, after
which delivering the mail has become possible. To complete the task and receive
a reward of 10 the robot has to execute the delivery in one of the ten delivery
states (indicated by D in Fig. 3.5(a)). Trying to deliver without the mail or
delivering to the wrong location is penalized with a reward of −10. Attempting
to pick up the mail outside the pickup locations is penalized with reward −1.
All motion actions yield no reward.

We sampled a belief set B of 10, 000 belief points and we ran Perseus 10
times with different random seeds. To evaluate the computed value-function es-
timates we collected rewards by sampling trajectories from 100 random starting
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Figure 3.7: Some example trajectories in the TRC environment. Start positions are
marked with × and the last state of each trajectory is denoted by a 4.

locations with the pickup bit off. Note that the robot has no knowledge regard-
ing the pickup bit until it has picked up the mail at the appropriate location.
In our experiments we used a discount factor γ = 0.95 and each trajectory was
stopped after 100 steps (if the robot had not yet delivered the mail by then).

Fig. 3.6 shows the good performance of our algorithm, the error bars indicate
standard deviation within the 10 runs of the algorithm. Fig. 3.6(a) displays the
value as estimated on B,

∑

b∈B V (b), (b) the expected discounted reward, (c)

the number of vectors in the value-function estimate, |{αk
n}| and (d) the number

of policy changes: the number of b ∈ B that have a different optimal action in
Vn compared to Vn−1. We can see that algorithm converges to approximately
the same solution quality for all runs, both in value and collected reward. The
amount of policy changes drops to below 0.5% of B, which can also be regarded
as an indication of convergence. The number of vectors in the value-function
estimates grows as the planning horizon increases but the size of the value func-
tion remains acceptable. To visualize the policies that our algorithm computes,
we plotted some example trajectories in Fig. 3.7. They show the computed pol-
icy directs the robot to first move to the pickup states, pick up the mail, and
then move to the delivery locations in order to deliver the mail. We also tested
QMDP on this problem, but it fails to compute a successful policy (it receives
reward 0) due to the fact that it cannot represent the uncertainty regarding the
pickup bit.

3.9 Discussion

The key observation underlying the Perseus algorithm is that when a belief b is
backed up, the resulting vector improves not only V (b) but often also the value
of many other belief points in B. This results in value functions with a relatively
small number of vectors (as compared to, e.g., Poon, 2001; Pineau et al., 2003a).
Experiments show indeed that the number of vectors grows modestly with the
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number of backup stages (|Vn| � |B|). In practice this means that we can afford
to use a much larger B than other point-based methods, which has a positive
effect on the approximation accuracy as dictated by the bounds of Pineau et al.
(2003a). Furthermore, compared with other methods that build the set B based
on various heuristics (Pineau et al., 2003a; Smith and Simmons, 2004), our
build-up of B is cheap as it only requires sampling random trajectories starting
from b0. Moreover, duplicate entries in B will only affect the probability that a
particular b will be sampled in the value-update stages, but not the size of Vn.

An alternative to using a single fixed set B that is collected by following a
fixed policy at the beginning of the algorithm, would be to resample a new Bt

after every t-th backup stage (or at fixed intervals) by following the most recent
policy. Such an approach could be justified by the fact that an agent executing
an optimal policy will most probably visit only a (small) subset of the beliefs in
B. We have not tested how such a scheme would affect the solution quality of
Perseus and what trade-offs we can achieve for the additional computational
cost of sampling multiple sets B. We note that similar ‘off-policy’ learning using
a fixed set of sampled states has also been adopted by other recent algorithms
like LSPI (Lagoudakis and Parr, 2003) and PSDP (Bagnell, Kakade, Ng, and
Schneider, 2004).

The backups of Perseus on a fixed set B can be viewed as a particular in-
stance of asynchronous dynamic programming (Bertsekas and Tsitsiklis, 1989).
In asynchronous dynamic-programming algorithms no full sweeps over the state
space are made, but the order in which states are backed up is arbitrary. This al-
lows an algorithm to focus on backups which may have a high potential impact,
as for instance in the prioritized-sweeping algorithm for solving fully observable
MDPs (Moore and Atkeson, 1993; Peng and Williams, 1993). A drawback is that
the notion of an exact planning horizon is somewhat lost: in general, after per-
forming n backup stages the computed plan will not be considering n steps into
the future, but less. By backing up non-improved belief points asynchronously
Perseus focuses on interesting regions of the (reachable) belief space, and by
sampling at random ensures that eventually all b ∈ B will be taken into account.
As we ensure that the value of a particular belief point never decreases, we are
guaranteed that Perseus will converge: the proof only requires observing that
every added vector is always below V ∗ (Poon, 2001; Vlassis and Spaan, 2004).
Moreover, as we explained above, Perseus can handle large belief sets B, thus
obviating the use of dynamic belief-point selection strategies like those proposed
by Hauskrecht (2000); Poon (2001), and Pineau et al. (2003a). Note that the
only parameter to be set by the user is the size of B; however, the complexity
of the resulting policy seems to be only mildly dependent on the size of B.

An interesting issue is how many new vectors are generated in each backup
stage of Perseus, and how this may affect the speed of convergence of the
algorithm. In general, the smaller the size |Vn| of a value function, the faster
the backups (since the backup operator has linear dependence on |Vn|). On the
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other hand, two consecutive value functions may differ arbitrarily in size—and
we have observed cases where the new value function has fewer vectors than
the old value function—which makes it hard to derive bounds on the speed of
convergence of Perseus and complicates the analysis of the involved trade-offs.
We have mainly identified two cases where only a small number of new vectors
are added to a value function. The first case is during the initial backup stages,
and when V0 has been initialized very low (e.g., for large γ and large negative
immediate reward). In this case a single vector may improve all points, for a
number of backup stages, until the value function has reached some sufficient
level. The second case is near convergence, when the value function has almost
converged in certain regions of the belief space. Sampling a belief point in such
a region will result in a (near) copy of the old vector. Whereas the former
case provides evidence that the value function has been initialized too low (and
adding a single vector is an efficient way to ‘correct’ this), the latter case may
be viewed as providing evidence for the convergence of Perseus.



Chapter 4

Planning under uncertainty in

continuous domains

In the previous chapter we introduced Perseus, our POMDP algorithm for
planning in stochastic and partially observable environments. We assumed that
the agent’s universe was discrete and finite, as in most of the POMDP litera-
ture. This chapter will broaden the applicability of Perseus by extending it to
continuous state and action spaces.

4.1 Introduction

The majority of literature on model-based solution techniques for POMDPs con-
siders discrete states, actions and observations. Unfortunately, many real-world
POMDPs are naturally defined with continuous states, actions and observations.
Returning to the service-robot domain we considered in Chapter 2, we can see
that many of the elements of the problem are naturally modeled as continuous
quantities. For instance, the robot’s location can be denoted by a pair of real
numbers indicating its (x, y) position on some Cartesian coordinate system, and
the movement actions it executes can be modeled as driving k meters at heading
θ, where k and θ are again real numbers. Instead of discretizing the state and
action sets, in this chapter we will work directly in the continuous spaces.

First, in Sec. 4.2 we extend Perseus to compute plans for agents which have
a continuous (or very large discrete) set of actions at their disposal (Spaan and
Vlassis, 2005b,a). Few POMDP solution techniques work directly with continu-
ous action spaces, but Thrun (2000) applied a particle filter to a POMDP with
continuous state and action space, and certain policy search methods can tackle
continuous action spaces directly (Ng and Jordan, 2000; Baxter and Bartlett,
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2001). Instead of discretizing the action space we sample actions from it, in
a way that is consistent with the Perseus backup stage. When we sample a
belief b from the belief set to backup, we also sample a number of actions from
the action space. We treat the sampled action set as any discrete action space,
and backup b using the sampled action set. If none of the sampled actions is
appropriate for the particular belief, i.e., the value of b is not improved, we copy
the old vector associated with b, as in the regular Perseus backup stage (see
Algorithm 3.2). In this way we ensure convergence, and in our experiments we
explore different ways of sampling a set of actions. Without any prior knowl-
edge, we can sample actions uniformly at random, but we can also exploit the
knowledge of the best known action a sofar (the action parameters associated
with a belief’s vector in the current value function), for example by sampling ac-
tions in a’s neighborhood. In particular, we can sample exploring and exploiting
actions in at the same time, and keep the best one.

Next, we propose a method for dealing with continuous-state POMDPs
(Porta, Spaan, and Vlassis, 2005). The main difficulty in designing algorithms
for continuous-state POMDPs is that integrals, the generalization of the sums
for discrete state spaces, can rarely be computed in closed form. We need to be
able to compute these integrals at many points throughout the value-iteration
procedure, for instance for computing a belief update, or to compute the ex-
pected value of a particular belief given a value function. We demonstrate in
Sec. 4.3.1 that value functions defined over the infinite-dimensional belief states
induced by continuous states are piecewise linear and convex (PWLC). As we
saw in Chapter 3, we can take advantage of the PWLC shape of the value func-
tion when designing exact and approximate solution methods. In Sec. 4.3.2 we
extend the Perseus algorithm to work with linear combinations of Gaussian
distributions as a representation for value functions and belief states.

In this chapter, we also describe work by Hoey and Poupart (2005) that
extends Perseus to continuous observation spaces. Combining the three ex-
tensions will result in a POMDP planner for fully continuous domains. In
Sec. 4.5 we report on experiments for both extensions presented in this chapter.
First we consider two discrete-state domains, one in which an agent equipped
with proximity sensors can move at a continuous heading and distance, and we
present results from a navigation task involving a mobile robot with omnidirec-
tional vision in a perceptually aliased office environment. Next we consider a
continuous-state domain, in which we demonstrate our Perseus extension to
continuous state spaces on a similar robot navigation task.

4.2 Continuous action spaces

An attractive feature of Perseus is that it can be naturally extended to very
large or continuous action spaces, due to the ‘improve–only’ principle of its
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backup stage. Note that the backup operator, repeated here for convenience,
involves a maximization over all actions a ∈ A:

backup(b) = arg max
{gb

a}a∈A

b · gb
a, (3.18)

where the vectors gb
a are defined in (3.16) or (3.24). For very large or continuous

action spaces, the full maximization over actions in (3.18) is clearly infeasible,
but one can resort to sampling-based techniques. The idea here is to replace the
full maximization over actions with a sampled max operator that performs the
maximization over a random subset of A (Szepesvári and Littman, 1996). The
use of such a sampled max operator is very well suited for the backup scheme
of Perseus in which we only require that the values of belief points do not
decrease over two consecutive backup stages. In particular, we can replace the
backup operator in (3.18) with a new backup operator α = backup′(b) defined
as follows (Spaan and Vlassis, 2005b,a):

backup′(b) = arg max
{gb

a}a∈A′

b

b · gb
a, (4.1)

where A′
b is a random set of actions drawn from A, and gb

a as above.
The backup′ operator can simply replace the backup operator in line 2 of

Algorithm 3.2 (see p. 42). As in the full maximization case, we need to check
in line 3 whether any of the vectors generated by the actions in A′

b improves
the value of the particular belief point. If not, we keep the old vector with its
associated action that was selected in a previous backup stage. Concerning the
sample complexity of the backup′ operator, i.e., how often we need to sample to
improve V (b), we can derive simple bounds that involve the number of actions
drawn and the probability to find a ‘good’ action from A (good in terms of value
improvement of b). We can easily show that with probability at least 1− δ, the
best action among k = |A′

b| actions selected uniformly at random from A is
among the best ε fraction of all actions from A, if k ≥ dlog δ/ log(1 − ε)e. The
proof involves the observation that the probability that none of the k samples
is in the best ε fraction is (1− ε)k.

In practice various sampling schemes are possible, which vary in the way A′
b is

constructed. We have identified a number of proposal distributions from which
to sample actions: (1) uniform from A, (2) a Gaussian distribution centered
on the best known action for the particular b, i.e., a(αb

n), and (3) a Dirac
distribution on a(αb

n). The latter two take into account the policy computed
so far by focusing on the current action associated with the input belief b (as
recorded in Vn), while sampling uniformly at random uses no such knowledge.
Actions sampled uniformly at random can be viewed as exploring actions, while
the other two distributions are exploiting current knowledge. As we can select
the makeup of A′

b, we can choose any combination of the distributions mentioned



58 Planning under uncertainty in continuous domains

above, allowing us to consider exploring and exploiting actions at the same time.
In our experiments (see Sec. 4.5.1) we implement the backup′ operator using a
number of different combinations and analyze their effects.

An alternative to sampling actions is to discretize the action space. A com-
putational advantage of reducing the action space to a fixed set of discrete
actions is the fact that when A is small enough one can cache in advance the
explicit tabular representation of the transition, observation and reward models
for all a ∈ A. In contrast, when we sample a real-valued action we have to
generate from a parametric description of these models their tabular represen-
tation, necessary for instance for computing the back-projected vectors (3.11)
used in the backup operator. However, discretization has its limitations, par-
ticularly when considering scalability. Using a naive uniform discretization, the
number of discrete actions grows exponentially with the number of dimensions
of the action space. For instance, consider a robotic arm with a large number
of joints or a robot which can control a number of sensors simultaneously: dis-
cretization would require a number of bins that is exponential in the number of
joints or sensors, respectively. More involved discretization strategies such as
quadtrees (Samet, 1984) or non-uniform resolution grids (Ferguson and Stentz,
2006) can save memory, but come at additional overhead. In the experiments of
Sec. 4.5.1.2 we will compare discretizing the action space to our sample-based
approach.

4.3 Continuous-state POMDPs

In Chapter 3 we described several algorithms for exact or approximate solving
of POMDPs with discrete state spaces that rely on a piecewise linear and convex
(PWLC) value function, a representation based on a discrete set of supporting
vectors. In this section, we show that this representation can be generalized
to continuous-state POMDPs, while assuming finite and discrete sets of actions
and observations (Porta et al., 2005). However, our extension to continuous
actions, as detailed in Sec. 4.2, is rather orthogonal and could be applied to
continuous-state POMDPs in a straightforward manner. Point-based POMDP
solvers such as Perseus have been extended to continuous observation spaces
by Hoey and Poupart (2005), but here we will focus on discrete observation
spaces for simplicity reasons.

We prove that the value function for continuous-state POMDPs is PWLC
on a set of α functions that play the same role of the α vectors in discrete-
state POMDPs. Moreover, we can also prove that the value-function recursion
is isotonic and a contraction (Porta, Spaan, and Vlassis, 2004). From these
results follows that the continuous-state value-function recursion is convergent
to a single fixed point and, therefore, from such an approximation to the optimal
value function V ∗, we can derive (near) optimal policies (see Puterman, 1994,
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Theorems 6.3.1 and 6.2.3). Using the theoretical results presented in Sec. 4.3.1,
we will define an approximate value-iteration algorithm for continuous-state
POMDPs in Sec. 4.3.2.

4.3.1 Value functions for continuous-state POMDPs

First we will generalize a number of concepts introduced in Chapter 2. The
propagation of a belief b through the transition model is defined for the contin-
uous case as

p(s′|b, a) =

∫

s∈S

p(s′|s, a)b(s). (4.2)

The Bellman equation (2.13) generalizes to continuous state spaces as follows:

V ∗(b) = max
a

[

〈Ra, b〉+ γ
∑

o

p(o|b, a)V ∗(bao)
]

, (4.3)

where the 〈f, b〉 operator is defined as the expectation of a given function f :
S → R with respect to the belief b, and Ra is the reward function for executing
action a. For POMDPs with discrete state spaces, this expectation can be
written as the inner product

〈f, b〉 =
∑

s∈S

f(s)b(s), (4.4)

as we have seen in Chapter 2. For continuous-state POMDPs, the expectation
is an integral over S:

〈f, b〉 =

∫

s∈S

f(s)b(s). (4.5)

In both cases, the operator 〈f, b〉 is a linear function in b.
We now prove that the continuous-state POMDP value function is PWLC

over the belief space.

Theorem 4.1. The value function in a continuous-state POMDP can be ex-
pressed as

Vn(b) = max
{αk

n}k

〈αk
n, b〉, (4.6)

for appropriate α functions αk
n : S → R.

Proof. The proof, as in the discrete case (see Sec. 3.3), is done via induction.
For planning horizon 0, we only have to take into account the immediate reward
and, thus, we have that

V0(b) = max
a
〈Ra, b〉, (4.7)

and, therefore, if we define

{αa
0}a = {Ra}a∈A, (4.8)
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we have that, as desired
V0(b) = max

{αk
0
}k

〈αk
0 , b〉. (4.9)

As in Sec. 3.3, we turn (4.3) into an update equation:

Vn+1(b) = max
a∈A

[

〈αa
0 , b〉+ γ

∑

o

p(o|b, a)Vn(bao)
]

, (4.10)

where
Vn(bao) = max

{αk
n}k

〈αk
n, bao〉. (4.11)

Substituting the belief update (2.11) results in

Vn(bao) = max
{αk

n}k

〈

αk
n ,

p(o|s′, a)

p(o|b, a)
p(s′|b, a)

〉

s′

(4.12)

=
1

p(o|b, a)
max
{αk

n}k

〈

αk
n , p(o|s′, a)p(s′|b, a)

〉

s′

(4.13)

where 〈·, ·〉s′ denotes that the expectation is defined over s′. Plugging (4.13) in
(4.10) leads to

Vn+1(b) = max
a

[

〈αa
0 , b〉+ γ

∑

o

max
{αk

n}k

〈

αk
n , p(o|s′, a)p(s′|b, a)

〉

s′

]

(4.14)

= max
a

[

〈αa
0 , b〉+ γ

∑

o

max
{αk

n}k

〈

αk
n , p(o|s′, a)

∫

s

p(s′|s, a)b(s)
〉

s′

]

(4.15)

= max
a

[

〈αa
0 , b〉+ γ

∑

o

max
{αk

n}k

∫

s′

αk
n(s′)p(o|s′, a)

∫

s

p(s′|s, a)b(s)
]

(4.16)

= max
a

[

〈αa
0 , b〉+ γ

∑

o

max
{αk

n}k

∫

s

[

∫

s′

αk
n(s′)p(o|s′, a)p(s′|s, a)

]

b(s)
]

(4.17)

= max
a

[

〈αa
0 , b〉+ γ

∑

o

max
{αk

n}k

〈

∫

s′

αk
n(s′)p(o|s′, a)p(s′|s, a) , b

〉

s

]

.

(4.18)

At this point, analogous to (3.11), we define

gk
ao(s) =

∫

s′

αk
n(s′)p(o|s′, a)p(s′|s, a), (4.19)

and rewrite (4.18) as

Vn+1(b) = max
a

[

〈αa
0 , b〉+ γ

∑

o

max
{αk

n}k

〈gk
ao, b〉

]

. (4.20)
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Defining
gaob = arg max

{gk
ao}k

〈gk
ao, b〉, (4.21)

we can write

Vn+1(b) = max
a

[

〈αa
0 , b〉+ γ

∑

o

〈gaob, b〉
]

(4.22)

= max
a

〈

αa
0 + γ

∑

o

gaob , b
〉

. (4.23)

We define

{αk
n+1}k =

⋃

b

{

αa
0 + γ

∑

o

gaob

}

a
, for all b ∈ ∆(S). (4.24)

Using a reasoning parallel to that of the enumeration phase of Monahan (1982)’s
algorithm (see Sec. 3.4.1), we have at most |A||{αk

n}|
|O| different αk

n+1 functions
(fixing the action, we can select one of the |{αk

n}| g
k
a,o-functions for each one of

the observations).
With the above definition, we have Vn+1 in the desired form

Vn+1(b) = max
{αk

n+1
}k

〈αk
n+1, b〉, (4.25)

and, thus, the theorem holds.

The proof is constructive as it shows how to compute the α functions con-
stituting Vn+1 from those defining Vn, and as such provides a value-iteration
algorithm for continuous-state POMDPs. Furthermore, we can prove that Vn is
PWLC for any finite horizon as follows. From the definition of the 〈·, ·〉 opera-
tor (4.5), for each αk

n, 〈αk
n, b〉 is linear. As for any n the {αk

n}k set has a finite
number of elements, the value function Vn is piecewise linear. The convexity
is given by the fact that Vn is defined as the maximum of the convex (linear)
functions and, thus, we obtain a convex function as a result.

4.3.2 Value iteration for continuous-state POMDPs with

Gaussian models

In this section we will extend approximate POMDP value-iteration methods to
continuous state spaces, with a particular focus on Perseus. As we saw in the
previous section, in the case of a continuous state space the value function is still
PWLC and value iteration will converge, but it requires computing integrals over
the state space. We need a representation that allows analytical computation of
integrals and that is also closed under Bellman backups. Perseus can be used
with different representations for the beliefs, the α functions, and the transition,
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observation and reward models, but the selected representations have to fulfill
a number of requirements.

The first requirement is that the representation used for the beliefs must
be closed under the propagation through the transition model (4.2) and after
the multiplication with the observation model (2.11). Next, the representation
for the α functions must be closed under addition and scaling (in order to com-
pute (4.24)), and closed for integration after multiplication with the observation
and the transition model (4.19). Finally, we need a way to compute the 〈α, b〉
expectation operator. For discrete-state POMDPs, the belief and the α func-
tions are represented by vectors and the models by matrices. In this case all
operations are linear algebra and produce closed results. Next, we describe a
suitable representation for continuous-state POMDPs based on Gaussian func-
tions for representing the transition, observation, and reward models as well as
the beliefs.

4.3.2.1 Gaussian models for continuous-state POMDPs

Functions defined over a continuous state space (e.g., value functions and belief
states) may have arbitrary forms that may not be parameterizable. In order to
design feasible algorithms for continuous-state POMDPs, it is crucial to work
with classes of functions that have simple parameterizations and that are closed
under belief updates and Bellman backups. In this section we will focus on
models based on Gaussian distributions, but note that other families of inte-
grable functions could be used to determine the α functions in closed form1.
Gaussian-based models provide a high degree of flexibility and are of common
use in many applications, for instance in robotics (Thrun, Burgard, and Fox,
2005).

We assume that the observation model for a given observation is a Gaus-
sian distribution (or a mixture of them) on the state space, defined non-para-
metrically from a set of N samples Ω = {(si, oi)} with oi an observation obtained
at state si. The training set can be obtained in a supervised way (Vlassis et al.,
2002) or by direct interaction with the environment (Porta and Kröse, 2004).
Using these samples, the observation model can be defined as

p(o|s) =
p(s|o)p(o)

p(s)
, (4.26)

where we drop the dependence on action a for convenience, and, assuming a
uniform p(s) in the space covered by Ω, and approximating p(o) from the samples

1In a recent work, Poupart, Vlassis, Hoey, and Regan (2006) have shown that α functions
in Bayesian reinforcement learning can be parameterized by multivariate polynomials.
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in the training set we have

p(o|s) ≈
[ 1

No

No
∑

i=1

λo
i φ(s|so

i ,Σ
o
i )

]No

N
=

No
∑

i=1

wo
i φ(s|so

i ,Σ
o
i ) (4.27)

with so
i one of the No points in Ω with o as an associated observation, φ a

Gaussian with mean so
i and covariance matrix Σo

i and where wo
i = λo

i /N is a
weighting factor associated with that training point. The sets {λo

i }i and {Σo
i }i

should be defined so that

p(s) =
∑

o

p(s|o)p(o) =
∑

o

No
∑

i=1

wo
i φ(s|so

i ,Σ
o
i ) (4.28)

is (approximately) uniform in the area covered by Ω or, in other words, so that
∑

o

p(o|s) ≈ 1. (4.29)

As far as the transition model is concerned, we assume it is linear-Gaussian

p(s′|s, a) = φ(s′|s + δ(a),Σa). (4.30)

with φ a Gaussian centered at s+δ(a) with covariance Σa. Nonlinear transition
models can be approximated by local linearization as in the extended Kalman
filter (Sorenson, 1985).

Finally, the reward can be seen as an observation with an associated scalar
value. Therefore, assuming a finite set of possible rewards R = {ri|i ∈ [1, NR]},
the reward model p(r|s, a) for each particular a can be represented in the same
way as the observation model

p(r|s, a) ≈
NR
∑

i=1

wr
i φ(s|sr

i ,Σ
r
i ). (4.31)

With that, we have that

Ra(s) =
∑

r∈R

rp(r|s, a) ≈
∑

r∈R

r

NR
∑

i=1

wr
i φ(s|sr

i ,Σ
r
i ), (4.32)

which is an unnormalized Gaussian mixture.

4.3.2.2 Belief representation and updates

We will assume that belief points are represented as Gaussian mixtures of Nb

components

b(s) =

Nb
∑

j

wjφ(s|sj ,Σj), (4.33)
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with φ a Gaussian with mean sj and covariance matrix Σj and where the mixing
weights satisfy wj > 0,

∑

j wj = 1. In the extreme case, Gaussian mixtures with
an infinite number of components would be necessary to represent a given point
in the infinite-dimensional belief space of a continuous-state POMDP. However,
only Gaussian mixtures with few components are needed in practical situations.

The belief update (2.11) consists of two steps and can be implemented as
follows. The first step is the application of the transition model on the cur-
rent belief state. This can be computed as the propagation of the Gaussians
representing b(s) (4.33) through the transition model (4.30) as follows:

p(s′|b, a) =

∫

s

p(s′|s, a)b(s) (4.34)

=
∑

j

wjφ(s|sj + δ(a),Σj + Σa). (4.35)

The second part of the belief update corrects the prediction from the transition
model with the information obtained from the observation model:

bao(s′) ∝
[

∑

i

wo
i φ(s′|so

i ,Σ
o
i )

][

∑

j

wjφ(s|sj + δ(a),Σj + Σa)
]

(4.36)

=
∑

i,j

wo
i wjφ(s′|so

i ,Σ
o
i )φ(s|sj + δ(a),Σj + Σa). (4.37)

To compute this equation, we have to perform the product of two Gaussians.
Fortunately, a closed formula is available for this operation

φ(x|a,A)φ(x|b,B) = δφ(x|c, C) (4.38)

with

δ = φ(a|b, A + B) = φ(b|a,A + B), (4.39)

C = (A−1 + B−1)−1, c = C(A−1a + B−1b). (4.40)

Therefore, we have that

bao(s′) ∝
∑

i,j

wo
i wjδ

ao
ij φ(s′|sao

ij ,Σao
ij ), (4.41)

with

δao
ij = φ(sj + δ(a)|so

i ,Σ
o
i + Σj + Σa), (4.42)

Σao
ij = ((Σo

i )
−1 + (Σj + Σa)−1)−1, (4.43)

sao
ij = Σao

ij ((Σo
i )

−1so
i + (Σj + Σa)−1(sj + δ(a))). (4.44)



4.3 Continuous-state POMDPs 65

Finally, we can re-arrange the terms to get

bao(s′) ∝

N ′

b
∑

k

wkφ(s′|sk,Σk). (4.45)

The proportionality in the definition of bao(s′) implies that the weights (wk, ∀k)
should be scaled to sum to one. The number of components N ′

b = NbNo in bao

grows compared to Nb, the number of components in b. Appendix A details a
Gaussian mixture condensation algorithm due to Goldberger and Roweis (2005),
which can be used to bound the number of components of a Gaussian mixture
while losing as little information as possible. A similar algorithm is described
by Vlassis and Verbeek (2004). Next we will consider the representation of the
α functions.

4.3.2.3 Representing α functions

Theorem 4.2. Assuming that the observation, transition and reward models
are Gaussian-based, the functions αk

n(s) can be expressed as linear combinations
of Gaussian functions.

Proof. This theorem can be proved via induction. For n = 0, αa
0(s) = Ra(s) for

a fixed a and thus it is indeed an unnormalized Gaussian mixture. For n > 0,
we assume that

αj
n(s′) =

∑

k

wj
kφ(s′|sj

k,Σj
k). (4.46)

Then, with our particular models, gj
ao(s) in (4.19) is the integral of three linear

combinations of Gaussians

gj
ao(s) =

∫

s′

[

∑

k

wj
kφ(s′|sj

k,Σj
k)

][

∑

l

wo
l φ(s′|so

l ,Σ
o
l )

]

φ(s′|s + δ(a),Σa) (4.47)

=

∫

s′

∑

k,l

wj
kwo

l φ(s′|sj
k,Σj

k)φ(s′|so
l ,Σ

o
l )φ(s′|s + δ(a),Σa) (4.48)

=
∑

k,l

wj
kwo

l

∫

s′

φ(s′|sj
k,Σj

k)φ(s′|so
l ,Σ

o
l )φ(s′|s + δ(a),Σa). (4.49)

As mentioned before, the product of two Gaussian functions is a scaled
Gaussian. In the above case, we have to apply (4.38) twice, once for φ(s′|sj

k,Σj
k)

and φ(s′|so
l ,Σ

o
l ) to get (δjo

kl φ(s′|s1,Σ1)) and once more for (δjo
kl φ(s′|s1,Σ1)) and

φ(s′|s+δ(a),Σa) to get (δjo
kl β

joa
kl (s)φ(s′|s,Σ)). The scaling terms δjo

kl and βjoa
kl (s)

can be expressed as
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δjo
kl = φ(so

l |s
j
k,Σj

k + Σo
l ), (4.50)

βjoa
kl (s) = φ(s|sjo

kl − δ(a),Σjo
kl + Σa), (4.51)

with

Σjo
kl = [(Σj

k)−1 + (Σo
l )

−1]−1, (4.52)

sjo
kl = Σjo

kl [(Σ
j
k)−1sj

k + (Σo
l )

−1so
l ]. (4.53)

With this, we have

gj
ao(s) =

∑

k,l

wj
kwo

l

∫

s′

δjo
kl β

joa
kl (s)φ(s′|s,Σ) (4.54)

=
∑

k,l

wj
kwo

l δ
jo
kl β

joa
kl (s)

∫

s′

φ(s′|s,Σ) (4.55)

=
∑

k,l

wj
kwo

l δ
jo
kl β

joa
kl (s). (4.56)

Using (4.21) and (4.24), we define the elements in {αi
n+1} as

αi
n+1 = αa

0 + γ
∑

o

arg max
{g

j
ao}j

〈gj
ao, b〉. (4.57)

Since the result of the arg max is just one of the members of the set {gj
ao}j ,

all the elements involved in the definition of αi
n+1 are linear combinations of

Gaussians and so is the final result.

One point that deserves special consideration is the explosion of the number
of components in the Gaussian mixtures defining the α functions. If Co is
the average number of components in the observation model and Cr is the
average number of components in the reward model, the number of components
in the αn-functions scales with O((|O|Co)

nCr). Again we apply the Gaussian
mixture condensation procedure described in Appendix A to bound the number
of components in each α functions. However, Algorithm A.1 is defined for
normalized Gaussian mixtures, while the α functions are unnormalized mixtures.
Therefore, we modify the procedure by normalizing the weights after taking
their absolute value, which ensures that both negative and positive values are
preserved. After the compression, we apply the inverse procedure to recover the
original scale of the weights.

The remaining requirement on the proposed continuous-state POMDP rep-
resentation is that the expectation operator 〈·, ·〉 can be computed in closed
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form. As both belief and α functions are Gaussian mixtures, we compute 〈·, ·〉
as follows:

〈α, b〉 =

∫

s

[

∑

k

wkφ(s|sk,Σk)
][

∑

l

wlφ(s|sl,Σl)
]

(4.58)

=
∑

k,l

wkwl

∫

s

φ(s|sk,Σk)φ(s|sl,Σl) (4.59)

=
∑

k,l

wkwlφ(sl|sk,Σk + Σl)

∫

s

φ(s|sk,l,Σk,l) (4.60)

=
∑

k,l

wkwlφ(sl|sk,Σk + Σl). (4.61)

4.4 Related work

Continuous domains have received far less attention in the POMDP literature
compared to traditional discrete settings. Here we will relate our work to other
studies of POMDPs with continuous action or state spaces, and broaden the
picture to continuous observation spaces.

4.4.1 Continuous action spaces

The literature on POMDPs with continuous actions is still relatively sparse
(Thrun, 2000; Ng and Jordan, 2000; Baxter and Bartlett, 2001). In the Monte
Carlo POMDP (MC-POMDP) method of Thrun (2000) real-time dynamic pro-
gramming is applied on a POMDP with a continuous state and action space.
In that work beliefs are represented by sets of samples drawn from the state
space, while Q(b, a) values are approximated by nearest-neighbor interpolation
from a (growing) set of prototype values and are updated by online exploration
and the use of sampling-based Bellman backups. In contrast with Perseus, the
MC-POMDP method does not exploit the piecewise linearity and convexity of
the value function.

Certain policy search methods tackle continuous actions, for instance Pega-

sus (Ng and Jordan, 2000), which estimates the value of a policy by simulating
trajectories from the POMDP using a fixed random seed, and adapts its policy
in order to maximize this value. Pegasus can handle continuous action spaces
at the cost of a sample complexity that is polynomial in the size of the state
space (Ng and Jordan, 2000, Theorem 3). Baxter and Bartlett (2001) propose
a policy gradient method that searches in the space of randomized policies, and
which can also handle continuous actions. The main disadvantages of policy
search methods are the need to choose a particular policy class and the fact
that they are prone to local optima.
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4.4.2 Continuous state spaces

Also in this case only few methods exist that handle continuous state spaces
directly. A common approach is to assume a discretization of the state space,
which can be a poor model of the underlying system. However, when the system
is linear and the reward function is quadratic, an exact solution for continuous-
state POMDPs is known that can be computed in closed form (Bertsekas, 2000).
While such an assumption on the reward function can be reasonable in certain
control applications, it is a severe restriction for the type of AI applications we
consider.

Roy (2003) has proposed compression techniques for handling POMDPs with
large (discrete) state spaces, one of which compresses beliefs to two parameters:
the state with maximum likelihood and the belief’s entropy. Such a representa-
tion will lead to poor performance when multi-modal beliefs occur, and is only
appropriate in particular applications. Recently, Brooks, Makarenko, Williams,
and Durrant-Whyte (2005) have opted for a (mixture of) Gaussian functions
as parametric belief representation in a continuous-state POMDP. Both meth-
ods compute an approximate value function on a grid in their low-dimensional
parameter spaces, and do not use the PWLC property of the POMDP value
function. In contrast, we exploit the known shape of the value function, which
offers an attractive potential for generalization through the use of α functions,
analogous to the effective exploitation of α vectors in discrete-state Perseus.

As mentioned before, the MC-POMDP algorithm can operate on continu-
ous state spaces (Thrun, 2000). Value iteration is performed in the belief space,
where the Bellman backup operator is approximated by sampling from the be-
lief transition model, whereas in our case, we compute the Bellman backup
operator analytically given the particular value-function representation. The
MC-POMDP algorithm maintains a value function over a (growing) set of pro-
totype beliefs, and nearest-neighbor interpolation is used to approximate the
value of beliefs outside the set. This is in contrast with our Gaussian mixture
representation, in which the value function achieves generalization through a set
of α functions. When the value function maintained by MC-POMDP does not
contain enough neighbors within a certain distance for an encountered belief,
the belief is added to the value function. Perseus operates on a fixed set of
beliefs, and does not require its online expansion. Furthermore, the Perseus

value function is likely to generalize better over the belief space through the use
of α functions.

Duff (2002) considered the problem of Bayesian reinforcement learning, in
which the transition and reward model of an MDP are treated as random vari-
ables. Experience in the form of observed state transitions and received rewards
is used to estimate the unknown MDP models. In contrast with straightforward
exploration strategies such as ε-greedy (see Sec. 2.2.3), Bayesian reinforcement-
learning techniques try to identify the action that will maximize long-term re-



4.4 Related work 69

ward. Such an optimally exploring action might sacrifice expected immediate
payoff for refining the model estimates, thus facilitating better control in the
future. Duff (2002) models the Bayesian reinforcement-learning problem as a
POMDP, in which the parameters of the transition model form the state of the
system, and experienced transition tuples (s, a, s′) are the possible observations.
Such a POMDP has a continuous state space as the transition probabilities can
be any real number between zero and one. A Monte Carlo algorithm is pro-
posed for learning a (stochastic) finite-state controller for this particular class
of POMDPs. The required integrals are approximated by sampling and nu-
merical methods, whereas we assume a particular family of models for which
closed-form solutions are available. Recently, Perseus has been extended to
the Bayesian reinforcement-learning setting, in which the value function is rep-
resented by multivariate polynomials (Poupart et al., 2006).

4.4.3 Continuous observation spaces

Traditional POMDP methods assume discretized observation spaces as we have
seen in Chapter 3, and POMDPs with continuous observation spaces have
mainly been studied in model-free settings (Whitehead and Lin, 1995; Meuleau,
Peshkin, Kim, and Kaelbling, 1999b; Bakker, Lin̊aker, and Schmidhuber, 2002;
Bakker, 2002). Recall that the backup of a belief point b using the forward-
projected beliefs involves the following procedure:

backup(b) = arg max
{gb

a}a∈A

b · gb
a, (3.18)

with

gb
a = αa

0 + γ
∑

o

hb
ao, (3.24)

where hb
ao(s) =

∑

s′

p(o|s′, a)p(s′|s, a)αb
ao(s

′), (3.23)

and αb
ao(s

′) = arg max
{αk

n}k

bao · αk
n. (3.20)

With a continuous observation space this sum over observations becomes an
integral

gb
a = αa

0 + γ

∫

o

∑

s′

p(o|s′, a)p(s′|s, a) arg max
{αk

n}k

bao · αk
n. (4.62)

Hoey and Poupart (2005) proposed the idea that continuous observation spaces
can always be discretized without any loss of information into regions corre-
sponding to each α vector representing the value function. Intuitively, observa-
tions need to be differentiated only to the extent where they lead to different
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courses of actions (corresponding to different α vectors). In (4.62), all observa-
tions that lead to belief states bao with the same maximizing α vector can be
aggregated together into one meta observation Oba

j defined as follows:

Oba
j = {o|α

Oba
j

n = arg max
{αk

n}k

bao · αk
n}. (4.63)

Using Oba
j , we can rewrite (4.62) as follows:

gb
a = αa

0 + γ
∑

s′

p(s′|s, a)
∑

j

p(Oba
j |s

′, a)α
Oba

j
n . (4.64)

Hoey and Poupart (2005) propose to simplify the above quantity by accumu-
lating probability masses over observations in Oba

j , i.e., defining p(Oba
j |s

′, a) =
∫

o∈Oba
j

p(o|s′, a), and then approximating the discrete p(Oba
j |s

′, a) by sampling

observations from each state s′ (given the action a). Observe that in the
continuous-observation case, the dynamic partitioning of the observation space
is performed for the particular belief point b that we would like to backup.
Therefore, it cannot be used for enumeration-style algorithms such as Mona-
han’s algorithm (Sec. 3.4.1) or Incremental Pruning (Sec. 3.4.3), which do not
use point-based backups. However, it can be integrated in point-based methods
such as Perseus and PBVI (Sec. 3.5).

4.5 Experimental results

We report on experiments in two types of domains: we test Perseus in domains
with continuous action spaces followed by an experiment with continuous states.
In all reported experiments the discount factor γ is set to 0.95.

4.5.1 Continuous action spaces

We applied Perseus in two domains with continuous action spaces: an agent
equipped with proximity sensors moving at a continuous heading and distance,
and a navigation task involving a mobile robot with omnidirectional vision in a
perceptually aliased office environment (Spaan and Vlassis, 2005a,b).

4.5.1.1 Continuous Navigation

We first tested our approach on a navigation task in a simulated environment,
in which an agent can move at a continuous heading and distance. The Con-
tinuous Navigation environment represents a 20× 10m hallway which is highly
perceptually aliased (see Fig. 4.1). The agent inhabiting the hallway is equipped
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Figure 4.1: State space of the Continuous Navigation problem, where points indicate
the states, and F depicts the goal state. The black square represents the agent,
the four beams indicate the range of its proximity sensors.

with four proximity sensors, each observing one compass direction. We assume
that a proximity sensor can only detect whether there is a wall within its range
of 2m or not, resulting in a total number of 16 possible sensor readings. The
agent’s sensor system is noisy: with 0.9 probability the correct wall configuration
is observed, otherwise one of the other 15 observations is returned with equal
probability. The task is to reach a goal location located in an open area where
there are no walls near enough for the agent to detect. The agent is initialized at
a random state in the environment, and it should learn what movement actions
to take in order to reach the goal as fast as possible.

In this section we assume a finite and discrete state space S (the set of all
possible locations of the agent) and we performed a simple k-means clustering
on a random subset of all possible locations, resulting in a grid of 200 locations
depicted in Fig. 4.1. The agent’s actions are defined by two parameters: the
heading θ to which the agent turns and the distance d it intends to move in this
direction. Executing an action transports it according to a Gaussian distribution
centered on the expected resulting position, which is defined as its current (x, y)
position translated d meter in the direction θ. The standard deviation of the
Gaussian transition model is 0.25d I, which means the further the agent wants
to travel, the more uncertainty there will be regarding its resulting position.
The distance parameter d is limited to the interval [0, 2]m and the heading θ
ranges on [0, 2π]. Each movement is penalized with a reward of −0.1 per step
and the reward obtainable at the goal location is 10.

To test the feasibility of Perseus in continuous action spaces, i.e., whether it
can compute successful policies by sampling actions at random, we experimented
with a number of different sampling schemes for the backup′ operator. Each
scheme is defined by the makeup of A′

b = {AU , AN
b , Aold

b }, which is composed
of samples from three distributions: AU , uniformly at random; AN

b , a Gaussian
distribution centered on the best known action a(αb

n) for b so far, with standard
deviation σθ = π

5 for θ and σd = 0.1 for d; and Aold
b , a Dirac distribution on the



72 Planning under uncertainty in continuous domains

best known action. We will describe A′
b by the number of samples from each

distribution {|AU |, |AN
b |, |A

old
b |}. We tested the following schemes: sampling a

single action uniformly at random {1, 0, 0}, or from a Gaussian distribution on
a(αb

n) {0, 1, 0}; adding a(αb
n) to both schemes resulting in {1, 0, 1} and {0, 1, 1};

and {k, k, 1}, sampling k actions from the uniform and Gaussian distributions
and including the old action. The latter scheme explores the option of sampling
more than one action from a particular distribution, and we tested k = {1, 3, 10}.
The option to try the best known (‘old’) action for the particular b is relatively
cheap as we can cache its transition, observation, and reward model the first
time it is chosen (at a previous backup stage).

In this problem we used a set B of 10,000 belief points. To evaluate the
control quality of the computed value functions we collected rewards by sampling
10 trajectories from 100 random starting locations at particular time intervals,
while following the policy computed so far. Each trajectory was stopped after
a maximum of 100 steps (if the agent had not reached the goal by then), and
the collected reward was properly discounted. All results are averaged over 10
runs of Perseus with a different random seed and are computed in Matlab on
an Intel Xeon 3.4GHz.

Fig. 4.2 shows the results for each of the sampling schemes mentioned above.
The top row displays the control quality as indicated by the average discounted
reward. In Fig. 4.2(a) we can see that just sampling a single action uniformly
at random {1, 0, 0} already gives good performance, while extending A′

b to in-
clude the best known action {1, 0, 1} improves control quality. The Gaussian
sampling schemes {0, 1, 0} and {0, 1, 1} learn slower as they can take only small
steps in action space. An additional disadvantage of Gaussian sampling is the
need for the user to specify the standard deviation. Fig. 4.2(b) depicts the con-
trol quality of the schemes in which we sample from three distributions {k, k, 1},
for different values of k. The figure shows that all tested variations reach sim-
ilar control quality, but trying more actions for a particular b can slow down
learning. However, when looking at the size of the value function (Fig. 4.2(c)–
(d)), we see that for k = 10 the resulting value function is smaller than for any
other scheme tested. It appears in this experiment that sampling more actions
increases the chance of finding a high quality action that generalizes well (so
fewer vectors are eventually needed to reach the same control quality), but at
a higher computational cost per backup stage. Note that for all tested schemes
the number of vectors in the value function remains two orders of magnitude
lower than the size of B (10,000 belief points), confirming the efficient behavior
of the Perseus randomized backup scheme.

To obtain more insight in the effect of sampling from different distributions
in A′

b, we computed the relative frequency of occurrence of the maximizing
action in AU , AN

b , and Aold
b . When executing a backup′ we check whether the

vector computed using the returned action actually improves V (b), and if so, we
record whether this action originated from AU , AN

b , or Aold
b . For every backup
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(e) Origin of maximizing action.
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(f) Origin of maximizing action.

Figure 4.2: Perseus results on the Continuous Navigation problem, averaged over
10 runs. The left column shows the performance of {|AU |, |AN

b |, |A
old

b |} =
{{1, 0, 0}, {1, 0, 1}, {0, 1, 0}, {0, 1, 1}}, and the right column displays {k, k, 1} for
k = {1, 3, 10}. The top row figures display the average discounted reward obtained
vs. computation time, the figures in the middle row show the value-function size,
and the bottom row details the origin of the maximizing vector (see main text).
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stage we normalize these counts with respect to the total number of backups in
that backup stage (including those that did not improve V (b)). The resulting
frequencies are plotted on the bottom row of Fig. 4.2 for two sampling schemes:
sampling uniform and old {1, 0, 1} (Fig. 4.2(e)) and sampling one action from
all three distributions {1, 1, 1} (Fig. 4.2(f)). We can see that over time the
relative frequency of the best known action grows (“Improved: Old”), while the
number of instances in which none of the sampled actions improves V (b) drops
to almost zero (“Not improved”). The frequencies of actions sampled from
an uniform or Gaussian distribution (“Improved: Uniform” resp. “Improved:
Gauss”) resulting in the best action in A′

b (and improving V (b)) also drop.
These observations confirm the intuition that by sampling actions at random
Perseus can effectively explore the action space (which is advantageous at
early backup stages), while as time progresses the algorithm seems to be able
to exploit the actions that turn out to be useful.

4.5.1.2 Arbitrary Heading Navigation

To evaluate Perseus with continuous actions on a more realistic problem and
compare with discretized action spaces we also include the cTRC domain. In this
problem (adapted from Spaan and Vlassis, 2005b, see Sec. 3.8.2) a mobile robot
with omnidirectional vision has to navigate in a highly perceptually aliased office
environment (see Fig. 4.3(a)). We use the MEMORABLE1 robot database that
contains a set of approximately 8000 panoramic images collected manually by
driving the robot around in a 17× 17 meters office environment. The robot can
decide to move 5m in an arbitrary direction, i.e., its actions are parameterized
by its heading ranging on [0, 2π]. We applied the same technique as in the
Continuous Navigation domain to grid our state space in 200 states (Fig. 4.3(a))
and assume a Gaussian error on the resulting position. For our observation
model we compressed the images with PCA and applied k-means clustering to
create 10 three-dimensional prototype feature vectors {o1, . . . , o10}. Fig. 4.3(a)
shows the inverse observation model p(s|ok) for one particular observation. The
task is to reach a certain goal state at which a reward of 10 can be obtained;
each action yields a reward of −0.1. The belief set B contained 10,000 points.

We compared the continuous-action extension of Perseus to three dis-
cretized versions of this problem, in which we applied regular Perseus to a
fixed discrete action set of 4, 8 or 16 headings with equal separation (offset with
a random angle to prevent any bias). Fig. 4.3(b)-(d) display results for Perseus

with {|AU |, |AN
b |, |A

old
b |} = {3, 0, 1} (other schemes turned out to give similar

results), and the three discrete action spaces. For discrete action spaces, when
the action space A is finite and relatively small (and S is a finite set), one can
cache in advance a (sparse) tabular representation of the transition, observation,

1The MEMORABLE database has been provided by the Tsukuba Research Center in
Japan, for the Real World Computing project.
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Figure 4.3: cTRC Domain. (a) Environment of the cTRC problem, where points
indicate the states, and F depicts the goal state. The induced p(s|ok) for a par-
ticular ok is also shown: the darker the disk, the higher the probability. (b)-(d)
Performance of Perseus, averaged over 10 runs.

and reward models for all a ∈ A, s ∈ S. Such a cached tabular representation
allows for an optimized implementation of the backup operator. In contrast,
when sampling actions from a continuous action space A, one has to compute
the above models ‘on the fly’ for each sampled action a ∈ A′

b, which requires
an algorithm (a parameterized model family) that can generate the transition,
observation and reward models for any action that is given as input. Such gen-
erated models can be cached for later use in case the same action is considered
again in future iterations.

Fig. 4.3(b) shows that sampling from a continuous A results in the same
control quality as in the discrete 16 version, but it needs more time to reach it
(as the backup′ requires to generate transition, observation and reward models



76 Planning under uncertainty in continuous domains

on the fly). As the discrete cases benefit from an optimized implementation,
the continuous-action scheme needs some computation time to match perfor-
mance or outperform them. However, when employing the continuous scheme,
Perseus exploits the ability to move at an arbitrary heading to find a better
policy than the discrete 4 and 8 cases. We see that providing the robot with a
more fine-grained action space leads to better control quality, and in this prob-
lem a discretization of 16 headings appears to be fine-grained enough for good
control performance. Fig. 4.3(c) plots the number of vectors in the value func-
tion for each scheme, where we see that for reaching the same control quality the
continuous and discrete 16 version need a similar amount of vectors. Fig. 4.3(d)
shows the relative frequency of occurrence of the maximizing action in AU or
Aold

b , as detailed in Sec. 4.5.1.1. As in Fig. 4.2(e)–(f) we see that over time the
best known action is exploited, while the frequency of instances in which no
sampled action improves the value of b is diminished to near zero.

4.5.2 Continuous state spaces

To demonstrate the viability of Perseus in continuous state spaces we carried
out an experiment in a simulated robotic domain. In this so-called Corridor
problem (see Fig. 4.4(a)) a robot is moving in a corridor with four doors. The
robot can detect when it is in front of a door and when it is at the left or right
end of the corridor. In any other situation, the robot just detects that it is in
a corridor (see Fig. 4.4(b)). The robot can move 2 units to the left or to the
right (with Σa = 0.05) and can try to enter a door at any point (even when not
in front of a door). The target for the robot is to locate the second door from
the right and to enter it. The robot only gets positive reward when it enters
the target door (see Fig. 4.4(c)). When the robot tries to move further than the
end of the corridor (either at the right or at the left) or when it tries to enter
the door at a wrong position it receives a negative reward.

The set of beliefs B used by Perseus contains 1000 unique belief points.
Those Gaussian mixtures are collected using random walks departing from a
belief including 4 components that approximate a uniform distribution on the
whole corridor. The trajectories of the robot along the corridor are organized in
episodes, in which the robot executes actions until it tries to enter a door or until
it executes 25 (movement) actions. We use Algorithm A.1 to compress beliefs to
4 components (i.e., the number of components of the initial belief) and compress
α functions in such a way to ensure that they never have more components than
the number used to represent the reward function (11 components).

Fig. 4.5 shows the averaged results obtained after 10 Perseus runs on this
problem. Fig. 4.5(a) shows that the value computed as

∑

b V (b) converges.
Fig. 4.5(b) shows the expected discounted reward averaged for 100 episodes
with the policy available at the corresponding time step. The plot indicates
that the robot successfully learns to find out its position and to distinguish
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Figure 4.4: (a) A pictorial representation of the Corridor problem, (b) the correspond-
ing observation model and (c) the reward model.

between the four doors. Fig. 4.5(c) show the number of α functions used to
represent the value function. We can see that the number of α functions used
increases, but is far below 1000, the maximum possible number of α functions
(in the extreme case we would use a different α function for each point in B).
Finally Fig. 4.5(d) we show the number of changes in the policy from one backup
stage to the next one. The changes in the policy are computed as the number of
elements in B with a different action compared to the previous value function.
The number of policy changes drop to close to zero, indicating convergence with
respect to the particular B.

Following the computed policy the robot moves to one of the ends of the
corridor to determine its position and then towards the correct door to enter it.
Fig. 4.6(a) through (i) show how the robot’s belief evolves over time, starting
at a uniform belief and ending up with a peaked belief centered at the target
door. Finally, Fig. 4.6(j) plots the value for beliefs with only one component
parameterized by the mean and covariance of this component. We can see that,
as the uncertainty about the position of the robot grows (i.e., as the covariance
is larger) the value of the corresponding belief decreases. The colors in the figure
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Figure 4.5: Results for the Corridor domain.

correspond the the different actions: light-gray for moving to the right, white
for entering the door, and dark-gray for moving to the left.

Observe that the advantage of using a continuous state space is that we
obtain a scale-invariant solution. If we have to solve the same problem in a
longer corridor, we can just scale the Gaussians used in the problem definition
and we will obtain the solution with the same cost as we have now. The only
difference is that more actions would be needed in each episode to reach the
correct door. When discretizing the environment, the granularity has to be in
accordance with the size of the actions taken by the robot (±2 left/right) and,
thus, the number of states and, consequently, the cost of the planning increases
as the environment grows.

4.6 Discussion

In this chapter we considered approximate planning for POMDPs in which the
state or action space are continuous. We focused on Perseus, our randomized
point-based POMDP planner introduced in Chapter 3, but our extensions can
also be applied to other approximate POMDP solution methods.

We extended Perseus to compute plans for agents which have a very large
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Figure 4.6: Corridor domain. (a)-(i) Evolution of the belief when following the com-
puted policy. The arrows under the snapshots represent the actions: → for moving
right,← for moving left and ↑ for entering the door. On the x-axis the four door lo-
cations are indicated. (j) Value function for single-component beliefs as a function
of the mean µ and the covariance σ.

or continuous set of actions at their disposal, by sampling actions from the
action space. The concept of sampling a belief b and at the same time a set
of actions A′

b, and keeping the α vector which improves the value of b most is
consistent with the Perseus backup stage, as we only require that the value of b
does not decrease over successive value-function approximations. If none of the
sampled actions in A′

b improves Vn(b) we keep the current vector αb
n of b in Vn.

The action aold associated with αb
n can give clues as to what kind of action is

appropriate for b. In particular, we can include aold in A′
b, or include actions

sampled in the neighborhood of aold. On the other hand, we can explore the
action space at the same time by including actions in A′

b that are sampled from A
uniformly at random. In our experiments in Sec. 4.5.1 we have investigated the
effect of various sampling schemes, and we have seen that in the early backup
stages exploring actions are selected, but over time actions that turn out to be
useful are exploited.

Regarding POMDPs with continuous states, we demonstrated the piecewise
linearity and convexity of value functions defined over infinite-dimensional belief
states induced by continuous states. As the continuous-state Bellman backups
are isotonic and contracting, we can adapt value iteration to continuous-state
POMDPs. In particular, we extended Perseus with linear combinations of
Gaussians for belief states. These are expressive representations that are closed
under Bellman backups and belief updates. We showed how our method can be
successfully applied to a simple robot navigation task.
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In this chapter we have shown how Perseus can be extended to contin-
uous action and state spaces. However, several other notable extensions to
Perseus have been recently proposed in the POMDP literature since its intro-
duction. Poupart (2005) and Hoey and Poupart (2005) have extended Perseus

to very large or continuous observation spaces, as discussed in detail in Sec. 4.4.3,
and applied it to a real-world task for assisting persons with dementia (Boger,
Poupart, Hoey, Boutilier, Fernie, and Mihailidis, 2005). Furthermore, they
extended Perseus to compute policies compactly represented as algebraic de-
cisions diagrams (ADDs) (Hoey et al., 1999; Hansen and Feng, 2000), allowing
them to approximately solve a POMDP model with 50 million states. Perseus

has also been extended to two reinforcement-learning settings. Shani, Brafman,
and Shimony (2005a) learn a POMDP model of the environment while at the
same time an online, incremental version of Perseus is used to compute a
policy. Poupart et al. (2006) proposed an extension to Perseus for effective
online learning that is computationally efficient while minimizing the amount of
exploration, by modeling the reinforcement-learning problem as a POMDP over
the MDP parameters. James, Wessling, and Vlassis (2006) extended Perseus

to predictive state representations, a recent alternative framework for modeling
partially observable and stochastic environments (Littman, Sutton, and Singh,
2002; Singh, James, and Rudary, 2004).

A promising line of future research is to combine the three continuous ex-
tensions, resulting in a planner for fully continuous domains (with discretized
time). Combining the continuous action and state extensions presented in this
chapter should pose no significant problem, as they are rather orthogonal. As
Hoey and Poupart (2005) already noted, integrating their dynamic partitioning
of the observation space for point-based backups (see Sec. 4.4.3) in a point-based
planner for continuous states and actions should be possible. In particular, the
extension to continuous actions and observations both employ particular sam-
pling strategies that exploit the properties of (continuous-state) POMDPs and
Perseus.



Chapter 5

Planning for teams of agents

In Chapters 3 and 4 we considered the problem of planning under uncertainty for
single agents. We covered the traditional discrete POMDP setting and explored
extensions to continuous POMDP domains. In this chapter, we will focus on
planning for cooperative multiagent systems.

5.1 Introduction

In this chapter we will consider the problem of planning for cooperative multi-
agent systems, i.e., for teams of agents. A team of agents is defined as a group of
agents that inhabit the same environment, and whose performance is not judged
by their individual behavior, but by the joint behavior of all agents. Or, in MDP
terminology, an agent’s reward function is defined on the states and actions of
all agents, and the reward function and optimality criterion are identical for all
agents. Planning for a team of agents is significantly harder than planning for
a single agent, as the performance of an agent depends on the behavior of its
teammates, and vice versa.

A fundamental question is how to approach the multiagent optimization
problem. One approach would be to model the whole team as a single centralized
agent, who chooses its actions from the joint-action space, and its action would
dictate each agent’s individual action. However, the problem description, i.e.,
the state, action, and observation spaces, grows exponentially in the number of
agents, severely limiting the scalability of such centralized approaches. However,
one potential application area is the control of a few robots which have to
perform a task requiring tightly coupled coordination under physical constraints,
for instance two robots who need to transport a large beam across rough terrain
(Huntsberger et al., 2003).
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On the other extreme, one can also compute each agent’s policy indepen-
dently, reducing the complexity from exponential to linear in the team size, but
with a potentially detrimental effect on team performance, as the agents do
not optimize their joint performance. However, it might suffice for multiagent
tasks with few interdependencies and a fairly additive joint reward function,
i.e., where the joint reward is the sum of individual rewards (Tan, 1993; Sen,
Sekaran, and Hale, 1994). We will focus on multiagent tasks that can be posi-
tioned in between both extremes, tasks in which explicit cooperation is required
at some stages, but at other points in time the agents can afford to act rather
independently.

We will adopt decentralized partially observable Markov decision processes
(DEC-POMDPs) as our planning paradigm (Bernstein et al., 2002). DEC-
POMDPs form a general framework for planning for groups of cooperating
agents that inhabit a stochastic and partially observable environment. Un-
fortunately, computing optimal plans in a DEC-POMDP has been shown to be
intractable (NEXP-complete, Bernstein et al., 2002, see Sec. 2.5), and approx-
imate algorithms for specific subclasses have been proposed. Many of these al-
gorithms rely on an (approximate) solution of the centralized planning problem
(i.e., treating the whole team as a single agent). We take a more decentralized
approach, in which each agent only reasons over its own local state and some
uncontrollable state features, which are shared by all team members (Spaan,
Gordon, and Vlassis, 2006). In contrast to other approaches, we model commu-
nication as an integral part of the agent’s reasoning, in which the meaning of a
message is directly encoded in the policy of the communicating agent. We ex-
plore iterative methods for approximately solving such models, and we conclude
with some encouraging preliminary experimental results.

5.2 Decentralized planning for teams of commu-

nicating agents

Single-agent planning under uncertainty has been formalized in the partially
observable Markov decision process (POMDP) framework. A POMDP defines
stochastic models to capture the uncertain effects of actions and the fact that
sensors are imperfect and have a limited scope. In particular, the transition
model governs how the system’s state is influenced by actions, and the obser-
vation model stochastically relates observations to states. Solving a POMDP
exactly is intractable, but recent years have seen much progress in the develop-
ment of approximate methods, as we discussed in Chapter 3.

Planning for a team of agents without explicit communication proves to be
significantly harder than planning for just a single agent. In order for the team
to act optimally, each agent has to consider not only the consequences of its
own action, but also consider the actions its teammates will execute. As each
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agent does not know what the other agents observe, it will be hard to predict
their actions. Decentralized POMDPs (DEC-POMDPs) generalize the POMDP
framework to cooperative multiagent settings, but solving finite-horizon DEC-
POMDPs has been proven to be NEXP-complete (Bernstein et al., 2002), a
considerable jump in complexity from the single-agent case. Besides brute-force
enumeration and evaluation of all possible policy tuples, only one algorithm is
known for computing optimal solutions (Hansen et al., 2004), which in practice
is limited to very small problems. As the general setting is very hard to solve
optimally, research has focused on heuristic methods, which often also make
additional assumptions on the planning domain (Xuan et al., 2001; Goldman
and Zilberstein, 2003; Becker et al., 2004; Guo and Lesser, 2005; Paquet, Tobin,
and Chaib-draa, 2005).

Allowing agents to communicate with each other, possibly modeled outside
the DEC-POMDP, can increase team performance. Communication mitigates
uncertainty: a message from a teammate can for instance provide information
about the state of the system, or about the teammate’s intentions. In partic-
ular, if one assumes that the agents have unlimited free access to a noise-free
communication channel, the multiagent planning problem reduces to a single-
agent one. However, the resulting problem description grows exponentially in
the number of agents. Therefore, we choose to tackle the problem in a decen-
tralized manner, in which each agent considers only its local state plus some
shared uncontrollable state features. Furthermore, we consider communication
as an integral part of the system, and model it directly in the DEC-POMDP, in
contrast with approaches in which communication decisions are governed by a
separate algorithm (Goldman and Zilberstein, 2003; Emery-Montemerlo et al.,
2004; Nair, Tambe, Roth, and Yokoo, 2004; Roth et al., 2005).

We propose a decentralized model for tackling cooperative multiagent plan-
ning problems, which incorporates a communication channel. In contrast to
most work on distributed POMDPs, we do not define an explicit communica-
tion language, but instead treat the semantics of communication as part of the
optimization problem. We will present an iterative method for computing a
joint policy for the team in a decentralized fashion. Given a set of fixed policies
for all agents but agent i, we convert the DEC-POMDP to a POMDP from
agent i’s perspective which incorporates the expected contribution to the joint
team reward of the other agents’ policies. We will propose a heuristic method
for computing a communication policy, but first we will review the literature on
methods for (approximately) solving general or simplified DEC-POMDPs.

5.2.1 Solving decentralized POMDPs

Hansen et al. (2004) present a dynamic-programming operator for finite-horizon
partially observable stochastic games (POSGs), which allows for incremental
construction of policies: starting from a solution for horizon t it computes a
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solution for horizon t + 1. When the POSG is a DEC-POMDP, i.e., the agents
share the same reward function, the algorithm will result in a set of policies
optimal for a certain planning horizon. A belief is maintained over the cross-
product of the state of system and the future conditional plans, or policy trees,
of all other agents. However, the set of possible policy trees grows doubly
exponentially in the planning horizon, which renders a brute-force approach
infeasible in practice. To combat the growth, at every iteration (very weakly)
dominated policy trees are pruned. A policy tree for agent i is dominated if its
removal does not decrease the value of any belief for agent i. However, even
with pruning at every iteration the algorithm can solve only very small problems
before running out of memory.

As solving a DEC-POMDP is intractable in the general case, methods have
been proposed for approximately solving more restricted DEC-POMDP vari-
ations. Simplified models that have been studied include extra assumptions
regarding the observation model, in particular that an agent’s observations are
independent from those of its teammates (Goldman and Zilberstein, 2003) or
that each agent can observe its own local state with full certainty, which reduces
the problem to a decentralized MDP (Xuan et al., 2001; Becker et al., 2004; Guo
and Lesser, 2005). The latter assumption requires a factored state representa-
tion in which the state space is the cross-product of each agent’s local state
space and optionally a set of shared external state features which each agent
can observe but not influence (examples include time or any other external in-
formation relevant to the team’s task). Given a factored state space one can
further assume that the agents’ transitions are independent (Xuan et al., 2001;
Becker et al., 2004; Paquet et al., 2005), or impose a particular joint reward
structure (Becker et al., 2004). Apart from restricting the model one can also
restrict the complexity of the policy space, for instance by only searching in
the space of finite-state controllers of a particular size (Bernstein, Hansen, and
Zilberstein, 2005; Szer and Charpillet, 2005; Amato, Bernstein, and Zilberstein,
2006). Another way of computing a locally optimal solution is to optimize one
agent’s policy while keeping the other policies fixed, and iterate over all agents
until convergence (Nair et al., 2003; Emery-Montemerlo et al., 2004; Bernstein
et al., 2005).

A different dimension to tackle decentralized POMDP models is to assume
that the agents have a way to communicate with each other (which is not mod-
eled in the DEC-POMDP). As we noted above, if the agents in a team are
allowed to communicate for free and without limitations, then each agent can
broadcast at every time step its perceived observation to all of its teammates.
As a result every agent knows the joint observation vector, which it can use to
update the joint belief of the team. Every agent in the team selects the next
joint action based on the joint belief, and each agent executes its action accord-
ing to the joint action. As such, free communication reduces the distributed
control problem to a centralized, single-agent one, which can be solved using
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standard POMDP solution techniques. However, in reality communication is
often not free or unlimited, and modeling a team of agents in this way might
not be desirable. Nevertheless, several methods treat the multiagent system as
if communication were truly free, solve the large centralized POMDP (exactly
or approximately), and execute the resulting joint policy in a distributed fash-
ion while imposing communication constraints (Emery-Montemerlo et al., 2004;
Nair et al., 2004; Roth et al., 2005). While executing the policy, a limited form
of communication is used to attempt to preserve coherent behavior of the team.
In these models, the communication decisions are not part of the centralized
policy, but are made by a separate algorithm, which for instance monitors the
uncertainty regarding the joint belief. Detailed studies of communication issues
arising in DEC-POMDP settings are available (Pynadath and Tambe, 2002;
Goldman and Zilberstein, 2004).

In contrast, Xuan et al. (2001) propose a model that incorporates the com-
munication decision directly in the agent’s policy. It adds a communication
sub-stage to the decision process, in which an agent decides whether it will
communicate with its teammates. In this way an agent can explicitly reason
about communication, instead of relying on an independent instrument to han-
dle communication issues. Extending this framework, Goldman and Zilberstein
(2003) present a formal model for decentralized control with communication de-
cisions based on the DEC-POMDP model. In such decentralized models agents
reason over their local state, instead of considering the state of all teammates.
A decentralized model seems more appropriate for agents who cannot observe
each other’s state nor have free and unrestricted communication at their dis-
posal. Decentralized models also do not suffer from the exponential growth in
the size of the centralized state space when the number of agents increases. Lim-
ited communication abilities, however, can be exploited to improve the team’s
performance, by allowing agents to share information at a certain cost.

5.2.2 Proposed model

Goldman and Zilberstein (2003, 2004) proposed a framework for modeling co-
operative multiagent systems as a decentralized POMDP with a global reward
function. The agents reason explicitly over their communication decisions, but
the observations of each agent are independent, and hence, incoming messages
are not represented in an agent’s observation model. Instead, the agents store
the full history of messages they receive. Messages are exchanged instanta-
neously, without any delays. We propose a different decentralized model which
draws on the work of Goldman and Zilberstein (2003, 2004), but in which a
communication channel is established by allowing agents to send messages as
part of their action vector, and messages are received in the next time step as
part of the recipients’ observation vectors. In contrast to most work on dis-
tributed POMDPs, we do not manually define a communication language, but
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treat the semantics of communication as part of the optimization problem.

We propose the following model (Spaan et al., 2006), which is based on the
DEC-POMDP model (see Sec. 2.4.2):

• I = {1, . . . ,m} is a set of m agents.

• S is a finite set of states, and factors m + 1 components: S = S0 × S1 ×
· · · × Sm, where Si is the set of state features relevant to agent i and S0

the set of external state features, which are shared by all agents but which
cannot be controlled. A local state of an agent i is defined as s̄i = (s0, si),
where s0 ∈ S0, si ∈ Si.

• Σi is a finite set of possible messages, and σi ∈ Σi denotes a message
sent by agent i. Not sending any message is defined as sending the empty
message σi = ∅.

• Ai = Ad
i ×Aσ

i is the action set for agent i, where Ad
i is the set of domain-

level actions and Aσ
i the set of communication acts.

• Oi = Od
i × Oσ

i is the observation set for agent i, where Od
i is the set

of domain-level observations the agent receives through its sensors, and
Oσ

i = Σ1 × · · · × Σi−1 × Σi+1 × · · · × Σm the set of possible messages the
agent can receive from any of its teammates.

• The joint transition model p(s′|s, ā) depends only on the domain-level
component of each agent’s action (sending messages does not influence
the state of the environment). We assume that the agents’ transitions are
independent, allowing us to factor the joint transition model:

p(s′|s, ā) = p(s′0|s0)
∏

i=1...m

p(s′i|si, a
d
i ), (5.1)

where s′0, s0 ∈ S0, s′i, si ∈ Si, and ad
i ∈ Ad

i .

• The local observation model p(oi|s̄i, ai) of agent i specifies the probability
of receiving observation oi = (od

i , o
σ
i ) after executing action ai and ending

up in s̄i. The domain-level component is defined by the joint observation
model p(ō|s, ā), i.e., the probability that after taking joint action ā and
ending up in state s results in joint observation ō ∈ Od

1 × · · · × Od
m. The

communication component is defined by the policy of the other agents.

• We define p(oσ
i |σ̄) as the probability that a particular message vector

σ̄ = (σ1, . . . , σi−1, σi+1, . . . , σm) will be interpreted as observation oσ
i of

agent i, which can be used to model noise in the communication channel.
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Figure 5.1: Multiagent Heaven or Hell environment. The priest (top state) can tell
the agents where heaven is located (bottom-left or bottom-right state).

• The reward function R(s, ā) gives the team of agents a scalar reward at
each time step for taking joint action a in state s. It is defined as the sum
of each agent’s local reward function and the joint reward of the team:

R(s, ā) =
∑

i=1...n

Ri(s̄i, ai) + R(s0, . . . , sm, a1, . . . , am). (5.2)

The local reward Ri(s̄i, ai) of agent i is defined as the sum of the reward for
the domain-level action Ri(s̄i, a

d
i ) and the communication cost Ri(s̄i, a

σ
i ):

Ri(s̄i, a
σ
i ) =

{

0 if σi = ∅,

rc < 0 otherwise.
(5.3)

• Initial belief b0
i , discount rate γ, and planning horizon h as in Sec. 2.4.2.

In the remainder of this chapter we shall limit our discussion to two agents,
but our methods and experiments generalize to more than two agents. Broadcast
communication is used, and we will focus on noise-free communication, fixing
p(oσ

i |σ̄) to be the identity matrix.
To give some intuition on the range of problems our model captures we will

now discuss a very simple example application. The “Multiagent Heaven or
Hell” problem (inspired by Thrun, 2000) is a scenario in which two agents have
to meet in one of two locations, one called “heaven” and the other one “hell”, see
Fig. 5.1. At the start of each trial heaven is positioned either in the bottom-left
state (s0 = left) or in the bottom-right state (s0 = right) with equal probability,
and hell will be located in the other state. If the agents meet in heaven the team
receives a reward of rh > 0, but meeting in hell is penalized with a reward of
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−rh. However, each agent does not know the location of heaven or hell until it
visits the “priest” state, in which it receives an observation indicating whether
heaven is left or right. Visiting the priest results in an individual negative reward
of rp < 0 for the particular agent, and we assume that the reward obtainable in
heaven makes visiting the priest a viable option, i.e., rh > −mrp, where m = 2.

If no communication is possible, or the communication cost (−rc) is pro-
hibitively large, the optimal policy could be for each agent to visit the priest,
find out where heaven is located and go there. However, when communication
is relatively cheap, i.e., rc > rp, more interesting scenarios become feasible. For
instance, only agent i could ask the priest and inform agent j by sending it a
message. This would save agent j the cost of visiting the priest and still be able
to tell heaven from hell. However, instead of defining such semantics a priori,
we would like the agents to learn when and how to communicate, and how to
interpret incoming messages. In particular, the agents should optimize their use
of communication with respect to the cost of sending a message rc.

5.2.3 Belief tracking

In a general DEC-POMDP setting it is not possible for an agent to maintain an
exact belief over the true state of the system, as it only receives its own part of
the observation vector. As such, agent i has to reason about what observation
agent j might have observed, but at the same time agent j is modeling agent i,
which leads to the very high complexity class of solving DEC-POMDPs. As
a result of the lack of independence between agents, only approximate beliefs
can be computed (Gmytrasiewicz and Doshi, 2005). Alternatively, one can
assume that agent i’s observations are independent from those of agent j (Nair
et al., 2003), which together with a common transition independence assumption
precludes any use of direct communication in the DEC-POMDP model, as the
agents cannot influence each other. In contrast, in our decentralized model the
domain-level component od

i of an observation oi = (od
i , o

σ
i ) only depends on an

agent’s local state s̄i, but the communication component oσ
i does depend on

agent j, as follows

p(oi|s̄i, ai) = p(od
i , o

σ
i |s̄i, ai) (5.4)

= p(od
i |s̄i, ai)p(oσ

i |πj), (5.5)

where p(oσ
i |πj) is the probability that agent j sends agent i a particular mes-

sage vector in the previous time step, which we will approximate based on its
policy πj . Consequently, we can only perform an approximate belief update,
but it allows us to model a built-in communication channel.

Analogous to the POMDP belief update (2.11), repeated here for conve-
nience:

bao(s′) =
p(o|s′, a)

p(o|b, a)

∑

s∈S

p(s′|s, a)b(s), (2.11)
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agent i’s belief bi is updated as follows when it takes action ai and receives
observation oi:

baioi

i (s̄′i) =
p(od

i |s̄
′
i, ai)p(oσ

i |πj)

p(oi|bi, ai)

∑

s̄i∈(S0×Si)

p(s̄′i|s̄i, ai)bi(s̄i), (5.6)

where p(oi|bi, ai) is a normalizing constant. The probability that baioi

i will be
the successor of bi when agent i executes action ai is defined as

p(baioi

i |bi, ai) = p(oi|bi, ai) (5.7)

=
∑

s̄i∈(S0×Si)

p(oi|s̄i, ai)bi(s̄i). (5.8)

Since individual beliefs can be defined through (5.6), local policies πi can be
defined as in a standard POMDP setting, i.e., as mappings πi : ∆(S0 × Si) →
Ai from local beliefs bi to actions. The only term not yet defined in (5.6) is
p(oσ

i |πj): the probability that agent i receives a message σj and interprets it as
observation oσ

i . It is defined by the probability that agent i receives σj as oσ
i , as

defined by the channel noise model p(oσ
i |σj), times the probability that agent j

actually sends σj . The latter probability is estimated by computing the set of
possible beliefs {bσ

j,t} in which agent j sends σj according to πj , and summing
the probabilities p(bj,t) that any of those beliefs in bj,t ∈ {b

σ
j,t} will occur:

pt+1(o
σ
i |πj) = p(oσ

i |σj)
∑

bj,t∈{bσ
j,t}

p(bj,t), with (5.9)

{bσ
j,t} = {bj,t|(a

d
j , a

σ
j ) = πj(bj,t), a

σ
j = σj}. (5.10)

where p(bj,t) is the probability that agent j is in belief bj,t at time t. The
following equation computes p(bj,t) as a recursion from time step 0, at which
we know agent j is in its initial belief b0

j with probability 1:

p(bj,t) =

{

1 if t = 0

p(bj,t|bj,t−1, πj(bj,t−1))p(bj,t−1) otherwise
(5.11)

which uses (5.8). The set {bj,t} of all possible beliefs which agent j could believe
to be true at a particular time step is finite for any given t, as we have assumed
finite models.

5.2.4 Communication

The previous section defined how each agent updates its belief and how agent j’s
policy affects agent i’s belief update, and here we provide the intuition how this
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implements a communication channel. For a particular incoming message σj

agent i can use its knowledge of πj and the set of beliefs {bj,t} for agent j
to compute the set {bσ

j,t} (5.10) from which agent j would send the particular
message σj . In this way, receiving message σj at time t + 1 informs agent i
about agent j’s local state at time t:

p
σj

t+1(s̄j) =
∑

bj,t∈{bσ
j,t}

bj,t(s̄j)p(bj,t), (5.12)

combining (5.11) and (5.10). The crucial point is that, as agent j’s local state s̄j

includes s0, receiving message σj will provide agent i with information about s0:

p
σj

t+1(s0) =
∑

sj∈Sj

p
σj

t+1(s̄j) with s̄j = (s0, sj). (5.13)

In summary, the fact that s0 is shared by all agents allows for communication-
based learning, by enabling an agent j to modify the observation model of some
other agent i, via the term p(oσ

i |πj) in (5.6). The above analysis shows that the
latter term is conditional on s0, and therefore the term p(oσ

i |πj) can non-trivially
modify the belief of agent i.

Depending on the quality of agent j’s communication policy, communication
can improve team performance. For instance, if agent j communicates uniformly
at random, agent i will not benefit from communication as the information
content of the message is zero. However, in the Multiagent Heaven or Hell
example described above, if agent j communicates σj = 1 if it knows heaven is
left, communicates σj = 2 if it knows heaven is right, and does not communicate
otherwise, then agent i can use σj to update its belief about the location of
heaven in a useful manner and proceed to heaven without visiting the priest.

5.2.5 Solution method

After proposing a decentralized model for planning for a team of communicating
agents, we will now present an approach for computing a plan in our model.
We propose to compute a joint policy for the team of agents in an iterative
fashion (Nair et al., 2003; Emery-Montemerlo et al., 2004; Bernstein et al.,
2005). We start with a (randomly selected) policy πi for each agent i. We
fix the policy for all agents except for one, our protagonist agent i. From
agent i’s perspective we can treat the other agents as part of the environment,
and agent i can build a POMDP model of this environment, given that it knows
the policies of the other agents. For the resulting POMDP model it computes a
policy using a standard (approximate) POMDP solver which replaces its current
policy πi. We then move on to the next agent and repeat the procedure from its
perspective. This process is iterated until the performance of the joint policy
does not improve anymore. In our case, this might not be a local maximum, as
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updating the communication policy of one agent can change the belief update of
other agents. Multiple random restarts are necessary in general to reach good
performance. We will solve the POMDP models using Perseus (see Chapter 3).
It computes a policy in the form of a value function Vi : ∆(S0×Si)→ R, which
for every belief estimates the amount of future discounted reward the agent can
obtain.

5.2.5.1 Computing an agent’s POMDP model

A crucial component is building the POMDP model from the known problem
description and the policies of all teammates. In this POMDP model the reward
function for agent i should not only consist of its local reward function Ri but
also the expected contribution of the joint reward function R. For instance,
in the Multiagent Heaven or Hell example described in Sec. 5.2.2, if agent i
predicts that agent j’s policy directs j to the heaven location, agent i’s local
reward function should report that if i goes to heaven too, it can receive the
joint reward of rh. We summarize the influence of the other agent by computing
two statistics: p(aj |s̄j) is the probability agent j will execute aj in s̄j , and p(s̄j)
is the probability that agent j will be in a particular state s̄j . We approximate
these probabilities by simulating the belief tree for the team, given the pair of
policies {πi, πj}. The root of the belief tree at t = 0 is the starting belief b0

i

of each agent i. We compute the set of possible t + 1 beliefs for each agent by
propagating each of its beliefs at time t:

{bi,t+1} = {baioi

i,t |ai = πi(bi,t), oi ∈ Oi}. (5.14)

In order to keep the memory requirements at acceptable levels, some pruning
of the belief tree will be necessary in general. From the belief sets at time step
{bi,t} and the probability that each of the beliefs will be encountered (according
to (5.11)) we can approximate the required statistics p(aj |s̄j) and p(s̄j).

We use these statistics to define the local reward function Ri,πj
for agent i,

which takes into account the expected contribution from agent j’s policy πj :

Ri,πj
(s̄i, ai) = Ri(s̄i, ai) +

∑

s̄j∈(S0×Sj),aj∈Aj

R(s0, si, sj , ai, aj)p(aj |s̄j)p(s̄j),

(5.15)
with (s0, si) = s̄i. From the same statistics the observation model for agent i can
be computed, which will encode the information contained in incoming messages
from agent j, as we described in Sec. 5.2.4. To complete the POMDP model,
the transition model for agent i is given by

p(s̄′i|s̄i, ai) = p(s′0, s
′
i|s0, si, a

d
i , a

σ
i ) (5.16)

= p(s′0|s0)p(s′i|si, a
d
i ). (5.17)
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5.2.5.2 Learning to communicate

The iterative scheme described above is able to react to any incoming commu-
nication, which are incorporated in the local reward model and exploited by the
POMDP solver. However, it will not learn from scratch to send any messages,
as the other agent’s policy has not yet learned how it can benefit from incom-
ing messages. Put otherwise, if agent j’s policy has not yet learned to respond
to agent i’s messages, then the expected contribution of πj to agent i’s reward
model (5.15) will be zero. After solving agent i’s POMDP, πi will no longer send
any messages, as each sending a message has a certain cost and the expected
gain is not yet represented in agent i’s reward model.

Therefore, we begin by equipping each agent with a fixed heuristic commu-
nication policy and iteratively optimize the agents’ domain-level component of
their policies to exploit the incoming messages. Next we aim to optimize the
communication component of each agent’s policy with respect to the communi-
cation reward rc < 0. In particular, initially all agents could at each time step
send the last domain-level observation they received. Choosing the domain-
level observations as initial language is an appropriate choice, as it is known to
be an optimal language for DEC-MDPs with constant message cost (Goldman
and Zilberstein, 2004). However, we could improve team performance by only
sending messages that are useful.

A message is useful when it conveys some information which the other agent
can use to improve team performance. As the meaning of a message is defined
over s0, the entropy of pσj (s0) (5.13) measures the information content of a
particular message. However, if a message has low entropy does not necessarily
mean it is useful to send. One proposal for testing its value is to modify each
agent’s local reward model (5.15) to prefer communicating low entropy messages
to not sending them, but only at states in which it would send the messages un-
der the initial heuristic communication policy. This ensures the other agent will
know how to respond to the incoming message. Next we repeat the process of
iterative optimization, allowing the agents to adjust to the new communication
behavior.

5.3 Experiments

We will present experimental results in the Multiagent Heaven or Hell domain
and in a game of tag, in which agents have to cooperate in order to tag an oppo-
nent. In these experiments we included the time step of the system in s0, which
allows for a single message to have a different meaning, depending on which time
step it was sent. Adding time to s0 requires no extra assumptions, but does
allow the agents to more closely correlate their behavior. Providing correlation
for agents in a DEC-POMDP has been shown to improve team performance
(Bernstein et al., 2005).
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Figure 5.2: Multiagent Heaven or Hell results. The circles indicate results for 2 agents,
and the squares show results for a team of 3 agents. Plot (a) shows the expected
discounted reward (E R) obtained for different communication rewards (rc), and
table (b) lists the average number of messages sent.

5.3.1 Multiagent Heaven or Hell

First we will consider the Multiagent Heaven or Hell domain as introduced in
Sec. 5.2.2. The environment contains seven grid cells (|Si| = 7) and the shared
state s0 is the cross-product of the time index and {“heaven is in bottom-left
grid cell”,“heaven is in bottom-right grid cell”}, where we set the horizon of
the problem to 15. Each agent has a domain-level action set Ad

i = {north,

east, south, west, stay in place}, where the first four are movement actions that
transport the agent one grid cell in the corresponding direction, and the last
action is a no-op which has no effect on the agent’s location. Each agent can
observe whether there is a wall to the left or to the right of it, and in the priest
state it can observe the location of heaven, resulting in six possible observations
Od

i ={left, right, both, neither, heaven-left, heaven-right}. Meeting in heaven by
all agents is rewarded by rh = 10 and meeting in hell by −rh. Visiting the priest
incurs a negative reward rp = −2, every movement action a reward of −0.1, and
the discount factor γ is set to 0.95. Both the transition and observation model
are deterministic, and the agents always start in the center grid cell (the cell at
the T-intersection).

Fig. 5.2 shows results obtained by using the local reward modification scheme
described in Sec. 5.2.5.2, for teams of 2 and 3 agents. First, we see in Fig. 5.2(a)
that the team performance increases when the penalty for communication de-
creases, i.e., rc becomes less negative. In all cases one agent i will visit the priest,
but it will only send a message indicating the location of heaven if the commu-
nication cost is low (rc ≥ −2), see Fig. 5.2(b). Otherwise the other agent(s) will
go to one of the heaven/hell locations, and agent i will only join them if it is
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Figure 5.3: Pack Tag results. Plot (a) shows the expected discounted reward (E R)
obtained for different communication rewards (rc), and table (b) lists the average
number of messages sent.

indeed the correct location. When communication is free, performance is best
and a large number of messages are communicated, as one would expect. On
the other extreme, when communication is expensive, the performance remains
stable for the 2-agent case, but for 3 agents the algorithm gets trapped in a
local maximum.

5.3.2 Pack Tag

The “Pack Tag” problem models a game of tag, in which two robots have to tag
an opponent robot (Pineau et al., 2003a; Emery-Montemerlo et al., 2004). The
game is played on a k×k grid, with one robot starting in the bottom-left corner
and the other one in the top-right corner. At the beginning of each game the
opponent is positioned uniformly at random in one of the grid cells and remains
stationary. The two robots have to occupy the same grid cell as the opponent
and execute the tag action simultaneously in order to tag the opponent. The
robots can move in any of the four compass directions, and their actions are
deterministic. The two robots have a sensor which detects the opponent with
full certainty when the opponent is sharing the same grid cell. Each robot
receives a null observation otherwise, but remains perfectly localized due to the
known starting position and noise-free motion. Each action incurs a reward
of −0.1 and successfully tagging the opponent results in a reward of 10. The
agents have to tag the opponent in 10 time steps, and γ was set to 0.95.

As in Sec. 5.3.1 we varied the communication cost while employing the local
reward modification method, and using a grid size k = 3. Fig. 5.3 shows that
when the communication cost is high, rc ≤ −0.05, the agents converge to a
non-communicating policy pair. They both search the grid, and when one of
them sees the opponent it waits for the other to join it before jointly tagging
it. However, when communication is cheaper the agents communicate when
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they observe the opponents, which indicates to the other agent the location
of the opponent. Here the benefit of including time in s0 is manifested, as
receiving the same message at a different time step has a different meaning:
agent i knows agent j’s policy, and therefore knows j’s search pattern, and in
this way knows in what grid cell agent j observed the opponent when j send its
message. After receiving an informative message an agent abandons its search
pattern and moves directly to its teammate’s position, where they jointly tag
the opponent. The policy pair computed for rc = −0.01 has converged to a
better local maximum, which uses a more efficient form of communication.

5.4 Discussion

In this chapter we considered the problem of planning for cooperative multi-
agent systems. If the task assigned to the system requires tight coordination at
all times, it is natural to treat the team as a single agent, and plan in the space
of joint actions. Instead, we focused on multiagent problems in which explicit
cooperation is required at some stages, but at other points in time and space
the agents can act in a more independent fashion. We studied the problem
of computing a plan for a team of agents inhabiting a stochastic environment
that is only partially observable to them. The agents have the capability to
communicate, but sending messages has a certain cost and the available band-
width is limited. Decentralized partially observable Markov decision processes
(DEC-POMDPs) formalize such multiagent planning problems for groups of co-
operating agents. We presented a decentralized model for tackling these kinds
of planning problems, which incorporates a communication channel.

When comparing with other recent approaches to planning for cooperative
multiagent systems in partially observable environments, there are two main
advantages to the proposed model. First of all, we treat communication as an
integral part of an agent’s reasoning, not as an add-on. In particular, we do not
define a priori semantics for a message, but treat it as part of the optimization
problem. The meaning of a particular message σi is defined by the situations
in which agent i will send σi. Of course, assuming a message set Σi with user-
defined, high quality and fixed semantics simplifies the optimization problem,
but we believe it is worthwhile to explore optimizing communication as part of
(approximately) solving the DEC-POMDP.

The second feature of the proposed model is that it is decentralized, and
does not require an (approximate) solution to the large single-agent POMDP
resulting from truly free communication (as described in Sec. 5.2.1). The cen-
tralized state, action and observation spaces grow exponentially in the number
of agents, rendering even approximate solutions infeasible. In our decentralized
model, only the observation set for each agent grows with the number of agents,
which can be limited by manipulating the size of possible messages Σi. One
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other possible solution to combat this exponential growth would be to assume
that messages from different agents are conditionally independent given the
state, which would allow us to factorize each agent’s observation model. A fac-
torized observation model induces a particular structure in an agent’s POMDP,
which can facilitate solving the POMDP.

We trade off exploiting an (approximately) optimal centralized solution for
a potentially more scalable decentralized setting, in which each agent only con-
siders its own local state (and some shared uncontrollable state features). Fur-
thermore, a decentralized framework is more natural for modeling agents who
cannot observe each other’s state nor have truly free communication available.
We proposed an approximate iterative method for computing policies in the
proposed model, and obtained encouraging preliminary experimental results in
two domains.

As future work we would like to examine possibilities of simultaneous learn-
ing of communication-derived POMDPs for two or more agents, which could po-
tentially improve upon the alternating-maximization paradigm. Furthermore,
we would like to experiment on problems with more agents, which are too large
to be solved by centralized methods. For problems that are still solvable by
centralized algorithms, we intend to compare the centralized solution to the de-
centralized one, to gain more insight in how optimality is traded off for more
efficient computation.

Finally, an interesting avenue of future work would be to study how scal-
able multiagent coordination techniques such as coordination graphs (Guestrin,
Koller, and Parr, 2002a; Kok, Spaan, and Vlassis, 2003; Kok et al., 2005) can
be transferred to a DEC-POMDP setting. In this context, Nair, Varakantham,
Tambe, and Yokoo (2005) have proposed Networked Distributed POMDPs,
which combines DEC-POMDP methods with distributed constraint optimiza-
tion techniques (Modi, Shen, Tambe, and Yokoo, 2003), in order to exploit
local interactions between agents. Coordination graphs are based on the same
premise, i.e., the assumption that global coordination problems often can be
successfully approximated by only considering local coordination problems.



Chapter 6

Conclusions

Planning under uncertainty is an important topic in artificial intelligence, as it
enables the design of agents that can perform a sequential decision-making task
as well as possible, even in uncertain environments. In this final chapter we will
present concluding remarks on the work described in this thesis, and outline its
contributions. In Sec. 6.2 we will discuss numerous application domains in which
our techniques could be or have been applied, ranging from industrial settings
such as machine maintenance to robotic, marketing, and medical applications.
Finally, Sec. 6.3 will outline several promising avenues of future research.

6.1 Conclusions and contributions

In this thesis we have studied several instances of the problem of planning
under uncertainty, which forms a key technology for the design of intelligent
agents. An intelligent agent, whether robotic, human, or simulated, should be
able to autonomously perform a given task. An agent acts according to a plan,
which maps sensory input to the optimal action to execute for the given task.
We have considered computing plans for single agents as well as cooperative
multiagent systems, in domains in which an agent is uncertain about the exact
consequence of its actions. Furthermore, we assumed that the agent is equipped
with imperfect sensors, resulting in noisy sensor readings that provide only
limited information. For single agents, such planning problems are naturally
framed in the partially observable Markov decision process (POMDP) paradigm.

We presented Perseus, a randomized point-based value-iteration algorithm
for planning in POMDPs. Perseus operates on a large belief set sampled by
simulating random trajectories through belief space. Approximate value iter-
ation is performed on this belief set by applying a number of backup stages,
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ensuring that in each backup stage the value of each point in the belief set is
improved; the key observation is that a single backup may improve the value
of many belief points. Contrary to other point-based methods, Perseus backs
up only a (randomly selected) subset of points in the belief set, sufficient for
improving the value of each belief point in the set. Experiments confirm that
this allows us to compute value functions that consist of only a small number of
vectors (relative to the size of the belief set), leading to significant speedups. We
performed experiments in benchmark problems from literature, and Perseus

turns out to be very competitive to other methods in terms of solution quality
and computation time. Additionally, we reported how Perseus can be applied
to robotic planning problems. Robots typically have to deal with large state
spaces, high-dimensional sensor readings, perceptual aliasing and uncertain ac-
tions. We defined a mail delivery task in which a simulated robot has to deliver
mail in an office environment, and we proposed to compress and cluster the om-
nidirectional camera images the robot observes. Perseus can succesfully solve
the resulting POMDP model, and the robot will pick up and deliver the mail
from any starting location in the highly perceptually aliased office environment.

As Perseus requires no particular assumptions on the POMDP domain,
it is widely applicable for a range of problems involving planning under un-
certainty. Aside from the experimental domains we presented throughout this
thesis, Perseus has been applied in several other planning problems. Boger
et al. (2005) consider the real-world problem of assisting persons with dementia
in activities of daily living. In particular, they model washing one’s hands as
a POMDP, and use Perseus to compute a policy that guides a user’s hand-
washing activity. Williams and Young (2005); Williams, Poupart, and Young
(2005a) model the interaction of a user with a computer system equipped with
a speech-recognition system as a POMDP. They apply Perseus to compute
dialogue-management policies in a travel domain, in which the user attempts
to buy a ticket to travel from one city to another one. The system asks the
user a series of questions, followed by a ticket purchase request, which ends the
dialogue. Poupart (2005) uses Perseus to compute a policy for managing a
network of computers. The goal is to keep as much computers running as possi-
ble, and the system’s actions are doing nothing, pinging a machine or rebooting
a machine. Some of these applications tackle very large POMDPs with 50 mil-
lion states, which require alternative representations for the POMDP model and
solution.

Extending Perseus to alternative representations is possible as the main
idea of Perseus—improving the value of set of sampled beliefs by randomly
updating belief points—is relatively independent of the particular POMDP and
value-function representation. Poupart (2005) extends Perseus to compute
policies represented compactly as algebraic decisions diagrams instead of vec-
tors. A complementary way to scale up Perseus to such very large domains
is to apply linear compression techniques such as value-directed compression
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(Poupart and Boutilier, 2003b) on the POMDP model, which allows for di-
rect application of approximate POMDP techniques such as Perseus (Poupart,
2005). Perseus has been used in model-free problem settings, to quickly re-
compute policies as more experience regarding the model is gained (Shani et al.,
2005a; Shani, Brafman, and Shimony, 2005b), and in a Bayesian reinforcement-
learning setting (Poupart et al., 2006). Perseus has also been extended to use
predictive state representations as planning framework (James et al., 2006), and
to work with continuous observation spaces (Hoey and Poupart, 2005).

In Chapter 4, we extended Perseus to compute plans for agents which
have a very large or continuous set of actions at their disposal, by sampling
actions from the action space. When sampling a belief in the Perseus backup
stage, we also sample a number of actions, compute the next-horizon vectors
for the particular belief, and we keep the vector which improves the value of the
belief most. We demonstrated the viability of Perseus on two POMDP prob-
lems with continuous action spaces: a continuous navigation task and a robotic
problem involving a mobile robot with omnidirectional vision. We analyzed a
number of different action sampling schemes and compared with discretized ac-
tion spaces. We demonstrated that Perseus can compute successful policies
for these domains while sampling from a continuous set of actions, and can out-
perform Perseus with coarse discrete action spaces. We investigated the effect
of various sampling schemes, and we showed that exploring actions are selected
in the early backup stages, but that over time actions that turn out to be useful
are exploited.

Many real-world POMDPs are naturally defined using continuous states, for
instance the location of a robot, but the large majority of POMDP solution
techniques assume discrete state spaces. We demonstrated the piecewise lin-
earity and convexity of value functions defined over infinite-dimensional belief
states induced by continuous states. As it can be shown that Bellman backups
in continuous state spaces are isotonic and contracting, value iteration can be
extended to continuous-state POMDPs. However, we need a representation that
allows analytical computation of integrals and that is also closed under Bellman
backups. Linear combinations of Gaussians form a suitable and expressive rep-
resentation, and we extended Perseus to operate on Gaussian-based POMDP
models. We demonstrated our method on a simple robot navigation task, in
which a simulated robot succesfully navigates a perceptually aliased corridor.

In Chapter 5 we studied the problem of computing a plan for a team of
agents. We considered a general problem setting in which agents inhabit a
stochastic environment that is only partially observable to them. The agents
have the capability to communicate, but sending messages has a certain cost and
the available bandwidth is limited. Decentralized partially observable Markov
decision processes (DEC-POMDPs) formalize such multiagent planning prob-
lems for groups of cooperating agents. We presented a decentralized model
for tackling these kinds of planning problems, which incorporates a communi-
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cation channel. Decentralized models potentially scale better and are a more
natural paradigm for modeling agents that cannot observe each other’s state.
Contrary to other recent approaches, we treat communication as an integral
part of the model, and model it directly in the DEC-POMDP. We proposed
an approximate iterative method for computing policies in the proposed model.
We obtained encouraging preliminary experimental results in two domains, a
simple toy domain and in a game of tag, in which agents have to cooperate in
order to tag an opponent.

6.2 Applications

In this thesis we did not focus on a particular application domain, but instead we
developed algorithms that can be applied to many different planning domains.
In this section we will not try to exhaustively list every potential application
domain. Instead, we will provide a broad overview of problems that have been
(or could be) tackled by decision-theoretic planning methods, such as the ones
presented in this thesis. Cassandra (1998b) provides an early thorough overview
of POMDP applications.

Initial POMDP applications stem from operations research and have an in-
dustrial flavor, for instance the machine maintenance problem, which is the
subject of early work on POMDPs (Ross, 1971; Smallwood and Sondik, 1973;
White, 1977; David, Friedman, and Sinuany-Stern, 1999; Hsu and Arapostathis,
2004; Simmons Ivy and Black Nembhard, 2005). A machine is assumed to con-
sist of a number of parts, which deteriorate over time, and each one can cause
the machine to fail. The state of each part, i.e., how much it has been worn
down, can only be inspected when the machine is stopped and dismantled. In
that case, money is lost as the machine does not produce any goods. On the
other hand, when a part fails the produced goods are lost. We can model such
an optimal inspection/replacement problem as a POMDP, which trades off the
cost of inspection, replacing parts, and the expected benefit of just continuing
to operate the machine. Related to machine maintenance is the problem of
structural inspection, e.g., when to inspect or perform maintenance on roads or
bridges (Ellis, Jiang, and Corotis, 1995). Other operations-research type of ap-
plications are inventory control (Treharne and Sox, 2002) or computing dynamic
pricing strategies (Aviv and Pazgal, 2005).

A range of POMDP applications consider modeling humans in their state
description. Hauskrecht and Fraser (2000) describe a medical application for
the management of patients, characterized by hidden disease states, and where
the actions consist of diagnostic and treatment procedures. Hu, Lovejoy, and
Shafer (1996) propose a POMDP model to investigate drug therapy policies
for maintaining a patient’s drug dosage at a certain level. Boger et al. (2005)
apply Perseus in a real-world task for assisting persons with dementia, in which
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users receive verbal assistance while washing their hands. Rusmevichientong and
Van Roy (2001) propose a POMDP model for optimizing marketing campaigns,
which models a customer’s responses to different products presented during an
advertising campaign. The goal is to figure out a customer’s profile, in order to
be able to tailor the marketing campaign to the customer.

Spoken dialogue management considers the problem of humans interacting
with computers or robots in form of a dialogue. The user’s intention will often
not be immediately clear to a robot due to noise in speech recognition or due
to lack in the robot’s knowledge of the user’s context. Roy, Pineau, and Thrun
(2000) consider a POMDP model for the dialogue management of a robotic as-
sistant, and Williams and Young (2005); Williams et al. (2005a) apply Perseus

for solving such dialogue-management POMDPs.

In Chapters 3 and 4 we have seen examples of how POMDPs can be used
for robot localization and navigation, as has been shown before (Simmons and
Koenig, 1995; Theocharous and Mahadevan, 2002; Theocharous, Murphy, and
Kaelbling, 2004). POMDP models have been applied to high-level control of a
robotic assistant, designed to interact with elderly people (Pineau et al., 2003b;
Roy, Gordon, and Thrun, 2003). Darrell and Pentland (1996) propose a visual
gesture recognition system, in which a POMDP controller steers the focus of
the camera to regions in the image which are most likely to improve recognition
performance.

Potential applications for decision-theoretic planning in a cooperative multi-
agent setting include cooperative robotics (Arai, Pagello, and Parker, 2002;
Howard, Parker, and Sukhatme, 2004; Kok et al., 2005; Emery-Montemerlo,
Gordon, Schneider, and Thrun, 2005), sensor networks (Lesser, Ortiz, and
Tambe, 2003), distributed space applications (Dias, Stentz, and Goldberg, 2003),
communication networks (Ooi and Wornell, 1996; Tao, Baxter, and Weaver,
2001; Altman, 2002) and supply chain management (Swaminathan, Smith, and
Sadeh, 1998; Fox, Barbuceanu, and Teigen, 2000).

6.3 Future work

In this section, we will identify several different avenues of future research, ex-
panding the work presented in this thesis. We will highlight potential extensions
to Perseus, in particular alternative problem representations and a unified ap-
proximate POMDP planner for continuous domains. For the multiagent case,
we will discuss several interesting possibilities for future work, including the
combination of DEC-POMDP planning with coordination graphs.

Point-based POMDP techniques such as Perseus attempt to exploit struc-
ture present in planning domains by focusing computational resources on the
reachable belief space. In the literature orthogonal techniques for exploiting
problem structure exist, which are based on alternative problem representa-
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tions. For instance, in many problems the state description can be factorized
in a number of state features, as we discussed in Sec. 2.2.4. Instead of defining
a transition function over the full state space, whose size is exponential in the
number of state features, we can compactly represent the transition model using
a dynamic Bayesian network. By also employing Bayesian network representa-
tions for the observation and reward models, we can define factored POMDPs
for planning in large, structured problems (Boutilier and Poole, 1996; Hansen
and Feng, 2000; Guestrin, Koller, and Parr, 2001; Poupart, 2005). Given such a
factored POMDP representation, we will need to choose an appropriate value-
function representation. Poupart (2005) extends Perseus to compute policies
represented as algebraic decisions diagrams in factored POMDPs, and Guestrin
et al. (2001) propose to represent value functions as linear combinations of ba-
sis functions, where each basis function only depends on a subset of all state
features. This allows for approximate but compact representations, suitable for
integration in Perseus.

Predictive state representations (PSRs) have been proposed as an alterna-
tive to POMDPs for modeling stochastic and partially observable environments
(Littman et al., 2002; Singh et al., 2004). A PSR dispenses with the hidden
POMDP states, and only considers sequences of action and observations which
are observed quantities. In a PSR, the state of the system is expressed in
possible future event sequences, or “core tests”, of alternating actions and ob-
servations. The state of a PSR is defined as a vector of probabilities that each
core test can actually be realized, given the current history. The advantages of
the predictive state representation are most apparent when trying to perform
reinforcement learning in partially observable stochastic environments, as the
PSR only considers observable events instead of hidden states. Perseus can be
easily extended to plan in PSRs (James et al., 2006), as the PSR value function
has been proven to be piecewise linear and convex (James, Singh, and Littman,
2004). An interesting line of research would be to further explore the application
of point-based POMDP methods in PSR settings.

A different way of tackling the scale and complexity of real-world planning
problems is to introduce hierarchy, which has been applied in many AI-related
tasks, for instance when learning a map for robot navigation (Thrun, 1998;
Zivkovic, Bakker, and Kröse, 2005). The general idea is to divide the problem
into smaller subproblems, which are defined on a particular level of abstraction.
Each subproblem is easier to solve than the original problem, and hierarchical
approaches combine these partial solutions in a tree, where each lower-level
solution provides the input and output for a higher-level solution. Also in the
POMDP literature several hierarchical approaches have been proposed, both in
a reinforcement-learning setting (Wiering and Schmidhuber, 1997; Hernandez-
Gardiol and Mahadevan, 2001) and in a planning context (Pineau and Thrun,
2002; Theocharous et al., 2004; Foka and Trahanias, 2005). In the model-based
setting we considered, hierarchical POMDPs have for instance been applied in
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robotic localization and navigation problems (Theocharous et al., 2004; Foka
and Trahanias, 2005). As with compact problem representations, hierarchical
approaches could prove an interesting direction of further research, in order to
be able to scale approximate POMDP planning to larger real-world domains.

Many real-world POMDPs are naturally modeled by continuous states, ac-
tions and observations, as we discussed in Chapter 4. Given the numerous
POMDP techniques for discrete models, a common approach for handling con-
tinuous models consists of discretizing or approximating the continuous com-
ponents with a grid (Thrun, 2000; Roy et al., 2005). This usually leads to an
important tradeoff between complexity and accuracy as we vary the coarseness
of the discretization (or the grid). More precisely, as we refine a discretiza-
tion (or grid), computational complexity increases. Alternatively, one can work
directly with continuous components, as we proposed in Chapter 4. We inves-
tigated continuous-state POMDPs in which the models and beliefs are repre-
sented using linear combinations of Gaussian distributions, allowing for exact
computation of Bellman backups. We also tackled the problem of planning with
continuous actions by sampling the action space, and highlighted work by Hoey
and Poupart (2005) on point-based POMDP planning with continuous obser-
vation spaces. As these three extensions are orthogonal in nature, a natural
and promising avenue of future research would be to unify them, in order to
create an approximate POMDP planner for fully continuous domains. Another
interesting research direction would be to investigate which families of functions
(beyond mixtures of Gaussians) are closed under Bellman backups and belief
updates for different types of transition, observation and reward models. Also,
we would like to consider an alternative representation for the belief densities,
by representing a belief using a number of random samples, or particles, instead
of a Gaussian mixture. Particle-based representations have been very popular
in recent years, and they have been used in many applications ranging from
tracking to simultaneous localization and mapping (see Doucet, de Freitas, and
Gordon, 2001, for a review).

An interesting focus for future work is Bayesian reinforcement learning,
which can be cast as a POMDP with a continuous state space (Sec. 4.4.2;
Duff, 2002). It would be interesting to solve Bayesian reinforcement-learning
problems using a similar approach as the Gaussian continuous-state approxi-
mate POMDP solver presented in Sec. 4.3. Poupart et al. (2006) propose such
an extension to Perseus, in which the value function is composed of multi-
variate polynomials, a representation which they prove is closed under Bellman
backups. This parameterization allows for offline policy optimization, while the
online learning is computationally cheap as it only requires belief monitoring.
Unfortunately, as all optimization is done offline, the amount of computation
becomes prohibitive for large MDPs, requiring the user to limit the number of
free parameters or provide informative priors. It would be interesting to study
how such offline optimization techniques can be combined with online ones, for
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instance the sparse sampling method proposed by Wang, Lizotte, Bowling, and
Schuurmans (2005).

When considering the model for planning under uncertainty for teams of
agents we presented in Chapter 5, we can identify many interesting avenues of
future work. In contrast with the large body of literature on POMDPs, accu-
mulated over more than 30 years, DEC-POMDP models have only recently
been receiving considerable attention, no doubt due to their high complex-
ity. One promising line of research would be to consider alternatives for the
alternating-maximization paradigm, in order to be able to simultaneously learn
communication-derived POMDPs for two or more agents. Also, in the model
we presented each agent’s state and action space are local, but the observation
space still grows exponentially in the number of agents, as an agent considers
all possible combinations of incoming messages. An interesting refinement of
the model would be to treat incoming messages from each agent as indepen-
dent, given the state of those agents. Such an assumption is reasonable, as
each message’s meaning is defined over the state, and would induce a partic-
ular structure in the optimization problem. In particular, the POMDP from
each agent’s perspective would have several stages, in which the agent’s domain
level observation and all incoming messages are processed sequentially, thereby
avoiding an exponentially sized observation space.

Finally, an interesting direction of future research would be to consider
how scalable multiagent coordination techniques such as coordination graphs
(Guestrin et al., 2002a; Kok et al., 2005) can be transferred to a DEC-POMDP
setting. Coordination refers to the process that ensures that the individual
decisions of the agents result in jointly optimal decisions for the group. The
joint-action space grows exponentially with the number of agents, but the par-
ticular structure of the coordination problem can often be exploited to reduce
its complexity. Our focus in Chapter 5 has been on domains in which at a given
time step only a limited number of dependencies between agents exists. Via a
context-specific decomposition of the problem into smaller subproblems, coor-
dination graphs offer scalable solutions to the problem of multiagent decision
making (Guestrin et al., 2002a; Guestrin, Venkataraman, and Koller, 2002b).
We have successfully applied coordination graphs to continuous and dynamic
domains such as the RoboCup soccer simulation by assigning roles to the agents
and then coordinating the different roles (Kok et al., 2003, 2005). In this con-
text, Nair et al. (2005) have proposed Networked Distributed POMDPs, which
combines DEC-POMDP methods with distributed constraint-optimization tech-
niques (Modi et al., 2003), in order to exploit local interactions between agents.
Coordination graphs are based on the same premise, i.e., the assumption that
global coordination problems often can be successfully approximated by only
considering local coordination problems. Combining coordination graphs and
DEC-POMDPs might prove fruitful for scaling up multiagent planning under
uncertainty.



Appendix A

Gaussian mixture condensation

The components that represent beliefs and α functions are used in all basic
operations of continuous-state Perseus, so for an efficient implementation of
the algorithm we need to keep the number of components reasonably bounded.
To achieve this objective, we use the procedure presented by Goldberger and
Roweis (2005), which transforms a given Gaussian mixture f with k components
to another Gaussian mixture g with at most m components, m < k, while
retaining the initial component structure. The method directly manipulates
the model parameters, and avoids the need to sample from the mixtures. The
Gaussian mixture condensation algorithm is detailed in Algorithm A.1, where ε
is a sufficiently small threshold.

The algorithm uses the Kullback-Leibler, KL(fi‖gi), distance between two
Gaussian distributions fi = N(µ,Σ), gj = N(µ′,Σ′), which is defined as

KL(fi‖gj) =
1

2

(

log
|Σ′|

|Σ|
+ Tr((Σ′)−1Σ) + (µ− µ′)>(Σ′)−1(µ− µ′)− c

)

,

(A.1)
with c the dimensionality of the space in which the Gaussian distributions are
defined.

Observe that Algorithm A.1 is defined for normalized Gaussian mixtures
and our α functions are unnormalized Gaussian mixtures. Therefore, for the
α function compression, we use a modified version of the procedure in which
the weights are normalized after taking their absolute value, to ensure that
relevant value peaks, both negative or positive ones, are preserved. After the
compression, the inverse procedure is applied to recover weights in the original
scale.
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Algorithm A.1 Gaussian mixture condensation(f ,m), by Goldberger and
Roweis (2005)

Input is a Gaussian mixture f =
∑k

i=1 wi fi(x|µi,Σi) and m < k.
Returns a Gaussian mixture g =

∑m
i=1 w′

i gi(x|µ
′
i,Σ

′
i).

for all j ∈ [1,m] do {Initialize}
w′

j ← wj , µ′
j ← µj , Σ′

j ← Σj

d←
∑k

i=1 wi minj∈[1,m] KL(fi‖gj)
repeat

for all i ∈ [1, k] do {Compute the mapping from f to g}
π(i)← arg minj∈[1,m],w′

j>0 KL(fi‖gj)

for all j ∈ [1,m] do {Define a new g}
Ij ← {i | π(i) = j, i ∈ [1, k]}
w′

j ←
∑

i∈Ij
wi

µ′
j ←

1
w′

j

∑

i∈Ij
wi µi

Σ′
j ←

1
w′

j

∑

i∈Ij
wi (Σi + (µi − µ′

j)(µi − µ′
j)

>)

d′ ← d
d←

∑k
i=1 wi KL(fi‖gπ(i))

until
|d−d′|

d
< ε

Return g



Summary

A major goal of artificial intelligence (AI) is to build agents: systems that
perceive their environment and execute actions. For instance, a mobile robot
might have a camera to observe its surroundings and wheels to move around.
In particular, AI aims to develop intelligent agents, which attempt to perform
an assigned task as well as possible. The agent acts according to a plan, which
maps sensory input to the optimal action to execute for the task.

In this thesis, we have focused on computing plans for single agents as well
as cooperative multiagent systems, in domains in which an agent is uncertain
about the exact consequences of its actions. Furthermore, it is equipped with
imperfect sensors, resulting in noisy sensor readings which provide only limited
information. For single agents, such planning problems are naturally framed in
the partially observable Markov decision process (POMDP) paradigm, which
we have adopted throughout this thesis. In a POMDP, uncertainty in acting
and sensing is captured in probabilistic models, and allows an agent to plan
on its belief state, which summarizes all the information the agent has received
regarding its environment.

As optimal planning in POMDPs is intractable in general we have focused
on approximate but tractable methods. In Chapter 3 we considered a recent
line of research on approximate point-based POMDP algorithms that plan on a
sampled set of belief points. We presented Perseus, a randomized point-based
value-iteration algorithm for planning in POMDPs, which exploits structure
present in real-world planning domains. We performed experiments in bench-
mark problems from literature, and Perseus turns out to be very competitive
to other methods in terms of solution quality and computation time. Addition-
ally, we have shown successful results from an office delivery task involving a
mobile robot with omnidirectional vision in a highly perceptually aliased office
environment.

In Chapter 4, we extended Perseus to compute plans for agents which have
a very large or continuous set of actions at their disposal, by sampling actions
from the action space, and keeping those actions which turn out to be use-
ful. We demonstrated the viability of Perseus on two POMDP problems with
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continuous action spaces: a continuous navigation task and a robotic problem
involving a mobile robot with omnidirectional vision. For POMDPs with con-
tinuous states, we demonstrated the piecewise linearity and convexity of value
functions defined over infinite-dimensional belief states induced by continuous
states. We extended Perseus to plan in continuous-state POMDP models rep-
resented by linear combinations of Gaussian distributions, which form a suitable
and expressive representation that is closed under Bellman backups. We demon-
strated our method by successfully applying it to a simple robot navigation
task. We concluded the chapter by highlighting several third-party extensions
to Perseus.

We switched to the multiagent setting in Chapter 5, in which we considered
the problem of cooperative multiagent planning under uncertainty. We adopted
the decentralized POMDP (DEC-POMDP) framework to compute plans for a
team of agents that have the ability to communicate, but with limited bandwidth
and at a certain cost. We proposed a decentralized model, in which each agent
only reasons about its own local state and some uncontrollable state features,
which are shared by all team members. In contrast to other approaches, we
model communication as an integral part of the agent’s reasoning, in which the
meaning of a message is directly encoded in the policy of the communicating
agent.

Finally, in Chapter 6 we presented general conclusions, and outlined promis-
ing directions of future research. We also highlighted potential application areas
in which the methods presented in this thesis have been or could be applied.



Samenvatting1

Een van de hoofddoelen van onderzoek naar kunstmatige intelligentie is het
ontwikkelen van “agenten”: systemen die hun omgeving kunnen waarnemen en
acties kunnen uitvoeren. Een mobiele robot kan bijvoorbeeld met een camera
zijn omgeving observeren en zich voortbewegen door zijn wielen aan te sturen.
Kunstmatige intelligentie richt zich met name op het ontwerpen van intelligente
agenten, die een opgelegde taak zo goed mogelijk proberen uit te voeren. Een
agent kiest zijn acties volgens een plan, dat voor iedere mogelijke sensorwaar-
neming voorschrijft wat de beste actie is, gelet op de taak van de agent.

In dit proefschrift zijn we gëınteresseerd in het plannen voor zowel enkele
agenten alsmede voor teams van meerdere, samenwerkende agenten. We richten
ons op agenten die onzeker zijn over de precieze gevolgen van het uitvoeren van
acties. Ook beschikt de agent over sensoren met slechts een beperkt bereik en
een begrensde nauwkeurigheid. Voor individuele agenten kan deze probleemstel-
ling worden aangepakt binnen het raamwerk van “partially observable Markov
decision processes” (POMDPs), dat de basis vormt van het onderzoek in dit
proefschrift. In een POMDP worden de onzekerheden in sensorwaarnemingen
en het uitvoeren van acties gerepresenteerd in kansmodellen, waardoor de agent
kan plannen aan de hand van zijn geloof, of “belief”, dat al zijn informatie over
zijn omgeving samenvat.

Aangezien het exact berekenen van een optimaal plan in een POMDP zeer
complex is, richten wij ons op handelbare algoritmes die een optimaal plan pro-
beren te benaderen. In Hoofdstuk 3 hebben we een aantal zogenaamde punt-
gebaseerde POMDP benaderingstechnieken behandeld, die een plan berekenen
aan de hand van slechts een beperkte verzameling van mogelijke belief punten.
We presenteerden Perseus, een punt-gebaseerd “value-iteration” algoritme om
te plannen in POMDPs, dat structuur van realistische planningproblemen uit-
buit. We hebben experimenten gedaan in standaard testproblemen uit de li-
teratuur, en Perseus blijkt, in vergelijking met andere methoden, zeer goede
prestaties te leveren gelet op kwaliteit van de gevonden oplossing en rekentijd.
Verder hebben we succesvolle resultaten laten zien voor een gesimuleerde mobie-

1Summary in Dutch.
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le robot met een omnidirectionele camera, die als taak heeft om post te bezorgen
in een kantooromgeving.

In Hoofdstuk 4 hebben we Perseus uitgebreid voor het plannen voor agen-
ten die een zeer grote of continue verzameling acties tot hun beschikking hebben
door willekeurige acties uit deze actieruimte te proberen, en alleen acties te be-
waren die nuttig blijken te zijn. We hebben de toepasbaarheid van Perseus

gedemonstreerd in twee POMDP problemen met continue actieruimten: een
continue navigatietaak en een planningprobleem voor een mobiele robot met
omnidirectionele visie. Voor POMDPs met continue toestanden lieten we zien
dat “value” functies opgebouwd zijn uit lineaire stukken en convex zijn over de
oneindig-dimensionale belief toestanden. We hebben Perseus uitgebreid om
te kunnen plannen in POMDPs met continue toestanden waarin alle modellen
worden gerepresenteerd als lineaire combinaties van Gauss-verdelingen, hetgeen
een adequate en expressieve representatie vormt die gesloten is onder “Bellman
backups”. We hebben onze aanpak gedemonstreerd op een eenvoudige robot
navigatietaak. Het hoofdstuk werd afgesloten met een beschrijving van uitbrei-
dingen op Perseus zoals die zijn ontwikkeld door derden.

In Hoofdstuk 5 behandelden we het probleem van plannen onder onzekerheid
voor meerdere samenwerkende agenten. We gebruikten het gedecentraliseerde
POMDP (DEC-POMDP) raamwerk om te plannen voor teams van agenten
die met elkaar kunnen communiceren, maar waar de beschikbare bandbreedte
beperkt is en communiceren bepaalde kosten met zich meebrengt. We presen-
teerden een gedecentraliseerd model, waarin iedere agent alleen maar rekening
houdt met zijn eigen lokale toestand en enkele toestandskenmerken die door alle
agenten gedeeld worden, maar die zij niet kunnen bëınvloeden. In tegenstelling
tot andere methoden modeleren wij communicatie als een integraal onderdeel
van het beslissingsproces van een agent, waarin de betekenis van een bericht
wordt bepaald door het plan van de communicerende agent.

Tenslotte trokken we in Hoofdstuk 6 enige conclusies en belichtten we veel-
belovende richtingen van mogelijk vervolgonderzoek. Verder bespraken we mo-
gelijke toepassingsgebieden waar technieken uit dit proefschrift zouden kunnen
worden gebruikt, of reeds toegepast zijn.
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