
Safe Policy Improvement with Baseline Bootstrapping in Factored Environments

Thiago D. Simão and Matthijs T. J. Spaan
Delft University of Technology, The Netherlands

{t.diassimao, m.t.j.spaan}@tudelft.nl

Abstract

We present a novel safe reinforcement learning algorithm that
exploits the factored dynamics of the environment to become
less conservative. We focus on problem settings in which a
policy is already running and the interaction with the environ-
ment is limited. In order to safely deploy an updated policy,
it is necessary to provide a confidence level regarding its ex-
pected performance. However, algorithms for safe policy im-
provement might require a large number of past experiences
to become confident enough to change the agent’s behavior.
Factored reinforcement learning, on the other hand, is known
to make good use of the data provided. It can achieve a better
sample complexity by exploiting independence between fea-
tures of the environment, but it lacks a confidence level. We
study how to improve the sample efficiency of the safe policy
improvement with baseline bootstrapping algorithm by ex-
ploiting the factored structure of the environment. Our main
result is a theoretical bound that is linear in the number of pa-
rameters of the factored representation instead of the number
of states. The empirical analysis shows that our method can
improve the policy using a number of samples potentially one
order of magnitude smaller than the flat algorithm.

Introduction
Reinforcement Learning (RL) deals with sequential decision
making in environments with unknown dynamics. We focus
on RL applications in which an existing policy (e.g., engi-
neered by hand) is already in operation, which is relevant
in industrial and robotic settings, for instance. The goal is
to improve this behavior policy while limiting the risks in-
curred by changing it. Therefore, an important concern here
is the safety of the proposed solutions. In the literature safety
might refer to avoiding catastrophic outcomes or ensuring
reasonable performance (Garcı́a and Fernández 2012). We
refer to safety as the guarantee that the new policy will out-
perform the behavior policy with high probability (Thomas,
Theocharous, and Ghavamzadeh 2015a).

There are two major issues for safe RL. The first is re-
lated to off-policy evaluation, where given a batch of past
experiences the RL agent must estimate the performance of
a candidate policy. From a safety perspective it is necessary
to have a confidence bound on the predicted performance,

Copyright © 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

considering the stochasticity of the previous experiences.
Methods have been proposed to improve the confidence in
off-policy evaluation algorithms using both flat and factored
representations of the problem (Thomas, Theocharous, and
Ghavamzadeh 2015a; Hallak et al. 2015).

The second issue refers to the problem of computing
the candidate policy, called Safe Policy Improvement (SPI)
(Thomas, Theocharous, and Ghavamzadeh 2015b). In this
case the algorithm must compute a new policy at least as
good as the behavior policy and if it has a high probability
of returning an improved policy, this algorithm is considered
safe (Laroche and Trichelair 2018; Thomas, Theocharous,
and Ghavamzadeh 2015b; Cohen, Yu, and Wright 2018;
Petrik, Ghavamzadeh, and Chow 2016).

A major challenge for current SPI algorithms, however,
is that they rely on flat representations, limiting their scal-
ability. In particular, when states are described by a set of
features, the number of states grows exponentially in the
number of features. In this case, the number of samples nec-
essary to estimate the model or the performance of a policy
precisely might be prohibitive, making the application of flat
algorithms infeasible.

On the other hand, factored reinforcement learning can
exploit independence present in the environment and gener-
alize past experiences to new states, which allows the agent
to reduce the number of non-optimal actions it takes (Ross
and Pineau 2008; Degris, Sigaud, and Wuillemin 2006;
Strehl, Diuk, and Littman 2007). However, such algorithms
have been proposed for RL settings that ignore safety and in
which an agent can explore freely. We aim to bridge the gap
between safe and factored RL algorithms.

Our main contribution is an SPI algorithm that uses a fac-
tored representation to estimate the dynamics of the environ-
ment, assuming that the structure of the problem is known a
priori. We prove that by exploiting independence between
environment features, our safe RL algorithm obtains a better
estimate of the environment dynamics and therefore requires
less samples to improve the behavior policy. These results
are demonstrated empirically in three experiments with dif-
ferent domains and behavior policies. A highlight of the pro-
posed algorithm is the capability to improve even when the
behavior policy is deterministic, which is a strong limitation
of previous SPI algorithms.

Background
This section summarizes the formalisms involved in RL and
problems with large state space. It focuses on model-based
algorithms that explicitly keep track of the uncertainty over
the estimated parameters to guide the exploration of the
agent. The notion of known and unknown parts of the prob-
lem will be used to define safe RL algorithms later.

Markov Decision Process
A Markov Decision Process (MDP) (Puterman 1994) is de-
fined by a tuple M = ⟨S,A,T,R, γ⟩: a set of states S repre-
senting the world, a set of actions A that the agent can take,
a probabilistic transition function T (s′ ∣ s, a) that defines
the probability of moving to state s′ ∈ S after action a ∈ A
is executed in state s ∈ S, a reward function R ∶ S ×A → R
that indicates the immediate reward after executing action
a ∈ A in state s ∈ S, and a discount factor γ ∈ [0,1). RL
deals with problems that can be modeled as an MDP where
T is unknown. The goal of an RL agent is to interact with
the environment in such a way that maximizes its expected
discounted future rewards. In general, the solutions to these
problems are based on a trial-and-error strategy where the
agent learns through its experiences how the world behaves
and how to improve its performance.

The solution of an MDP is a policy π ∶ S ×A → [0,1], a
probability distribution over the actions for each state s ∈ S,
such that ∀s ∈ S ∶ ∑a∈A π(s, a) = 1. A sequence of interac-
tions between the agent and the environment is represented
by a batchD = [(st, at, rt, st+1),⋯] where at ∼ π(st) is the
action applied in the state st, rt = R(st, at) is the reward
obtained and st+1 ∼ T (⋅ ∣ st, at). The expected return of a
policy is given by V (π,M) = EM [∑∞

t=0 γ
trt ∣ s0, π]. The

optimal solution of an MDP M is the policy that maximizes
the expected return π∗ = arg maxπ V (π,M).

To find the optimal policy quickly, the Rmax algorithm
incentivizes the agent to explore unknown parts of the en-
vironment in early stages of the learning process (Brafman
and Tennenholtz 2002). To do so, it keeps track of a set of
state-action pairs considered known, defined as:

Km = {(s, a) ∈ S ×A ∣ n(s, a) ≥m} , (1)

where n(s, a) is the number of times the agent has applied
action a in state s, and m is a threshold to consider a state-
action pair known.

Factored MDPs
Often, the state space S can be represented by a set of state
factors X = {X1,⋯,X∣X ∣} where each factor has a domain
Dom(Xi), therefore S = ⨉Xi∈X Dom(Xi). When these
features are highly independent, an MDP can be compactly
represented by a Factored MDP (FMDP) (Boutilier, Dear-
den, and Goldszmidt 1995; 2000).

To capture the independence between state factors we
adopt the framework defined by Strehl (2007) that uses a
dependence function D ∶ S × A × X → I to indicate the
commonalities among different factors, where I is a set of
dependency identifiers. This way, the probabilistic transition

function can be represented in the form:

T (s′ ∣ s, a) =
∣X ∣

∏
i=1

P (s′i ∣D(s, a,Xi)),

where s′i is the value of Xi in the next state s′. Note that
this representation of the transition function assumes that the
realization of each factor is independent of the realization of
the other factors given D(s, a,Xi).

Some definitions follow from this framework: the relevant
dependency pairs of a state-action pair (s, a) ∈ S × A are
denoted by

Ds,a = {(Xi, j) ∈X × I ∣ j =D(s, a,Xi)}
and the set of all transition components by Q =
⋃(s,a)∈S×ADs,a. The size of Q denotes the number of tran-
sition components that must be estimated by an RL algo-
rithm.

Reinforcement Learning in Factored MDPs
Next, we review how an algorithm that exploits the indepen-
dence between the factors of an FMDP defines which state-
action pair is known or not. We use this criterion in the SPI
algorithm for environments with factored dynamics.

To measure the exploration efficiency of an RL agent one
can evaluate its sample complexity: the expected number
of non-optimal actions the agent will take before it starts
acting optimally. Rmax has a sample complexity polyno-
mial in the number of states, which means exponential in
the number of factors. Factored RL algorithms can have
a sample complexity that scales only polynomially in the
number parameters of the FMDP (Kearns and Koller 1999;
Guestrin, Patrascu, and Schuurmans 2002; Strehl 2007).

The factored Rmax algorithm is a direct extension of
Rmax for FMDPs (Guestrin et al. 2003). It maintains an es-
timate of each transition component distribution and decides
which state-action pairs are known or not according to these
estimates. This algorithm keeps track of two types of coun-
ters: realization counters

n(xi, j) = ∑
s,a,s′∈D

1(D(s, a,Xi) = j and s′i = xi)

and component counters

n(j) = ∑
s,a,s′∈D

∑
Xi∈X

1(D(s, a,Xi) = j)

where xi ∈ Dom(Xi) and j ∈ I. The distribution of a tran-
sition component is given by

P̂ (s′i ∣D(s, a,Xi)) =
n(s′i,D(s, a,Xi))
n(D(s, a,Xi))

(2)

and the transition function is estimated as

T̂ (s′ ∣ s, a) =
∣X ∣

∏
i=1

P̂ (s′i ∣D(s, a,Xi)). (3)

Unlike Rmax, this algorithm only considers as known parts
of the environment where the estimate of all transition com-
ponents have been experienced enough times. In particu-
lar, given a minimum number of samples for each factor

m⃗ = ⟨m1,⋯,m∣X ∣⟩ and the counters of each transition com-
ponent n(j), the set of known state-action pairs is con-
structed as follows:

Km⃗ = {(s, a) ∈ S ×A ∣ ∀Xi ∶ n(D(s, a,Xi)) ≥mi} . (4)

In situations where an arbitrary policy is already in execu-
tion and the experiences with the environment were recorded
in a batch D, an RL algorithm algorithm can use D to com-
pute a new policy π′. The next section presents an emergent
area of RL where the agent must have a high confidence in
the performance of π′ given D.

Safe Policy Improvement
This section reviews the SPI problem and a state-of-the-art
method to solve it, which will be extended in the next section
to factored MDPs.

Optimization Criterion
SPI addresses the question of how to compute a new pol-
icy π that outperforms the behavior policy πb with high con-
fidence 1 − δ, given a batch of previous interactions D and
an admissible error ζ. Before formalizing the safety criterion
used in this paper we present a few definitions.

Let M̂ be the maximum likelihood estimate of the under-
lying MDP built according to the past experiences D. Let
e ∶ S × A → R be an arbitrary error function that repre-
sents the parametric uncertainty over the transition function
T̂ (⋅ ∣ s, a). The uncertainty set Ξ(M̂, e) is the set of MDPs
with transition function T ′, such the L1 distance between
T ′(⋅ ∣ s, a) and T̂ (⋅ ∣ s, a) is smaller than e(s, a) for every
state-action pair, that is

∥T̂ (⋅ ∣ s, a) − T ′(⋅ ∣ s, a)∥
1
≤ e(s, a) ∀(s, a) ∈ S ×A.

The idea is to define e in such a way that Ξ(M̂, e) includes
the true MDP with high probability.

Laroche and Trichelair (2018) proposed the SPI by Base-
line Bootstrapping (SPIBB) criterion defined only over the
maximum likelihood estimate of the MDP, which is easier
to solve. According to this new criterion, an RL algorithm is
called safe if, given a confidence level δ and a level of pre-
cision ζ, it has a high probability 1 − δ of returning a policy
that is ζ-approximate as good as the behavior policy πb on
all MDPs in Ξ(M̂, e):

max
π∈Π

V (π, M̂) s.t.

∀M ′ ∈ Ξ(M̂, e) ∶ V (π,M ′) ≥ V (πb,M ′) − ζ. (5)

Note that according to this criterion an algorithm that always
returns the behavior policy is considered safe.

SPI by Baseline Bootstrapping Algorithms
The SPIBB framework is a model-based approach that guar-
antees safety by bootstrapping unknown parts of the ap-
proximated model with the behavior policy πb (Laroche and
Trichelair 2018). Formally, the set of bootstrapped state-
action pairs Bm is the complement of Km (1). This way,

Algorithm 1 Policy-based SPIBB (Πb-SPIBB).
Input: Previous experiences D
Input: Parameters ε, δ
Input: Behavior policy πb
Output: Safe Policy

1: Estimate T̂
2: Compute Bm =Km

3: Compute Πb ▷ Equation 6
4: return arg maxπ∈Πb

V (π, M̂)

the SPIBB algorithms guarantee to perform at least as well
as the behavior policy and does not rely on a safety test, in
contrast to other SPI algorithms.

The SPIBB algorithm has two variants that bootstrap the
behavior policy in different ways. The value-based algo-
rithm uses the estimated performance of the elements of Bm

during the planning phase and if a state-action pair from Bm

is used during execution, control is returned to the behavior
policy. The policy-based Πb-SPIBB algorithm attributes the
same probability to bootstrapped pairs as the behavior pol-
icy, which restricts the policy space to

Πb = {π ∣ π(s, a) = πb(s, a) ∶ ∀π ∈ Π,∀(s, a) ∈Bm}. (6)

Laroche and Trichelair (2018) proved that if m =
2
ε2

log ∣S∣∣A∣2
∣S∣

δ
then the Πb-SPIBB algorithm is safe, where

ε is a bound on the L1 distance between the estimated tran-
sition function and the true transition function, that depends
on the precision parameter ζ. Algorithm 1 gives a brief de-
scription of the Πb-SPIBB approach.

The Π≤b-SPIBB algorithm is a variation of the Πb-SPIBB
algorithm where the constrained space of policies is defined
as follows:

Π≤b = {π∣π(s, a) ≤ πb(s, a) ∶ ∀π ∈ Π,∀(s, a) ∈Bm}. (7)

In this case, it is possible to reduce the probability attributed
to bootstrapped actions in case other actions, that have al-
ready being sampled enough times, have a better perfor-
mance.

In their experimental analysis, Laroche and
Trichelair (2018) used a stochastic baseline policy
with softmax exploration over the optimal value function.
As expected, the Πb-SPIBB algorithm displayed a safe
behavior. Although the Π≤b-SPIBB algorithm has not been
proven to be safe (in contrast to the Πb-SPIBB algorithm),
the experimental analysis showed that it can also have a safe
behavior.

Since the Πb-SPIBB and Π≤b-SPIBB algorithms can
change the policy in only a subset of the state-action pairs,
they were demonstrated to be less conservative than other
SPI algorithms. Nevertheless, when the problem is described
by a set of factors, m grows exponentially in the number of
factors. The next section shows that, by taking in account
the independence between features, it is possible to exploit
the factored representation of the problem using a minimum
number of samples that is only polynomial in the number of
parameters of the FMDP.

Factored Safe Policy Improvement
This section shows how to adapt the SPIBB methodology
to environments with factored dynamics, assuming that the
dependence between the factors is known a priori, although
the distribution of each factor is unknown. First, we describe
how the first two steps of the policy-based SPIBB algorithm
can be adapted to this setting. Next, we prove that this algo-
rithm is safe.

Factored Policy-Based SPIBB
Algorithm 2 presents the Factored Πb-SPIBB algorithm,
an adaptation of Πb-SPIBB algorithm for factored environ-
ments. Note that this algorithm takes an extra input: the
dependency function D used to determine which transition
components must be estimated.

First, the algorithm estimates each transition component
according to D using the same counters as the factored
Rmax algorithm. The set of state-action pairs to be boot-
strapped Bm⃗ is the complement of the set of known state-
action pairs Km⃗ (4). In the next section, we show how each
value in m⃗ must be defined to ensure the safety of this algo-
rithm. Given Bm⃗ and the behavior policy πb, the constrained
policy space Πb is computed using Equation 6. Finally, the
algorithm searches for an optimal policy in Πb, however, in
this case the transition function T̂ (⋅ ∣ s, a) is estimated ac-
cording to the estimate of each transition component (3).

Replacing (6) by (7) in Algorithm 2, we obtain the Fac-
tored Π≤b-SPIBB algorithm, the factored version of the Π≤b-
SPIBB algorithm. As we mentioned before, Laroche and
Trichelair (2018) also proposed a value-based SPIBB algo-
rithm. However, the development of an effective factored
version of this method would require a factored representa-
tion of the value function, which is typically not compactly
factorized.

Benefits of a Factored Representation
There are two main benefits of exploiting factored represen-
tation in the safe RL setting that we are considering: reduced
sample complexity and being able to generalize better from
deterministic behavior policies. We detail both advantages
below.

First, similar to factored Rmax, these algorithms enumer-
ate the set of states to define Bm⃗ and compute a new pol-
icy. However, we would like to point out that the main goal
of the new Factored Πb-SPIBB algorithm is to improve the
precision of the estimated transition function, which allows
these algorithms to become less conservative. For example,
consider the problem of controlling the temperature of three
rooms, with temperatures T1, T2 and T3. Because the first
room only shares a wall with the second room, the next value
of T1 is conditionally independent of T3 given T1 and T2. To
estimate the future value of T1 given T1 = t1, T2 = t2 and
T3 = t3, all past experiences where T1 = t1 and T2 = t2
can be used, regardless of the temperature of T3. This way,
using a factored representation, a safe RL algorithm would
need less samples to change how it controls the temperature
of the first room, since it has a better estimate of the envi-
ronment dynamics.

Algorithm 2 Factored Πb-SPIBB.
Input: Previous experiences D
Input: Parameters ε, δ
Input: Behavior policy πb
Input: Dependency function D
Output: Safe Policy

1: Estimate P̂ (⋅ ∣ j),∀(Xi, j) ∈ Q ▷ Equation 2
2: Compute Bm⃗ =Km⃗

3: Compute Πb ▷ Equation 6
4: return arg maxπ∈Πb

V (π, M̂)

Second, we would like to point out that by using a fac-
tored representation the Factored SPI algorithms can choose
an action a in a state s even if n(s, a) = 0, a common case
when the behavior policy is deterministic. In this case, a flat
algorithm would never execute a in s. Therefore, the appli-
cation of flat SPI algorithms is limited, since they are not
able increase the probability of a if πb(s, a) = 0. Consider
for example a deterministic behavior policy that always exe-
cutes a in the state s. In this case, n(s, a′) = 0,∀a′ ∈ A∖{a}
and a flat SPI algorithm would always return a policy π
where π(s, a) = 1 and π(s, a′) = 0,∀a′ ∈ A ∖ {a}. The
capacity of generalization of a factored representation can
deal with this limitation: the agent can estimate the transi-
tion components of each factor Xi using past experiences
where a was executed in other states s′ ∈ S ∖ {s} where
s′i = si. Using this estimate of each component the agent
can estimate T̂ (⋅ ∣ s, a) and, eventually, choose to execute
a in s. We demonstrate this feature in an experiment with a
deterministic behavior policy.

Theoretical Analysis
In this section, we show that given the admissible error pa-
rameter ζ, the Factored Πb-SPIBB algorithm satisfies the
SPIBB safety criterion (5).

First, we show that the error of the transition function is
bounded with high probability in all state-action pairs that
are not bootstrapped by the Factored Πb-SPIBB algorithm.
With Corollary 1 by Strehl (2007) we can bound the L1 dis-
tance between the estimated transition function computed
by the product of a set of components and the true transition
function, given that the error of each component is bounded.
Lemma 1 (Corollary 1 by Strehl (2007)). Let M be any
factored MDP. Suppose that for each transition component
P (⋅ ∣ j) we have an estimate P̂ (⋅ ∣ j) such that

∥P (⋅ ∣ j) − P̂ (⋅ ∣ j)∥1 ≤ ε/∣X ∣.
Then, for all state action pairs

∥T (⋅ ∣ s, a) − T̂ (⋅ ∣ s, a)∥1 ≤ ε.
Next, we redefine Proposition 3 by Laroche and

Trichelair (2018) for the case where the transition function is
estimated according to the estimate of each transition com-
ponent (3).
Proposition 1. Consider an environment modeled by a
semi-MDP M and the empirical semi-MDP M̂ estimated

from a dataset D. If in every state s where option oa1 may
be initiated, s ∈ Ia, we have that for all relevant components
(Xi, j) ∈Ds,a

¿
ÁÁÀ2∣X ∣2

n(j)
log

∣Q∣2∣Dom(Xi)∣

δ
≤ ε, (8)

then holds that

Pr(∥T (⋅ ∣ s, a) − T̂ (⋅ ∣ s, a)∥1 ≥ ε) ≤ δ,∀(s, a) ∉Bm⃗.

Proof. Using Weissman et al. (2003)’s Theorem 2.1, for
each transition component (Xi, j) ∈ Q, we may write:

Pr(∥P (⋅ ∣ j) − P̂ (⋅ ∣ j)∥1 ≥ ε1)

≤ (2∣Dom(Xi)∣ − 2) exp(−n(j)ε
2
1

2
) . (9)

This equation bounds the error of each transition function
component. To use Lemma 1, we set ε1 = ε/∣X ∣ and rewrite
(9) as

Pr(∥P (⋅ ∣ j) − P̂ (⋅ ∣ j)∥1 ≥ ε/∣X ∣) (10)

≤(2∣Dom(Xi)∣ − 2) exp (− n(j)ε
2

2∣X ∣2
) (11)

≤2∣Dom(Xi)∣ exp (− n(j)
2∣X ∣2

2∣X ∣2

n(j)
log

∣Q∣2∣Dom(Xi)∣

δ
) (12)

=2∣Dom(Xi)∣ exp (− log
∣Q∣2∣Dom(Xi)∣

δ
) (13)

=2∣Dom(Xi)∣ exp (log
δ

∣Q∣2∣Dom(Xi)∣
) (14)

=2∣Dom(Xi)∣ δ

∣Q∣2∣Dom(Xi)∣
(15)

= δ

∣Q∣
. (16)

Given a bound on the probability of each component
being inaccurate, we can now bound the probability that
there exists a state-action pair whose transition distribution
is inaccurate. In the following derivation (a) comes from
Lemma 1, (b) is an application of the union bound over all
components in Q and (c) comes from (16).

Pr(∥T (⋅ ∣ s, a) − T̂ (⋅ ∣ s, a)∥1 ≥ ε) (17)
(a)
= Pr(⋃

(Xi,j)∈Q
∥P (⋅ ∣ j) − P̂ (⋅ ∣ j)∥1 ≥

ε

∣X ∣
) (18)

(b)
≤

∣Q∣

∑
i=1

Pr(∥P (⋅ ∣ j) − P̂ (⋅ ∣ j)∥1 ≥ ε/∣X ∣) (19)

(c)
≤

∣Q∣

∑
i=1

δ

∣Q∣
(20)

= δ, (21)

which concludes our proof.
1Option oa is the counterpart of the original action a in the

semi-MDP.

Now, to ensure that the conditions for Proposition 1 hold,
we can set the minimum number of observations for each
component to mi = 2∣X ∣2

ε2
log ∣Q∣2

∣Dom(Xi)∣

δ
, which is derived

from (8) by isolating n(j). This guarantees that all compo-
nents relevant for non-bootstrapped state-action pairs were
experienced enough times, such that the error of the tran-
sition function of these state-action pairs is smaller than ε.
This way, we can use Proposition 1 to replace Proposition 3
in the proof of Theorem 3 (Laroche and Trichelair 2018).

Theorem 1. (Safe Policy Improvement of the Factored
Πb-SPIBB Algorithm). Let Πb be the set of policies under the
constraint of following πb in every bootstrapped state-action
pair(s, a) ∈Bm⃗. Then, the policy πpol computed by the Fac-
tored Πb-SPIBB algorithm, is at least a ζ-approximate safe
policy improvement over πb with high probability 1− δ, with

ζ = 4εVmax

(1 − γ)
− V (πpol, M̂) + V (πb, M̂).

Proof. The proof is similar to that of Theorem 3 (Laroche
and Trichelair 2018).

These results show that it is possible to bound the prob-
ability that the Factored Πb-SPIBB algorithm computes a
policy worse than the behavior policy. The main difference
with the original Πb-SPIBB algorithm is the way we bound
the error of the transition function. Given a desired ε, the
term ∣A∣∣S∣ is replaced by ∣Q∣ and ∣S∣ is now reduced to
∣Dom(Xi)∣. This comes at the lower cost of adding a term
polynomial in the number of variables ∣X ∣2 (necessary to
bound the error of each component distribution). In domains
where the features are highly independent from each other
these results can reduce significantly the number of samples
necessary to improve the behavior policy, as demonstrated
in the empirical analysis.

Empirical Analysis
We evaluate the proposed factored approaches for the SPI
problem focusing on their sample efficiency and generaliza-
tion capability. All algorithms use a flat representation to es-
timate the transition function, as in the Πb-SPIBB algorithm,
and flat Value Iteration with a discount factor of 0.99 to com-
pute the new policy. We assume that the reward function is
known in all algorithms.

We evaluate the Πb-SPIBB and Factored Πb-SPIBB algo-
rithms and their respective relaxations Π≤b-SPIBB and Fac-
tored Π≤b-SPIBB. We compare these results with two basic
model-based RL algorithms that simply estimate the under-
lying model and compute a greedy policy according to this
estimate. The first, called Basic Flat RL, uses a flat repre-
sentation and the second, called Basic Factored RL, uses a
factored representation.

Experimental Setup
We use two domains with known independence between fea-
tures: i) the Taxi domain (Dietterich 1998) that has 4 con-
ditionally independent features, 500 states, 6 actions and a
horizon of 200 steps, and ii) the SysAdmin domain with

Basic RL
Basic Factored RL

b-SPIBB
Factored b-SPIBB

b-SPIBB
Factored b-SPIBB

Baseline

100 101 102 103 104
| |

0

1000

2000

3000

| |

100 101 102 103 104
| |

80

60

40

20

0

Me
an

Pe
rfo

rm
anc

e

100 101 102 103 104
| |

0.00

0.25

0.50

0.75

1.00

Di
str

ibu
tio

n E
rro

r

100 101 102 103 104
| |

0
500

1000
1500
2000

| |

100 101 102 103 104
| |

60

80

100

120

140

Me
an

Pe
rfo

rm
anc

e

100 101 102 103 104
| |

0.00
0.25
0.50
0.75
1.00

Di
str

ibu
tio

n E
rro

r

100 101 102 103 104
| |

0
500

1000
1500
2000

| |

100 101 102 103 104
| |

60

80

100

120

140

Me
an

Pe
rfo

rm
anc

e

100 101 102 103 104
| |

0.00

0.25

0.50

0.75

1.00

Di
str

ibu
tio

n E
rro

r
Figure 1: In every plot the x-axis shows the number of trials in the batch. Each column shows the results of a different experiment: Taxi
with softmax policy (left), SysAdmin with softmax policy (middle) and SysAdmin with deterministic policy (right). The rows present: i) the
average performance of the computed policy (top), ii) the number of bootstrapped state-action pairs (middle), and iii) the average distribution
error of the estimated transition function (bottom).

8 machines in a bidirectional ring topology (Guestrin et al.
2003), that has 256 states, 9 actions and a horizon of 40.

Our analysis uses three metrics: i) the performance of the
policies computed; ii) the size of the set of bootstrapped
state-action pairs; and iii) the distribution error of T̂ , defined
as the average of the L1 distance between the estimated tran-
sition function and the true transition function.

The first two experiments have a setup similar to the em-
pirical evaluation of the SPIBB methodology (Laroche and
Trichelair 2018). A baseline policy πb is computed using
softmax exploration over the optimal value function of each
state-action pair (temperature 2 for the Taxi domain and 3
for the SysAdmin domain). Next, a batch of past experiences
D is generated following πb. Note that D is composed of a
set of trajectories, therefore ∣D∣ denotes the number of tra-
jectories in D. Each algorithm uses D and πb to compute a
new policy π. Finally, the policies computed are evaluated
by averaging the returns of 1000 simulations.

The third experiment uses the same instance of the
SysAdmin domain, but with a deterministic behavior pol-
icy that always takes the action with the second highest ex-
pected value. This way, there is space for improvement in

every state. Note that because the policy is deterministic,
this experiment requires the agent to be able to generalize
its past experiences to new states.

We performed a parameter search in each domain to
choose the minimum value for m and mi that maintains the
safety of the algorithm. For the Taxi domain we set m = 10
and mi = 20 for 0 < i ≤ ∣X ∣. In the case of the SysAdmin
problem we set m = 50 and mi = 10 for 0 < i ≤ ∣X ∣.

Experimental Results
Figure 1 shows the results obtained. Each column presents
a different experiment and each row a different metric. The
first row shows the average performance of the policies com-
puted over 1000 repetitions and the 1%-quantile of these val-
ues, which lets us assess the safety of each method. On the
second and third row we omit the results of Basic Flat RL,
Basic Factored RL, Π≤b-SPIBB, Factored Π≤b-SPIBB that
are equal to Πb-SPIBB and Factored Πb-SPIBB respectively
or do not apply. Note that solid (dotted) lines are used for al-
gorithms that use a flat (factored) representation, and dashed
lines are used for the baseline policy.

In the Taxi experiment (Figure 1, first column) we no-

Algorithm Mean 1%-quantile

Baseline Value -25.91 -27.09
Basic RL -16.43 -27.24
Basic Factored RL 5.56 -4.71
Πb-SPIBB -24.36 -26.54
Factored Πb-SPIBB -5.94 -9.72
Π≤b-SPIBB -16.6 -19.7
Factored Π≤b-SPIBB -1.08 -4.32

Table 1: Performance of policies computed when ∣D∣ = 50.

tice that although the unsafe algorithms (Basic Flat RL and
Basic Factored RL) can improve their performance quickly,
they obtain policies worse than the behavior policy when the
batch contains only a few trajectories, which is exactly what
safe reinforcement learning tries to avoid. All the other al-
gorithms are shown to be safe as expected.

The main result of this paper is the difference in the num-
ber of samples necessary to change the behavior policy of
flat SPI algorithms and their factored counterparts. The Fac-
tored Πb-SPIBB algorithm manages to compute policies bet-
ter than the behavior policy given batches with only 20 tra-
jectories, in contrast to the Πb-SPIBB algorithm, that only
shows improvement when ∣D∣ ≥ 50. As already demon-
strated, the Π≤b-SPIBB algorithm can be less conservative
(Laroche and Trichelair 2018), and is able to find better im-
provements when ∣D∣ = 50, while its factored version (Fac-
tored Π≤b-SPIBB) is even less conservative finding improve-
ments when ∣D∣ = 5 and already getting close to the optimal
policy when ∣D∣ = 50. To provide a more precise measure of
these differences, Table 1 shows the results when ∣D∣ = 50.

When comparing the number of bootstrapped state-action
pairs by each algorithm (Figure 1, second row) and the
performance of the policy computed we see a strong cor-
relation between both. That is, a smaller number of boot-
strapped state-action pairs results in a higher performance.
The quicker reduction of the distribution error (Figure 1,
third row) shows why the Factored SPIBB algorithm can
bootstrap from fewer state-action pairs; this is a clear result
of the generalization capacity of factored representations.

In the SysAdmin with softmax policy experiment (Fig-
ure 1, second column) the results are similar, although the
differences between (Factored) Πb-SPIBB and (Factored)
Π≤b-SPIBB algorithms are much larger than in the first ex-
periment. We also notice that for the factored algorithms ∣B∣
drops quickly between ∣D∣ = 20 and ∣D∣ = 200 when these
algorithms stop bootstrapping and achieve the same perfor-
mance as Basic Factored RL.

Finally, in the SysAdmin with deterministic behavior pol-
icy experiment (Figure 1, third column), the factored algo-
rithms are the only ones that manage to improve the behav-
ior policy. As expected, none of the flat algorithms can find a
policy better than the behavior policy, given that the behav-
ior policy is deterministic. We notice that the distribution er-
ror of the flat representation only drops slightly while for the
factored representation it drops to an average of 0.5, which
is enough to let the factored algorithms stop bootstrapping
some of the state-action pairs.

Related work
Factored RL has also been studied in settings where the de-
pendence structure is unknown. These approaches include
methods to search for the underlying structure with and
without guarantees of sample complexity (Strehl, Diuk, and
Littman 2007; Diuk, Li, and Leffler 2009; Chakraborty and
Stone 2011; Degris, Sigaud, and Wuillemin 2006). Although
these methods do not have a safety guarantee, we believe
they could naturally be coupled to our algorithm.

Factored representations have also been used to tackle the
off-policy policy evaluation problem. High confidence off-
policy evaluation (HCOPE) is a model-free method based
on importance sampling that estimate the performance of
a candidate policy with a given confidence level (Thomas,
Theocharous, and Ghavamzadeh 2015a). From a model-
based perspective, Hallak et al. (2015) showed that using
a factored representation to estimate the model one can find
accurate estimates of the performance of a target policy.

Thomas, Theocharous, and Ghavamzadeh (2015b) pro-
posed a model-free approach to tackle the SPI problem. It
divides the dataset in two partitions Dtrain and Dtest. Us-
ing Dtrain, this algorithm computes a new policy and, to
ensure safety, it checks with the HCOPE test if the new pol-
icy is safe using Dtest. If the computed policy is not consid-
ered safe it returns an indication that no improved policy was
found, in which case the RL agent could keep executing the
behavior policy. To exploit factored dynamics, the method
proposed by Hallak et al. (2015) could be used following a
similar strategy.

Conclusions and Future Work
We proposed the Factored Πb-SPIBB algorithm, an adap-
tation of the Πb-SPIBB algorithm (Laroche and Trichelair
2018) to environments with factored dynamics and proved
that this algorithm is safe. The Factored Πb-SPIBB algo-
rithm inherits from factored RL the capability to exploit the
independence between features, allowing it to reduce the
number of samples necessary to stop bootstrapping the be-
havior policy. This new method also is able to improve de-
terministic policies by generalizing past experiences, a novel
feature for safe RL algorithms.

For simplicity, we assumed that the reward function is
known. However, this function can also be succinctly repre-
sented in cases where it has an additive property. Therefore,
it would also be possible to adapt the Factored Πb-SPIBB al-
gorithm to environments with an unknown reward function.
Furthermore, extending the Factored Πb-SPIBB algorithm
to settings with unknown dependence between features is a
promising avenue of future work. Finally, we believe it is
also possible to extend other model-based safe RL meth-
ods to factored environments, such as the robust approach
by Petrik, Ghavamzadeh, and Chow (2016).

Acknowledgments
This research received funding from the Netherlands Organ-
isation for Scientific Research (NWO).

References
Boutilier, C.; Dearden, R.; and Goldszmidt, M. 1995. Ex-
ploiting Structure in Policy Construction. In Proc. Int. Joint
Conf. on Artificial Intelligence, 1104–1113. Morgan Kauf-
mann.
Boutilier, C.; Dearden, R.; and Goldszmidt, M. 2000.
Stochastic dynamic programming with factored representa-
tions. Artificial Intelligence 121(1-2):49–107.
Brafman, R. I., and Tennenholtz, M. 2002. R-MAX - A
General Polynomial Time Algorithm for Near-Optimal Re-
inforcement Learning. Journal of Machine Learning Re-
search 3:213–231.
Chakraborty, D., and Stone, P. 2011. Structure Learning in
Ergodic Factored MDPs without Knowledge of the Transi-
tion Function’s In-Degree. In Proc. of International Confer-
ence on Machine Learning, 737–744. Omnipress.
Cohen, A.; Yu, L.; and Wright, R. 2018. Diverse Explo-
ration for Fast and Safe Policy Improvement. In Proceedings
of the Thirty-Second AAAI Conference on Artificial Intelli-
gence. AAAI Press.
Degris, T.; Sigaud, O.; and Wuillemin, P. 2006. Learning
the Structure of Factored Markov Decision Processes in Re-
inforcement Learning Problems. In Proc. of International
Conference on Machine Learning, volume 148 of ACM In-
ternational Conference Proceeding Series, 257–264. ACM.
Dietterich, T. G. 1998. The MAXQ Method for Hierarchical
Reinforcement Learning. In Proc. of International Confer-
ence on Machine Learning, volume 98, 118–126.
Diuk, C.; Li, L.; and Leffler, B. R. 2009. The Adaptive
k-meteorologists Problem and Its Application to Structure
Learning and Feature Selection in Reinforcement Learning.
In Proc. of International Conference on Machine Learning,
249–256. ACM.
Garcı́a, J., and Fernández, F. 2012. Safe Exploration of State
and Action Spaces in Reinforcement Learning. Journal of
Artificial Intelligence Research 45:515–564.
Guestrin, C.; Koller, D.; Parr, R.; and Venkataraman, S.
2003. Efficient Solution Algorithms for Factored MDPs.
Journal of Artificial Intelligence Research 19:399–468.
Guestrin, C.; Patrascu, R.; and Schuurmans, D. 2002.
Algorithm-Directed Exploration for Model-Based Rein-
forcement Learning in Factored MDPs. In Proc. of Interna-
tional Conference on Machine Learning, 235–242. Morgan
Kaufmann.
Hallak, A.; Schnitzler, F.; Mann, T. A.; and Mannor, S. 2015.
Off-policy Model-based Learning under Unknown Factored
Dynamics. In Proc. of International Conference on Machine
Learning, 711–719. JMLR.org.
Kearns, M. J., and Koller, D. 1999. Efficient Reinforcement
Learning in Factored MDPs. In Proc. Int. Joint Conf. on
Artificial Intelligence, 740–747. Morgan Kaufmann.
Laroche, R., and Trichelair, P. 2018. Safe Policy Improve-
ment with Baseline Bootstrapping. In 14th European Work-
shop on Reinforcement Learning. http://arxiv.org/
abs/1712.06924.

Petrik, M.; Ghavamzadeh, M.; and Chow, Y. 2016. Safe
Policy Improvement by Minimizing Robust Baseline Regret.
In Advances in Neural Information Processing Systems 29.
Curran Associates, Inc. 2298–2306.
Puterman, M. L. 1994. Markov Decision Processes: Dis-
crete Stochastic Dynamic Programming. New York, NY,
USA: John Wiley & Sons, Inc., 1st edition.
Ross, S., and Pineau, J. 2008. Model-Based Bayesian Rein-
forcement Learning in Large Structured Domains. In Proc.
of Uncertainty in Artificial Intelligence, 476–483. AUAI
Press.
Strehl, A. L.; Diuk, C.; and Littman, M. L. 2007. Efficient
Structure Learning in Factored-State MDPs. In Proceedings
of the Twenty-Second AAAI Conference on Artificial Intelli-
gence, 645–650. AAAI Press.
Strehl, A. L. 2007. Model-Based Reinforcement Learning
in Factored-State MDPs. In 2007 IEEE International Sym-
posium on Approximate Dynamic Programming and Rein-
forcement Learning, 103–110. IEEE.
Thomas, P. S.; Theocharous, G.; and Ghavamzadeh, M.
2015a. High-Confidence Off-Policy Evaluation. In Pro-
ceedings of the Twenty-Ninth AAAI Conference on Artificial
Intelligence, 3000–3006. AAAI Press.
Thomas, P. S.; Theocharous, G.; and Ghavamzadeh, M.
2015b. High Confidence Policy Improvement. In Proc.
of International Conference on Machine Learning, 2380–
2388. JMLR.org.
Weissman, T.; Ordentlich, E.; Seroussi, G.; Verdu, S.; and
Weinberger, M. J. 2003. Inequalities for the L1 Deviation
of the Empirical Distribution. Hewlett-Packard Labs, Tech.
Rep.

