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Partially observable Markov decision processes (POMDPs) form an attractive and
principled framework for agent planning under uncertainty. Point-based approx-
imate techniques for POMDPs compute a policy based on a finite set of points
collected in advance from the agent’s belief space. We present a randomized
point-based value iteration algorithm called Perseus. The algorithm performs
approximate value backup stages, ensuring that in each backup stage the value
of all points in the belief set is improved (or at least does not decrease). Con-
trary to other point-based methods, Perseus backs up only a (random) subset
of belief points—the key observation is that a single backup may improve the
value of many points in the set. We show how the same idea can be extended to
dealing with continuous action spaces. Experimental results show the potential
of Perseus in large scale POMDP problems.
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1 Introduction

A major goal of Artificial Intelligence (AI) is to build intelligent agents [29]. The agent, whether
physical or simulated, should be able to autonomously perform a given task. An intelligent agent
is often characterized by its sense–think–act loop: it uses sensors to observe the environment,
considers this information to decide what to do, and executes the chosen action. The agent
influences its environment by acting and can detect the effect of its actions by sensing: the
environment closes the loop. In this work we are interested in computing a plan that maps
sensory input to the optimal action to execute for a given task. We consider types of domains
in which an agent is uncertain about the exact effect of its actions. Furthermore, it cannot
determine with full certainty the state of the environment with a single sensor reading, i.e., the
environment is only partially observable to the agent.

Planning under these kinds of uncertainty is a challenging problem as it requires reason-
ing over all possible futures given all possible histories. Partially observable Markov decision
processes (POMDPs) provide a rich mathematical framework for acting optimally in such par-
tially observable and stochastic environments [3, 32, 15, 13]. The POMDP defines a sensor
model specifying the probability of observing a particular sensor reading in a specific state and
a stochastic transition model which captures the uncertain outcome of executing an action. The
agent’s task is defined by the reward it receives at each time step and its goal is to maximize
the discounted cumulative reward. Assuming discrete models, the POMDP framework allows
for capturing all uncertainty introduced by the transition and observation model by defining
and operating on the belief state of an agent. A belief state is a probability distribution over all
states and summarizes all information regarding the past.

Using belief states allows one to transform the original discrete state POMDP into a contin-
uous state Markov decision process (MDP), which can in turn be solved by corresponding MDP
techniques [6]. However, the optimal value function in a POMDP exhibits particular structure
(it is piecewise linear and convex) that one can exploit in order to facilitate the solving. Value
iteration, for instance, is a method for solving POMDPs that builds a sequence of value function
estimates which converge to the optimal value function for the current task [32]. The value
function is parametrized by a finite number of hyperplanes, or vectors, over the belief space, and
which partition the belief space in a finite amount of regions. Each vector maximizes the value
function in a certain region, and with each vector an action is associated which is the optimal
action to take for beliefs in its region. Computing the next value function estimate—looking
one step deeper into the future—requires taking into account all possible actions the agent can
take and all subsequent observations it may receive. Unfortunately, this leads to an exponential
growth of vectors with the planning horizon. Many of the computed vectors will be useless in
the sense that their maximizing region is empty, but identifying and subsequently pruning them
is an expensive operation.

Exact value iteration algorithms [32, 11, 13] search in each value iteration step the complete
belief simplex for a minimal set of belief points that generate the necessary set of vectors for the
next horizon value function. This typically requires solving a number of linear programs and is
therefore costly in high dimensions. In [38] it was argued that value iteration still converges to
the optimal value function if exact value iteration steps are interleaved with approximate value
iteration steps in which the new value function is an upper bound to the previously computed
value function. This results in a speedup of the total algorithm, however, linear programming is
again needed in order to ensure that the new value function is an upper bound to the previous
one over the complete belief simplex. In general, computing exact solutions for POMDPs is an
intractable problem [20, 16], calling for approximate solution techniques [15, 12].

In practical tasks one would like to compute solutions only for those parts of the belief simplex
that are reachable, i.e., that can be actually encountered by interacting with the environment.



2 Perseus: randomized point-based value iteration for POMDPs

This has recently motivated the use of approximate solution techniques for POMDPs which focus
on the use of a sampled set of belief points on which planning is performed [12, 22, 27, 21, 37, 33],
a possibility already mentioned in [15]. The idea is that instead of planning over the complete
belief space of the agent (which is intractable for large state spaces), planning is carried out
only on a limited set of prototype beliefs that have been sampled by letting the agent interact
(randomly) with the environment. PBVI [21], for instance, builds successive estimates of the
value function by updating the value and its gradient only at the points of a (dynamically
growing) belief set.

In this work we describe Perseus, a randomized point-based value iteration algorithm for
POMDPs [37, 33]. Perseus operates on a large set of beliefs which are gathered by simulating
random interactions of the agent with the POMDP environment. On this belief set a number
of backup stages are performed. The algorithm ensures that in each backup stage the value of
all points in the belief set is improved (or at least does not decrease). Contrary to other point-
based methods, Perseus backs up only a (random) subset of belief points—the key observation
is that a single backup may improve the value of many points in the set. This allows us to
compute value functions that consist of only a small number of vectors (relative to the belief set
size), leading to significant speedups. We evaluate the performance of Perseus on benchmark
problems from literature, and it turns out to be very competitive to state-of-the-art methods in
terms of solution quality and computation time.

We extend Perseus to compute plans for agents which have a continuous set of actions at
their disposal. Examples include navigating to an arbitrary location, or rotating a pan-and-tilt
camera at any desired angle. Almost all work on POMDP solution techniques targets discrete
action spaces; an exception is the application of a particle filter to a continuous state and action
space [35]. We report on experiments in an abstract active localization domain in which an
agent can control its range sensors to influence its localization estimate, and on results from a
navigation task involving a mobile robot with omnidirectional vision in a perceptually aliased
office environment.

The rest of the paper is structured as follows: in Section 2 we review the POMDP framework
from an AI perspective. We discuss exact methods for solving POMDPs and their tractability
problems. Next we outline a class of approximate value iteration algorithms, the so called point-
based techniques. In Section 3 we describe and discuss the Perseus algorithm, as well as the
extension to continuous action spaces. Related work on approximate techniques for POMDP
planning is discussed in Section 4. We present experimental results from several problem domains
in Section 5. Finally, Section 6 wraps up with some conclusions.

2 Partially observable Markov decision processes

A partially observable Markov decision process (POMDP) models the repeated interaction of
an agent with a stochastic environment, parts of which are hidden from the agent’s view. The
agent’s goal is to perform a task by choosing actions which fulfill the task best. Put otherwise,
the agent has to compute a plan that optimizes the given performance measure. We assume
that time is discretized in time steps of equal length, and at the start of each step the agent
has to execute an action. At each time step the agent also receives a scalar reward from the
environment, and the performance measure directs the agent to maximize the cumulative reward
it can gather. The reward signal allows one to define a task for the agent, e.g., one can give the
agent a large positive reward when it accomplishes a certain goal and a small negative reward
for each action leading up to it. In this way the agent is steered toward finding the plan which
will let it accomplish its goal as fast as possible.

The POMDP framework models stochastic environments in which an agent is uncertain
about the exact effect of executing a certain action. This uncertainty is captured by a proba-
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bilistic transition model as is the case in a fully observable Markov decision process (MDP) [34, 6].
An MDP defines a transition model which specifies the probabilistic effect of how each action
changes the state. Extending the MDP setting, a POMDP also deals with uncertainty resulting
from the agent’s imperfect sensors. It allows for planning in environments which are only par-
tially observable to the agent, i.e., environments in which the agent cannot determine with full
certainty the true state of the environment. In general the partial observability stems from two
sources: (1) multiple states lead to the same sensor reading, in case the agent can only sense
a limited part of the environment, and (2) its sensor readings are noisy: observing the same
state can result in different sensor readings. The partially observability can lead to “perceptual
aliasing”: the problem that different parts of the environment appear similar to the agent’s
sensor system, but require different actions. The POMDP represents the partial observability
by a probabilistic observation model, which relates possible observations to states.

More formally, a POMDP assumes that at any time step the environment is in a state
s ∈ S, the agent takes an action a ∈ A and receives a reward r(s, a) from the environment as
a result of this action, while the environment switches to a new state s′ according to a known
stochastic transition model p(s′|s, a). The Markov property entails that s′ only depends on the
previous state s and the action a. The agent then perceives an observation o ∈ O, that may
be conditional on its action, which provides information about the state s′ through a known
stochastic observation model p(o|s, a). All sets S, O, and A are assumed discrete and finite here
(but we will generalize to continuous A in Section 3.3).

In order for an agent to choose its actions successfully in partially observable environments
some form of memory is needed, as the observations the agent receives do not provide an unique
identification of s. Given the transition and observation model the POMDP can be transformed
to a belief-state MDP: the agent summarizes all information about its past using a belief vector
b(s). The belief b is a probability distribution over S, which forms a Markovian signal for the
planning task [3]. All beliefs are contained in the simplex ∆, which means we can represent
a belief using |S| − 1 numbers. Each POMDP problem assumes an initial belief b0, which for
instance can be set to a uniform distribution over all states (representing complete ignorance
regarding the initial state of the environment). Every time the agent takes an action a and
observes o, its belief is updated by Bayes’ rule:

bo
a(s

′) =
p(o|s′, a)

p(o|a, b)

∑

s∈S

p(s′|s, a)b(s), (1)

where p(o|a, b) =
∑

s′∈S p(o|s′, a)
∑

s∈S p(s′|s, a)b(s) is a normalizing constant.
As we discussed above, the goal of the agent is to choose actions which fulfill its task as good

as possible, i.e., to compute an optimal plan. Such a plan is called a policy π(b) and maps beliefs
to actions. Note that, contrary to MDPs, the policy π(b) is a function over a continuous set
of probability distributions over S. The quality of a policy is rated by a performance measure,
i.e., by an optimality criterion. A common criterion is the expected discounted future reward
E[

∑∞
t=0 γtr(st, π(bt))], where γ is a discount rate, 0 ≤ γ < 1. The discount rate ensures a finite

sum and is usually chosen close to 1. A policy which maximizes the optimality criterion is called
an optimal policy π∗; it specifies for each b the optimal action to execute at the current step,
assuming the agent will also act optimal at future time steps.

A policy can be defined by a value function Vn which determines the expected amount of
future discounted reward Vn(b) the agent can gather in n steps from every belief b. The value
function of an optimal policy is characterized by the optimal value function V ∗ which satisfies
the Bellman optimality equation V ∗ = HV ∗, or

V ∗(b) = max
a∈A

[

∑

s∈S

r(s, a)b(s) + γ
∑

o∈O

p(o|a, b)V ∗(bo
a)

]

, (2)
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with bo
a given by (1), and H is the Bellman backup operator [4]. When (2) holds for every b ∈ ∆

we are ensured the solution is optimal.

V ∗ can be approximated by iterating a number of stages, as we will see in the next section, at
each stage considering a step further into the future. For problems with a finite planning horizon
V ∗ will be piecewise linear and convex (PWLC) [30], and for infinite horizon (non-episodic) tasks
V ∗ can be approximated arbitrary well by a PWLC value function. We parametrize such a value
function Vn by a finite set of vectors (hyperplanes) {αi

n}, i = 1, . . . , |Vn|. Additionally, with each
vector an action a(αi

n) ∈ A is associated, which is the optimal one to take in the current step.
Each vector defines a region in the belief space for which it is the maximizing element of Vn.
These regions form a partition of the belief space, induced by the piecewise linearity of the value
function. Examples of a value function for a two state POMDP are shown in Fig. 1(a) and 1(d).

Given a set of vectors {αi
n}

|Vn|
i=1 in Vn, the value of a belief b is given by

Vn(b) = max
{αi

n}i

b · αi
n, (3)

where (·) denotes inner product. The gradient of the value function at b is given by the vector
αb

n = arg max{αi
n}i

b · αi
n, and the policy at b is given by π(b) = a(αb

n).

2.1 Exact value iteration

Computing an optimal plan for an agent means solving the POMDP, and a classical method
for POMDP solving is value iteration. In the POMDP framework, value iteration involves
approximating V ∗ by applying the exact dynamic programming operator H above, or some
approximate operator H̃, to an initially piecewise linear and convex value function V0. For
H, and for many commonly used H̃, the produced intermediate estimates V1, V2, . . . will also
be piecewise linear and convex. The main idea behind many value iteration algorithms for
POMDPs is that for a given value function Vn and a particular belief point b we can easily
compute the vector αb

n+1 of HVn such that

αb
n+1 = arg max

{αi
n+1

}i

b · αi
n+1 (4)

where {αi
n+1}

|HVn|
i=1 is the (unknown) set of vectors for HVn. We will denote this operation

αb
n+1 = backup(b). It computes the optimal vector for a given belief b by back-projecting all

vectors in the current horizon value function one step from the future and returning the vector
that maximizes the value of b. In particular, defining ra(s) = r(s, a) and using (1), (2), and (3)
we have:

Vn+1(b) = max
a

[

b · ra + γ
∑

o

p(o|a, b)Vn(bo
a)

]

(5)

= max
a

[

b · ra + γ
∑

o

p(o|a, b) max
{αi

n}i

∑

s′

bo
a(s

′)αi
n(s′)

]

(6)

= max
a

[

b · ra + γ
∑

o

max
{αi

n}i

∑

s′

p(o|s′, a)
∑

s

p(s′|s, a)b(s)αi
n(s′)

]

(7)

= max
a

[

b · ra + γ
∑

o

max
{gi

a,o}i

b · gi
a,o

]

, (8)

where

gi
a,o(s) =

∑

s′

p(o|s′, a)p(s′|s, a)αi
n(s′). (9)
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Applying the identity maxj b · αj = b · arg maxj b · αj in (8) twice, we can compute the vector
backup(b) as follows:

backup(b) = arg max
{gb

a}a∈A

b · gb
a, where (10)

gb
a = ra + γ

∑

o

arg max
{gi

a,o}i

b · gi
a,o. (11)

Although computing the vector backup(b) for a given b is straightforward, locating the
(minimal) set of points b required to compute all vectors ∪b backup(b) of HVn is very costly. As
each b has a region in the belief space in which its αb

n is maximal, a family of algorithms tries
to identify these regions [32, 11, 13]. The corresponding b of each region is called a “witness”
point, as it testifies to the existence of its region. Another set of exact POMDP value iteration
algorithms do not focus on searching in the belief space, but instead consider enumerating all
possible vectors of HVn and then pruning useless vectors [18, 10].

As an example of exact value iteration let us consider the most straightforward way of
computing HVn due to Monahan [18]. This involves calculating all possible ways HVn could
be constructed, exploiting the known structure of the value function. We operate independent
of a particular b now so (11) can no longer be applied. Instead we have to include all ways of
selecting gi

a,o for all o:

HVn =
⋃

a,i

{gi
a}, with {gi

a} =
⊕

o

{

ra + γ gi
a,o

}

, (12)

where
⊕

denotes the cross-sum operator.1 Unfortunately, at each stage a number of vectors
exponential in |O| are generated: |A||Vn|

|O|. The regions of many of the generated vectors will
be empty and these vectors as such are useless, but identifying and subsequently pruning them
requires linear programming and is therefore costly in high dimensions.

In [38] an alternative approach to exact value iteration was proposed, designed to speed up
each exact value iteration step. It turns out that value iteration still converges if exact value
update steps are interleaved with approximate update steps in which a new value function Vn+1

is computed from Vn such that

Vn(b) ≤ Vn+1(b) ≤ HVn(b), for all b ∈ ∆. (13)

This additionally requires that the value function is appropriately initialized, which is trivially
realized by choosing V0 to be a single vector with all its components equal to 1

1−γ
mins,a r(s, a).

Such a vector represents the minimum of cumulative discounted reward obtainable in the
POMDP, and is guaranteed to be below V ∗. In [38], Vn+1 is computed by backing up all
witness points of Vn for a number of steps. As we saw above, backing up a set of belief points
is a relatively cheap operation. Thus, given Vn, a number of vectors of HVn are created by
applying backup to the witness points of Vn, and then a set of linear programs are solved to
ensure that Vn+1(b) ≥ Vn(b), ∀b ∈ ∆. This is repeated for a number of steps, before an exact
value update step takes place. The authors demonstrate experimentally that a combination of
approximate and exact backup steps can speed up exact value iteration.

In general, however, computing optimal planning solutions for POMDPs is an intractable
problem for any reasonably sized task [20, 16]. This calls for approximate solution techniques.
We will describe next a recent line of research on approximate POMDP algorithms which focus
on planning on a fixed set of belief points.

1Cross-sum of sets {Ri} is defined as:
⊕k

i=1
Ri = R1 ⊕R2 ⊕ . . .⊕Rk, with P ⊕Q = { p + q | p ∈ P, q ∈ Q }.
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2.2 Approximate value iteration

The major cause of intractability of exact POMDP solution methods is their aim of computing
the optimal action for every possible belief point in ∆. For instance, if we use (12) we end
up with a series of value functions whose size grows exponentially in the planning horizon. A
natural way to sidestep this intractability is to settle for computing an approximate solution by
considering only a finite set of belief points. The backup stage reduces to applying (10) a fixed
number of times, resulting in a small number of vectors (bounded by the size of the belief set).
The motivation for using approximate methods is their ability to compute successful policies for
much larger problems, which compensates for the loss of optimality.

Such approximate POMDP value iteration methods operating on a fixed set of points are
explored in [15] and in subsequent works [12, 22, 21, 37, 33]. In [21] for instance, an approximate
backup operator H̃PBVI is used instead of H, that computes in each value backup stage the set

H̃PBVIVn =
⋃

b∈B

backup(b) (14)

using a fixed set of belief points B. The general assumption underlying these so-called point-
based methods is that by updating not only the value but also its gradient (the α vector) at each
b ∈ B, the resulting policy will generalize well and be effective for most beliefs encountered by
the agent. Whether or not this assumption is realistic depends on the POMDP’s structure and
the contents of B, but the intuition is that in many problems the set of ‘reachable’ beliefs forms
a low dimensional manifold in the belief simplex, and thus it can be covered densely enough by
a relatively small number of belief points.

Crucial to the control quality of the computed approximate solution is the makeup of B. A
number of schemes to build B have been proposed. For instance, one could use a regular grid
on the belief simplex, computed, e.g., by Freudenthal triangulation [15]. Other options include
taking all extreme points of the belief simplex or use a random grid [12, 22]. An alternative
scheme is to include belief points that can be encountered by simulating the POMDP: we can
generate trajectories through the belief space by sampling random actions and observations at
each time step [15, 12, 22, 21, 37, 33]. This sampling scheme focuses the contents of B to be
beliefs that can actually be encountered while experiencing the POMDP model.

The PBVI algorithm [21] is an instance of such a point-based POMDP algorithm. PBVI
starts by selecting a small set of beliefs B0, performs a number of backup stages (14) on B0,
expands B0 to B1 by sampling more beliefs, performs again a series of backups, and repeats this
process until a satisfactory solution has been found (or the allowed computation time expires).
The set Bt+1 grows by simulating actions for every b ∈ Bt, maintaining only the new belief
points that are furthest away from all other points already in Bt+1. This scheme is a heuristic
to let Bt cover a wide area of the belief space, but comes at a cost as it requires computing
distances between all b ∈ Bt. By backing up all b ∈ Bt the PBVI algorithm generates at each
stage approximately |Bt| vectors, which can lead to performance problems in domains requiring
large Bt.

In the next section we will present a point-based POMDP value iteration method which does
not require backing up all b ∈ B. We compute backups for a subset of B only, but seeing to
it that the computed solution will be effective for B. As a result we limit the growth of the
number of vectors in the successive value function estimates, leading to significant speedups.

3 Randomized point-based backup stages

We have introduced the POMDP framework which models agents inhabiting stochastic envi-
ronments that are partially observable to them, and discussed exact and approximate methods
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for computing successful plans for such agents. Below we describe Perseus, an approximate
solution method capable of computing competitive solutions in large POMDP domains.

3.1 Perseus

Perseus is an approximate point-based value iteration algorithm for POMDPs [37, 33]. The
value update scheme of Perseus implements a randomized approximate backup operator
H̃Perseus that improves (instead of maximizes) the value of all belief points in B. Such an
operator can be very efficiently implemented in POMDPs given the shape of the value function.
The key idea is that in each value backup stage we can improve the value of all points in the
belief set by only updating the value and its gradient of a randomly selected subset of the points.
In each backup stage, given a value function Vn, we compute a value function Vn+1 that improves
the value of all b ∈ B, i.e., we build a value function Vn+1 = H̃PerseusVn that upper bounds Vn

over B (but not necessarily over ∆ which would require linear programming):

Vn(b) ≤ Vn+1(b), for all b ∈ B. (15)

We first let the agent randomly explore the environment and collect a set B of reachable
belief points. We initialize the value function V0 as a single vector with all its components equal
to 1

1−γ
mins,a r(s, a) as in [38]. Starting with V0, Perseus performs a number of value function

update stages until some convergence criterion is met. Each backup stage is defined as follows,
where B̃ is the set of non-improved points:

Perseus randomized backup stage: Vn+1 = H̃PerseusVn

1. Set Vn+1 = ∅. Initialize B̃ to B.

2. Sample a belief point b uniformly at random from B̃ and compute α = backup(b).

3. If b · α ≥ Vn(b) then add α to Vn+1, otherwise add α′ = arg maxαi∈Vn
b · αi to Vn+1.

4. Compute B̃ = {b ∈ B : Vn+1(b) < Vn(b)}. If B̃ = ∅ then stop, else go to 2.

Often, a small number of vectors will be sufficient to improve Vn(b) ∀b ∈ B, especially in
the first steps of value iteration. The idea is to compute these vectors in a randomized greedy
manner by sampling from B̃, an increasingly smaller subset of B. We keep track of the set of
non-improved points B̃ consisting of those b ∈ B whose new value Vn+1(b) is still lower than
Vn(b). At the start of each backup stage, Vn+1 is set to ∅ which means B̃ is initialized to B,
indicating that all b ∈ B still need to be improved in this backup stage. As long as B̃ is not
empty, we sample a point b from B̃ and compute α = backup(b). If α improves the value of b

(i.e., if b ·α ≥ Vn(b) in step 3), we add α to Vn+1 and update Vn+1(b) for all b ∈ B by computing
their inner product with the new α. The hope is that α improves the value of many other points
in B, and all these points are removed from B̃. As long as B̃ is not empty we continue sampling
belief points from it and try to add their α vectors.

To ensure termination of each backup stage we have to enforce that B̃ shrinks when adding
vectors, i.e., that each α actually improves at least the value of the b that generated it. If not
(i.e., b · α < Vn(b) in step 3), we ignore α and insert a copy of the maximizing vector of b from
Vn in Vn+1. Point b is now considered improved and is removed from B̃ in step 4, together with
any other belief points which had the same vector as maximizing one in Vn. This procedure
ensures that B̃ shrinks and the backup stage will terminate. A pictorial example of a backup
stage is presented in Fig. 1.
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Figure 1: Example of a Perseus backup stage in a two state POMDP. The belief space is
depicted on the x-axis and the y-axis represents V (b). Solid lines are α vectors from the current
stage and dashed lines are vectors from the previous stage. We operate on a B of 7 beliefs,
indicated by the tick marks. The value update stage computing Vn+1 from Vn proceeds as follows:
(a) value function at stage n; (b) start computing Vn+1 by sampling b6, add α = backup(b6) to
Vn+1 which improves the value of b6 and b7; (c) sample b3 from {b1, . . . , b5}, add backup(b3) to
Vn+1 which improves b1 through b5; and (d) the value of all b ∈ B has improved, Vn+1 is done.

3.2 Discussion

The key observation underlying the Perseus algorithm is that when a belief b is backed up,
the resulting vector improves not only V (b) but often also the value of many other belief points
in B. This results in value functions with a relatively small number of vectors (as compared,
e.g., to [22] or [21]). Experiments show indeed that the number of vectors grows modestly with
the number of backup stages (|Vn| � |B|). In practice this means that we can afford to use a
much larger B than other point-based methods, which has a positive effect on the approximation
accuracy. Furthermore, compared with, e.g., PBVI, building the set B is cheap as we do not
compute distances between all b ∈ B when adding new points. Moreover, note that duplicate
entries in B will only affect the probability that a particular b will be sampled in the value
update stages, but not the size of Vn.

Perseus can be viewed as a particular instantiation of asynchronous dynamic programming
for point-based POMDP value iteration [5]. In asynchronous dynamic programming algorithms
no full sweeps over the state space are made, but the order in which states are backed up is
arbitrary. This allows an algorithm to focus on backups which may have a high potential impact,
as for instance in the prioritized sweeping algorithm for solving fully observable MDPs [19, 2].
A drawback is that the notion of an exact planning horizon is somewhat lost: in general,
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after performing n backup stages the computed plan will not be considering n steps into the
future, but less. By backing up non-improved belief points asynchronously Perseus focuses
on interesting regions of the (reachable) belief space, and by sampling at random ensures that
eventually all b ∈ B will be taken into account. As we ensure that the value of a particular
belief point never decreases, we are guaranteed that Perseus will converge [22, 37]: the proof
only requires observing that every added vector is always below V ∗. Moreover, as we explained
above, Perseus can handle large belief sets B, thus obviating the use of dynamic belief point
selection strategies like those in [12, 22, 21]. Finally note that Perseus has no parameters that
require tuning by the user, apart from the belief set size.

3.3 Extension to planning with continuous actions

Almost all work on POMDP solution techniques targets discrete action spaces. An exception
is the application of a particle filter to a continuous state and action space [35]. We show here
that the Perseus scheme of ‘only–improve’ value updates is also very well suited for handling
POMDP problems with continuous action spaces.

Instead of considering a finite and discrete action set A we parameterize the agent’s actions
on a set of k, problem-specific parameters θ = {θ1, θ2, . . . , θk}. These parameters are real valued
and can for instance denote the angle by which a robot rotates. Computing a policy containing
such actions requires modifying the backup operator defined in Section 2.1, since A now contains
an infinite numbers of actions (and therefore maximization over these is not straightforward).
The idea here is that instead of maximizing over all a ∈ A, we sample actions at random from
A and check whether one of the resulting vectors improves the value of the corresponding belief
point. The backup operator as defined in (10) is replaced by a backup operator α = backup′(b):

backup′(b) = arg max
{gb

a}a∈Ã

b · gb
a, with Ã = {ai : ai is drawn from A}, (16)

and gb
a as defined in (11). We draw at random a set Ã from the continuous set A, in particular

specific θ vectors which define actions and which in turn define the gb
a vectors. In our experiments

we let the backup′ operator sample one θ uniformly at random, but other, more informed,
schemes are also possible (for instance, sampling in the neighborhood of the best known θ of
a particular b). We can easily incorporate such a backup operator in Perseus modifying its
backup stage defined in Section 3.1 as follows: instead of using backup in step 2 we compute a
vector using backup′. Using such a randomized backup operator is justified as we check in step
3 whether the vector generated by the sampled action improves the value of the particular belief
point. If not, we keep the old vector with the best known action, sampled in a previous backup
stage.

An alternative to sampling for handling continuous action spaces is to discretize the space.
A computational advantage of reducing the action space to a set of discrete actions is the fact
that when A is small enough, one can cache in advance the transition, observation, and reward
models for all a ∈ A. In contrast, when we sample a real-valued action we have to compute these
models “on the fly” for the sampled action. For instance, in order to generate the transition
model p(s′|s, a) the effect of the sampled action for all states needs to be computed. However,
the applicability of discretization to a continuous action space is limited, particularly when
considering scalability. The number of discrete actions grows exponentially with k, the number
of dimensions of θ. For instance, consider a robotic arm with a large number of joints or, as in
the experiments of Section 5.2.1, an agent which can control a number of sensors at the same
time: discretization would require a number of bins that is exponential in the number of joints
or sensors, respectively. Furthermore, the discretization can lead to worse control performance,
as demonstrated in Section 5.2.2. Clearly, working directly with continuous actions allows for
more precise control.
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4 Related work

In Section 2.2 we reported on a class of approximate solution techniques for POMDPs that focus
on computing a value function approximation based on a fixed set of prototype belief points.
Here we will broaden the picture to other approximate POMDP solution methods. For a more
elaborate overview we refer to [12].

A number of heuristic control strategies have been proposed which build on a solution of the
underlying MDP. A well-known technique is QMDP [14], a simple approximation technique that
treats the POMDP as if it were fully observable and solves the MDP, e.g., using value iteration.
The resulting Q(s, a) values are used to define a control policy by π(b) = arg maxa

∑

s b(s)Q(s, a).
QMDP can be very effective in some domains, but the policies it computes will not take informative
actions, as the QMDP solution assumes that any uncertainty regarding the state will disappear
after taking one action. As such, QMDP policies will fail in domains where repeated information
gathering is necessary.

One way to sidestep the intractability of exact POMDP value iteration is to grid the belief
simplex, either using a fixed grid [15, 7] or a variable grid [8, 39]. For every grid point value
backups are performed, but only the value of each grid point is preserved and the gradient
is ignored. The value of non-grid points is defined by an interpolation rule. The grid based
methods differ mainly on how the grid points are selected and what shape the interpolation
function takes. In general, regular grids do not scale well in problems with high dimensionality
and non-regular grids suffer from expensive interpolation routines.

An alternative to computing an (approximate) value function is policy search: these methods
search for a good policy within a restricted class of controllers. For instance, bounded policy
iteration (BPI) searches through the space of bounded-size, stochastic finite state controllers [25,
23]. Options for performing the search include gradient ascent [1, 17] and heuristic methods like
stochastic local search [9]. Although policy search methods have been applied successfully,
choosing an appropriate policy class is difficult and moreover these methods can suffer from
local optima.

Compression techniques can be applied to large POMDPs to reduce the dimensionality of
the belief space, facilitating the computation of an approximate solution. In [28], Exponential
family PCA is applied to a sample set of beliefs to find a low-dimensional representation, based
on which an approximate solution is sought. Such a non-linear compression can be very effective,
but requires learning a reward and transition model in the reduced space. After such a model
is learned, one can compute an approximate solution for the original POMDP using, e.g., MDP
value iteration. Alternatively linear compression techniques can be used which preserve the
shape of value function [24]. Such a property is desirable as it allows one to exploit the existing
POMDP machinery. For instance, in [26] such a compressed POMDP is used as input for BPI,
and in [23] linear compression has been applied as a preprocessing step for Perseus.

Little work has been done on the topic of planning with continuous actions in POMDPs. We
are only aware of [35] in which particle filters are applied to POMDP domains with a continuous
state and action space. As the continuous state space precludes the computation of a traditional
belief state, many nice properties (e.g., known shape of the value function) are lost. The belief
states are approximated by sets of weighted sample points drawn from the belief distribution. A
set of such belief states B is maintained and the value function is represented by Q(b, a) value at
each b ∈ B and updated by value iteration. Nearest neighbor techniques are applied to obtain
Q values for beliefs not in B.

HSVI is an approximate value iteration technique which maintains upper and lower bounds
to the optimal value function [31]. It performs a heuristic search through the belief space for
beliefs at which to update the bounds. Unfortunately, costly linear programming is necessary
to compute the upper bound.
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Name |S| |O| |A| |B|

Tiger-grid 33 17 5 103

Hallway 57 21 5 103

Hallway2 89 17 5 103

Tag 870 30 5 104

ALH 100 16 ∞ 104

cTRC 200 10 ∞ 104

(a) Problem domains.

str. θm θn θe θs θw

0 {n, e, s, w} 0.25 0.25 0.25 0.25

1 {n, e, s, w} [0, 2] 0.25 0.25 0.25

2 {n, e, s, w} [0, 2] [0, 2] 0.25 0.25

3 {n, e, s, w} [0, 2] [0, 2] [0, 2] 0.25

4 {n, e, s, w} [0, 2] [0, 2] [0, 2] [0, 2]

(b) Action sampling strategies (str) tested in the
ALH domain.

Table 1: Experimental setup: (a) problem characteristics; (b) details of the ALH domain.

Finally, an interesting recent work involves combining point-based POMDP techniques with
Gaussian Processes to monitor the uncertainty in the consecutive value function estimates [36].

5 Experiments

We will show some experimental results applying Perseus on benchmark problems from the
POMDP literature, and present two new POMDP domains for testing Perseus in problems
with continuous action spaces. Table 1(a) summarizes these domains in terms of the size of S,
O and A, and displays the size of the belief set used as input to Perseus. Each belief set was
gathered by simulating random interactions of the agent with the POMDP environment. In all
domains the discount factor γ was set to 0.95.

5.1 Discrete action spaces

The Hallway, Hallway2 and Tiger-grid problems (introduced in [14]) are maze domains that have
been commonly used to test scalable POMDP solution techniques [14, 8, 39, 21, 31, 37, 33, 23].
The Tag domain [21] is an order of magnitude larger than the first three problems, and is a
recent benchmark problem [21, 31, 9, 25, 37, 33, 23].

5.1.1 Benchmark mazes

In [14] three benchmark maze domains were introduced: Tiger-grid, Hallway, and Hallway2. All
of them are navigation tasks: the objective is for an agent to reach a designated goal state as
quickly as possible. The agent can observe each possible combination of the presence of a wall
in four directions plus a unique observation indicating the goal state; in the Hallway problem
three other landmarks are also available. At each step the agent can take one out of five actions:
{stay in place, move forward, turn right, turn left, turn around}. Both the transition and
the observation model are very noisy. Table 2(a) through (c) compares the performance of
Perseus to other algorithms. The average expected discounted reward R is computed from
1, 000 trajectories for each of the 10 Perseus runs. Each trajectory is sampled by executing
the computed policy. We collect the rewards received, discount them and report on the average
of these 10, 000 trajectories. Perseus reaches competitive control quality using a small number
of vectors and substantially less computation time2.

2
Perseus and QMDP results were computed in Matlab on an Intel Pentium IV 2.4 Ghz; other results were

obtained on different platforms, so time comparisons are rough.
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(a) State space.
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(b) Value.
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(c) Reward.
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(e) Policy changes.

Figure 2: Tag: (a) state space with chasing and opponent robot; (b)–(e) performance of
Perseus.

5.1.2 Tag

The goal in the Tag domain, described in [21], is for a robot to search for a moving opponent
robot and tag it. The chasing robot cannot observe the opponent until they occupy the same
position, at which time it should execute the tag action in order to win the game, and receive
a reward of 10. If the opponent is not present at the same location, the reward will be −10,
and the robot is penalized with a −1 reward for each motion action it takes. The opponent
tries to escape from being tagged by moving away of the chasing robot, it however has a 0.2
chance of remaining at its location. The chasing robot has perfect information regarding its own
position and its movement actions {north, east, south, west} are deterministic. The state space
is represented as the cross-product of the states of the two robots. Both robots can be located
in one of the 29 positions depicted in Fig. 2(a), and the opponent can also be in a special tagged
state, resulting a total 870 states. Tag is a rather large benchmark problem compared to other
POMDP problems studied in literature, but it exhibits a sparse structure.

In Fig. 2(b)–(e) we show the performance of Perseus averaged over 10 runs, error bars
indicate standard deviation within these runs. To evaluate the computed policies we tested each
of them on 10 trajectories (of at most 100 steps) times 100 starting positions. Fig. 2(b) displays
the value as estimated on B,

∑

b∈B V (b); (c) the expected discounted reward averaged over the
1, 000 trajectories; (d) the number of vectors in the value function estimate, |{αi

n}|; and (e)
the number of policy changes: the number of b ∈ B which had a different optimal action in
Vn−1 compared to Vn. The latter can be regarded as a measure of convergence for point-based
solution methods [15]. We can see that in almost all experiments Perseus reaches solutions of
virtually equal quality and size.

Table 2(d) compares the performance of Perseus with other state-of-the-art methods. The
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Tiger-grid R |π| T

HSVI 2.35 4860 10341

Perseus 2.34 134 104

PBUA 2.30 660 12116

PBVI 2.25 470 3448

BPI w/b 2.22 120 1000

Grid 0.94 174 n.a.

QMDP 0.23 n.a. 2.76

(a) Results for Tiger-grid.

Hallway R |π| T

PBVI 0.53 86 288

PBUA 0.53 300 450

HSVI 0.52 1341 10836

Perseus 0.51 55 35

BPI w/b 0.51 43 185

QMDP 0.27 n.a. 1.34

(b) Results for Hallway.

Hallway2 R |π| T

Perseus 0.35 56 10

HSVI 0.35 1571 10010

PBUA 0.35 1840 27898

PBVI 0.34 95 360

BPI w/b 0.32 60 790

QMDP 0.09 n.a. 2.23

(c) Results for Hallway2.

Tag R |π| T

Perseus −6.17 280 1670

HSVI −6.37 1657 10113

BPI w/b −6.65 17 250

BBSLS ≈ −8.3 30 105

BPI n/b −9.18 940 59772

PBVI −9.18 1334 180880

QMDP −16.9 n.a. 16.1

(d) Results for Tag.

Table 2: Experimental comparisons of Perseus with other algorithms. Perseus results are
averaged over 10 runs. Each table lists the method, the average expected discounted reward R,
the size of the solution |π| (value function or controller size), and the time T (in seconds) used
to compute the solution. Sources: PBVI [21], BPI no bias [25], BPI with bias [23], HSVI [31],
Grid [8], PBUA [22], and BBSLS [9] (approximate, read from figure).

results show that in the Tag problem Perseus displays better control quality than any other
method and computes its solution an order of magnitude faster than most other methods.
Specifically, its solution computed on 10, 000 beliefs consists of only 280 vectors, much less than
PBVI which maintains a vector for each of its 1334 b ∈ B. This indicates that the randomized
backup stage of Perseus is justified: it takes advantage of a large B while the computed value
function estimates only grow moderately with the number of backup stages, leading to significant
speedups. The controller computed by BBSLS is smaller (30 nodes), but its performance is worse
both in control quality and time. It interesting to compare the two variations of BPI, with bias
(w/b) or without (n/b). The bias focuses on the reachable belief space by incorporating the
initial belief which dramatically increases its performance in solution size and computation time,
but it does not reach the control quality of Perseus.

5.2 Continuous action spaces

We applied Perseus with continuous actions in two domains: an abstract active localization
domain in which an agent can control its range sensors to influence its localization estimate, and
a navigation task involving a mobile robot with omnidirectional vision in a perceptually aliased
office environment.
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(a) ALH: state space.
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(b) cTRC: example observation.
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Figure 3: Continuous action space domains: the points indicate the states, F depicts the goal
state. (a) Environment of the ALH problem: the black square represents the agent. The four
lines show the range of its sensors when they are set to θn,e,s,w = {0.61, 1.12, 0.81, 0.39}. (b)
cTRC Problem: panoramic image corresponding to a prototype feature vector ok ∈ O, and (c)
its induced p(s|ok). The darker the dot, the higher the probability.

5.2.1 Active localization

We first tested our approach on a navigation task in a simulated environment. The Active
Localization Hallway (ALH) environment represents a 20 × 10 m hallway which is highly per-
ceptually aliased (see Fig. 3(a)). The agent inhabiting the hallway is equipped with four range
sensors, each observing one compass direction. The agent can set the range of each sensor, up
to a certain limit. We assume a sensor can only detect whether there is a wall within its range
or not (but with perfect certainty). The task is to reach a goal location located in an open
area where there are no walls near enough for the agent to detect. We would like the agent
also to take into account its energy consumption. Moving as well as using the sensor above its
default range requires energy and is penalized. The agent is initialized at a random state in
the hallway. By moving through the hallway and adjusting its sensors at each step the agent
receives information indicating its location. The better it controls the range of its sensors, the
more accurate it can localize itself and easier it is to find a path to the goal. Thus, the agent
should not only learn what movement actions to take in order to reach the goal, but also how
to set its sensors.

The agent’s actions are defined by the parameters θ = {θm, θn, θe, θs, θw}. At each time step
the agent has to set θm to one out of four basic motion commands {north, east, south, west}
which transports it according to a Gaussian distribution centered on the expected resulting
position (translated one meter in the corresponding direction). It sets the range of each of its
sensors {θn, θe, θs, θw} to a real value in the interval [0, 2] m. We assume that setting a sensor’s
range higher than its default of 0.5 m costs energy and we penalize with a reward of −0.01 per
meter, resulting in a reward of −0.06 if all sensors are fired at maximum range. Each movement
is also penalized, with a reward of −0.12 per step. The reward obtainable at the goal location is
10. As Perseus assumes a finite and discrete set S we need to discretize the state space, which
is defined as the set of all possible locations of the agent. For discretizing the positions in the
map of the environment we performed a straightforward k-means clustering on a random subset
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Figure 4: Performance in ALH domain, averaged over 5 runs.

of all possible locations, resulting in a grid of 100 positions, depicted in Fig. 3(a).

To test the feasibility of Perseus, i.e., whether it can compute successful policies by sampling
actions at random, we ran it with several different action sampling strategies. The strategy
determines from what range each parameter in θ is sampled, and here it defines how many
sensors the agent can control. Strategy 0 restricts the agent to only setting θm, with θn,e,s,w fixed
at the default range, while strategy 4 allows full control of all sensors. Table 1(b) summarizes
the five strategies we tested. Note that strategy 0 in fact reduced the action space to a discrete
set of four actions. We ran our algorithm 5 times for each strategy with different random seeds,
plots are averaged over these five runs. To evaluate the computed value function estimates
we collected rewards by sampling 10 trajectories from 100 random starting locations. Each
trajectory was stopped after a maximum of 100 steps (if the agent had not reached the goal by
then).

Fig. 4(a) shows the expected discounted cumulative reward for each of the strategies listed
in Table 1(b). We see that allowing the agent to control more sensors improves its performance.
The algorithm does not seem to be hampered by the increased dimensionality of the action space,
as it computes better policies in the same amount of time (using roughly the same amount of
vectors). It learns that the advantage of a more accurate localization outweighs the cost of
increasing the range of its sensors. We can see that the discrete strategy 0 performs poorly,
because of its limited range of sight, even though we can cache its transition, observation and
reward models. In Fig. 4(b) we plot the number of vectors in the value function for each strategy.
We see that allowing continuous spaces does not result in an excessive size of the value function,
its development over time is comparable to the growth in discrete action space problems.

5.2.2 Arbitrary heading navigation

To evaluate Perseus with continuous actions on a more realistic problem and compare against
discretized action sampling we also include the cTRC domain. In this problem a mobile robot
with omnidirectional vision has to navigate a highly perceptually aliased office environment (see
Fig. 3(b) and (c)). It is a variation of the TRC problem introduced in [33], but with a continuous
action space. The robot can decide to move 5 meters in an arbitrary direction, i.e., its actions
are parameterized by θ = θα ranging on [0, 2π]. We assume a Gaussian error on the resulting
position.
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Figure 5: Performance in cTRC domain, averaged over 5 runs.

For our observation model we used the MEMORABLE3 robot database that contains a set
of approximately 8000 panoramic images collected manually by driving the robot around in a 17
× 17 meters office environment. As in [33], we compressed the images with PCA and applied k-
means clustering to create 10 three-dimensional prototype feature vectors {o1, . . . , o10}. Fig. 3(c)
shows the inverse observation model p(s|o) for one observation, and Fig. 3(b) displays the image
in the database closest to this particular prototype observation. We used the same technique
as in the ALH domain to grid our state space in 200 states (Fig. 3(c)). The task is to reach a
certain goal state at which a reward of 10 can be obtained; each action yields a reward of −0.12.
Other parameters are the same as in ALH.

We compared our algorithm to two discretized versions of this problem, in which we allowed
the robot to sample actions from a set of 4 or 8 headings with equal separation (offset with
a random angle to prevent any bias). Fig. 5 displays results for our algorithm, sampling a
continuous A (“C”) and the two discretized A (“4” and “8”). In particular, Fig. 5(a) shows the
superior control quality of the continuous A, accumulating more reward than the discrete cases.
Even after 3000s strategy 4 does not reach the goal in 100% of the cases, while the other two
strategies do. When employing strategy C, Perseus exploits the ability to move in an arbitrary
angle to find a better policy than both discrete cases. Fig. 5(b) plots the number of vectors in
the value function for each strategy. Typically this number grows with time, reflecting the need
for a more complex plan representation when the planning horizon increases. Interestingly, this
figure shows that Perseus can discover that at the same stage, a smaller number of vectors
suffice to improve the value of all points in the belief set.

6 Conclusions

The partially observable Markov decision process (POMDP) framework provides an attractive
and principled model for sequential decision making under uncertainty. It models the interaction
between an agent and the stochastic environment it inhabits. A POMDP assumes that the agent
has imperfect information: parts of the environment are hidden from the agent’s sensors. The
goal is to compute a plan that allows the agent to act optimally given the uncertainty in sensory
input and the uncertain effect of executing an action. Unfortunately, the expressiveness of
POMDPs is counterbalanced by the intractability of computing exact solutions, which calls for

3The MEMORABLE database has been provided by the Tsukuba Research Center in Japan, for the Real
World Computing project.
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efficient approximate solution techniques. In this work we considered a recent line of research
on approximate POMDP algorithms which focus on the use of a sampled set of belief points on
which planning is performed.

We presented Perseus, a randomized point-based value iteration algorithm for POMDPs.
Perseus operates on a large belief set sampled by simulating random trajectories through
belief space. Approximate value iteration is performed on this belief set by applying a number
of backup stages. In each backup stage the algorithm ensures that the value of all points in the
belief set is improved (or at least does not decrease). Contrary to other point-based methods,
Perseus backs up only a (random) subset of belief points. The key idea is that backing up
a single belief point can improve the value of many points in the set. Experiments confirm
that this allows us to compute value functions that consist of only a small number of vectors
(relative to the belief set size), leading to significant speedups. We performed experiments in
benchmark problems from literature, and Perseus turns out to be very competitive to state-of-
the-art methods in terms of solution quality and computation time. We proceeded by extending
Perseus to compute plans for agents which have a continuous set of actions at their disposal.
We demonstrated its viability on two new POMDP problems: an active localization task and a
navigation domain in which a robot can move in any direction. To our knowledge, it is one of
few POMDP algorithms that handles continuous action spaces.

As future work we would like to move to larger, possibly multiagent domains, by considering
alternative state representations. Options include factored states, relational representations,
and predictive state representations.
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