Planning under Uncertainty for Coordinating
Infrastructural Maintenance’

Joris Scharpff Matthijs T.J. Spaan Leentje Volker Mathijs de Weerdt

Delft University of Technology, Delft, The Netherlands
{j.c.d.scharpff, m.t.j.spaan, l.volker, m.m.deweerdt}@tudelft.nl

ABSTRACT

We address efficient planning of maintenance activities on infras-
tructural networks, inspired by the real-world problem of servicing
a highway network. A road authority is responsible for the quality,
throughput and maintenance costs of the network, while the actual
maintenance is performed by autonomous, third-party contractors.

From a (multi-agent) planning and scheduling perspective, many
interesting challenges can be identified. First, planned maintenance
activities might have an uncertain duration due to unexpected de-
lays. Second, since maintenance activities influence the traffic flow
in the network, careful coordination of the planned activities is re-
quired in order to minimise their impact on the network throughput.
Third, as we are dealing with selfish agents in a private-values set-
ting, the road authority faces an incentive design problem to truth-
fully elicit agent costs, complicated by the fact that it needs to bal-
ance multiple objectives.

The main contributions of this work are: 1) implicit multi-agent
coordination on a network level through a novel combination of
planning under uncertainty and dynamic mechanism design, ap-
plied to real-world problems, 2) accurate modelling and solving of
the maintenance planning problem and 3) empirical exploration of
the complexities that arise in these problems. Using two real-world
application examples we introduce a formal model of the problem
domain, present experimental insights and identify open challenges
for both the planning and scheduling as well as the mechanism de-
sign communities.

Categories and Subject Descriptors
1.2.11 [Distributed Artificial Intelligence]: Multiagent systems

General Terms

Algorithms, Experimentation

Keywords

Multiagent systems, Planning and Scheduling, Coordination

1. INTRODUCTION

The planning and scheduling of maintenance activities on large
infrastructural networks, such as a national highway network, is a

*This work will also appear in the Proceedings of the ICAPS 2013
conference [20].

Appears in The Eighth Annual Workshop on Multiagent Sequential
Decision-Making Under Uncertainty (MSDM-2013), held in con-
junction with AAMAS, May 2013, St. Paul, Minnesota, USA.

challenging real-world problem. While improving the quality of the
infrastructure, maintenance causes temporary capacity reductions
of the network. Given the huge impact of time lost in traffic on the
economic output of a society, planning maintenance activities in a
way that minimises the disruption of traffic flows is an important
challenge for the planning and scheduling field. In this paper, we
address this challenge by a novel combination of stochastic multi-
agent planning, captured in Markov Decision Processes (MDPs),
and dynamic mechanism design.

Maintenance activities in infrastructural networks not only incur
maintenance costs, but also incur social costs based on the effects
maintenance has on the throughput of the network. Put simply, clos-
ing off a main highway will lead to traffic delays, resulting in quan-
tifiable losses in economic activity. For instance, an hour of time
lost in traffic is valued between €10 for leisure traffic and €40 for
business traffic [22]. Since maintenance activities are unavoidable,
traffic delays are inevitable. However, they can be minimised using
planning and scheduling techniques. In our work, we use planning-
under-uncertainty methodology to schedule maintenance activities
across the entire network, taking into account the effect that road
closures have on traffic on nearby road segments.

A powerful real-world example of the benefits that careful main-
tenance planning can provide is the summer 2012 closure of the
A40 highway in Essen, Germany. Instead of choosing for the de-
fault option of restricting traffic to fewer lanes for 2 years, authori-
ties fully closed off a road segment for 3 months and diverted traf-
fic to parallel highways. Traffic conditions on the other highways
hardly worsened, while an estimated €3.5M in social costs due to
traffic jams were avoided (besides lowering building costs) [9].

As maintenance activities often have an uncertain duration due
to delays in construction, it is important to take uncertainty into ac-
count while planning. Also, there may be multiple ways to perform
a certain maintenance action by varying the amount of resources
dedicated to it, leading to options that have different duration, cost,
risk and effect on asset quality. Furthermore, long-term planning is
required to ensure overall network quality. Markov Decision Pro-
cesses provide a suitable framework to model and solve these types
of planning-under-uncertainty problems [19].

A complicating factor, however, is that while a single public road
authority is responsible for the quality, throughput and costs of
the network, the actual maintenance is performed by autonomous
contractors, typically third-party companies interested primarily in
maximising their profits. Road authorities face the problem of align-
ing objectives; we introduce monetary incentives for the contractors
to consider global objectives. But an agent servicing one part of the
network also influences agents in other parts as his work has a neg-
ative impact on the traffic flow. As a consequence, the payments
we introduce lead to very high throughput penalties for all agents if

they do not coordinate their maintenance plans on a network level.

In this work we focus on socially optimal joint maintenance plan-
ning that maximises the sum of contractor utilities, in the presence
of such monetary incentives, and therefore we have chosen a cen-
tralised coordination approach. The authority is given the responsi-
bility to develop socially optimal plans, while considering the indi-
vidual interests of all contractors expressed through cost functions.
However, as these cost functions are private information, optimal
coordination and hence outcomes can only be achieved if the con-
tractors report these costs truthfully. Ensuring this truthfulness is
the key motivation to combine stochastic planning with mechanism
design.

Our main contribution is the application of a combination of
stochastic planning and dynamic mechanism design to realise truth-
ful coordination of autonomous contractors in a private-values set-
ting. Typical one-shot mechanisms often used to elicit private val-
ues are not suitable for contingent and repeated settings. Instead
we focus on dynamic mechanisms that define payments over all ex-
pected outcomes such that in expectation it is in the agent’s best
interest to be truthful during the entire plan period. Applying dy-
namic mechanism design to (real-world) settings such as the one
we consider is relatively unexplored territory [6].

Related Work

Other approaches towards solving the problems discussed here have
been considered, although they can not be applied to our setting for
various reasons. Multi-agent MDP [4] assumes co-operative agents
that are willing to share private information and have the same util-
ity functions. This is not the case with decentralised MDP [3], how-
ever agent decisions are made solely on locally available informa-
tion and are therefore inadequate in optimising network objectives.
Moreover, both methods are not suitable when agents misreport
their private information to ‘cheat’ the center into different out-
comes. Non-cooperative settings have been studied in the classical
planning literature [5, 14, 23], but uncertainty is not addressed.
Multi-machine scheduling has also been considered for the plan-
ning of maintenance activities, but we found this infeasible for
our contingent setting. Moreover, finding optimal policies in multi-
machine problems with general cost functions is highly intractable.
The only work we are aware of in this area is [10], in which only
non-decreasing regular step functions are considered. In our prob-
lem agents could both profit as well as suffer from concurrent main-
tenance, therefore our cost functions do not have the non-decreasing

property.

Another interesting related approach is that of reinforcement learn-

ing [15, 16] and in particular Collective Intelligence [25]. In this an
approach agents learn how and when to coordinate and, in the case
of collective intelligence, strive to optimise a global goal, without
substantial knowledge of the domain model. Nevertheless, the ab-
sence of domain knowledge makes it impossible for such methods
to provide theoretical guarantees regarding agent and system per-
formance — crucial if this method is to be applied in practice (e.g.
as part of a dynamic contracting procedure) — and will most likely
not produce socially optimal solutions.

Applying mechanism design to large multi-agent systems is chal-
lenging. First, few results are known for dynamic settings (but see
[21]), but taking into account changes in the state of the system is
crucial for planning ahead. Second, for large systems, computing
optimal solutions might not be possible. When resorting to approx-
imate solutions, however, standard theory for strategy-proof mech-
anisms does not immediately apply [18]. Finally, existing general
solutions fail to apply in settings with actuation uncertainty. For in-
stance, fault-tolerant mechanism design has been proposed to take

into account that agents might not be able to accomplish an as-
signed activity [17], but no techniques exist for the quite general
forms of uncertainty that we address.

Both stochastic planning and mechanism design have been well
studied independently, however only a handful of papers address
dynamic mechanism design and/or a combination of the two. [2]
proposed a dynamic variant of the VCG mechanism for repeated
allocation, implementing the mechanism desiderata in a within-
period, ex-post Nash equilibrium. [1] studied a dynamic variant
of the AGV mechanism [8] that is budget-balanced in the weaker
Bayes-Nash equilibrium solution concept. Highly related is the work
by [7], in which the authors also study dynamic mechanism design
to obtain desirable outcomes in multi-agent planning with private
valuations. However, the focus is on allocation problems that can
be modelled as multi-armed bandit problems, instead of the richer
problem domains with dynamic states that we consider.

Outline

In the next section, we present a theoretical framework for mainte-
nance planning obtained and refined through interviews and discus-
sions with public road and rail network authorities, as well as asset
managers of several larger contractors. We then introduce the theo-
retical background of both stochastic planning and mechanism de-
sign (Section 3), and show how to combine work on planning with
uncertainty and dynamic mechanism design to solve two exam-
ple applications, derived from practice (in Section 4). We present
experimental insights where we compare this with uncoordinated
agents as well as with best-response (Section 5). In our conclusion,
we summarise our findings and present open challenges for both
the planning and scheduling as well as the mechanism design com-
munities (Section 6).

2. MAINTENANCE PLANNING

Commonly in infrastructural maintenance planning there is one
(public) institution responsible for the network on behalf of the net-
work users. This road authority is given the task to maintain a high
(1) network quality and (ii) throughput (iii) at low costs (although
other objectives are also possible, e.g. environmental concerns, ro-
bustness, etc.). To this end, network maintenance has to be per-
formed with minimal nuisance. However, the actual maintenance
is performed by several autonomous, independent contractors and
therefore some coordination of maintenance activities is required.

The maintenance planning problem discussed in this paper is part
of the dynamic contracting procedure introduced in [24]. Here we
focus on the execution phase, i.e. the planning and execution of
maintenance activities. The assessment, pricing and allocation of
maintenance activities is performed in the preceding procurement
phase, not discussed in this paper.

In the infrastructural maintenance planning problem we are given
a network of roads E. On this network we have a set N of agents
(the contractors), with each agent ¢ € IV responsible for the main-
tenance of a disjoint subset E; C E of roads over a set of discrete
periods T'. An edge e, € FE has a quality level g., € [0,1] and
a function § : ¢ X T' — ¢ that models the quality degradation
of a road given the current state and time (new roads degrade less
quickly, seasons influence degradation).

For each edge ex € I, an agent ¢ has a set of possible main-
tenance activities Ay, that have been identified and assigned in the
aforementioned procurement phase. We write A; to denote all pos-
sible activities by an agent ¢, i.e. A; = Ugkle,eB;} Ak Each of
the activities k € Ay has a duration d, € Z*, a quality impact
function Agx @ ge, X T — ge, that depends on the current road

quality and time, and a constant revenue wy € R that is obtained
upon completion of the activity. Moreover, the agent has a (private)
cost function ¢; : A; x T xZ1 — R that represents the cost of per-
forming an activity k € A; at time ¢t € T for a duration d € Z*.
The dependency on time enables modelling of different costs for
example for different seasons, or for periods where the agent has
fewer resources available.

We model the limited resources (machinery, employees, etc.)
available to an agent by allowing at most one activity at a time.
This restriction does not have much impact on the model we pro-
pose here but does greatly simplify resource reasoning and there-
fore the complexity of finding optimal maintenance plans.

Each agent strives to plan their maintenance activities in such a
way that their profits are maximised, but plan execution is unlikely
to be perfect. Uncertainties in various forms — for example delays,
unknown asset states, failures, etc. — may be encountered during
execution and hence ‘offline optimal’ plans might lead to rather
poor results. To this end we focus on contingent plans, or policies,
that dictate the best action to take in expectation for all possible
agent states. Note that actions here are operations available to the
contractors (e.g. start activity, do nothing, etc.) and states contain
all relevant information for its planning problem. We formalise all
these concepts in Section 3.1, for now it is sufficient to know that
we can always obtain contractor plans by evaluating the most-likely
path of a policy (i.e. the sequence of actions that in expectation
optimise the contractor reward). We use (k, ¢) € m; to denote that
from the policy 7; we can derive that starting activity k at time ¢ is
expected to yield the highest reward.

Given a policy m;, the expected profit for agent ¢ is defined as

Ci(m;) = Z Wy — Z ci(k,t,dr) (1)

(k,t)em; (k,t)em;

with wy, being wy, if the activity is completed within the period 7'
and O otherwise. As activity rewards follow directly from the pro-
curement, we assume that agents in expectation are always able
to achieve a positive profit for completing their activities, other-
wise they would not have bid on the activity during procurement.
Note that we do not explicitly require all activities of an agent to
be planned or that they can be completed within the period 7', but
because agents will not receive rewards w;, for each uncompleted
activity k they will be stimulated to complete them.

For the agents to also consider the global objectives, we intro-
duce payments such that their profits depend on the delivered qual-
ity and additional congestion caused by their presence. The quality
payment @; for each agent i can be both a reward as well as a
penalty, depending on the final quality state of its roads (e.g. based
on contracted demands). Again given a policy 7;, we can determine
the resulting quality state g7 at the end of the period 7" using the
recursive formula

t+1 Aqk((ﬁ;k:t) if (k,t) € m;

k B {Qek(q(tawt)

with (given) initial quality qgk. Consequentially, we define the
quality payment for agent 4 as a result of his policy by Q;(m;) =
ZeeEi QZ(QZ)

Congestion payments, i.e. social costs, cannot be considered from
just the single agent perspective because network throughput de-
pends on the planning choices of all agents. Let A" denote the set
of activities performed by all agents at time ¢, then the social cost
of this combination is captured by £(A"). The impact of an indi-
vidual agent, given the choices made by others, can be determined

@

otherwise

by £;(A") = £(A")—£(A";) in which A" ; denotes the set of activ-
ities performed at time ¢ minus any activity by agent . The social
cost function can for example capture the costs of traffic jams due
to maintenance activities. In realistic scenarios where a good esti-
mate of origins and destinations of the traffic flow is known, these
costs can be learned empirically.

Recapitulating the above, each agent i is interested in maximis-
ing its expected profit, trivially comprised of only maintenance
rewards and costs C}. In order to stimulate agents to plan main-
tenance in favour of global objectives, we introduce quality and
throughput payments such that their profit u;, given the joint pol-
icy m = U, 7, is now given by:

wi(m) = Ci(mi) + Qi(m:) + £i(m) 3)

in which £;(7) = >, . £i(A"). Here, A" can be easily derived
from 7 considering planned start times and activity durations as
before.

Now given the utility function of Eq. 3, how should we define
these payments such that the right balance is made between these
costs and the agents’ private costs, which are not known to the road
authority? This is exactly a mechanism design problem. As the sce-
narios both contain a form of uncertainty and thus dynamics, there
are few known mechanisms that can be applied; we are aware of
only two (dynamic-VCG [2, 6] and dynamic AGV [1]). Both re-
quire an optimal solution (in expectation) of the planning problem,
otherwise agents can benefit from (deliberately) misreporting their
private costs.

In the next section we therefore start by discussing how to com-
pute optimal solutions to the problem variants introduced in this
section, followed by a summary of how this can be combined with
a dynamic mechanism.

3. BACKGROUND

We briefly introduce the two concepts our work builds on, plan-
ning under uncertainty and dynamic mechanism design.

3.1 Planning under Uncertainty

To deal with uncertainties we model the planning problem using
Markov Decision Processes (MDPs), which capture this type of un-
certainty rather naturally [19]. For each agent ¢ € N we have an
MDP M; = (S;, A;, 7:, r;) that defines its local planning problem.
In this definition, S; is the set of states and .A; a set of available ac-
tions (see Sections 4.3 and 4.4). The function 7; : S; X A; —
A(S;) describes the transition probabilities where 7;(s;, As, s§)
denotes the probability of transitioning to state s’ if the current
state is s; and action .A; is taken. Finally, r; : S; x A; — Ris the
reward function where 7;(s;, a) denotes the reward that the agent
will receive when action a € A; is taken in state s; (e.g. the utility
of Eq. 3). We formalise the rewards and actions for the agents in
Section 4, as they depend on the encoding used to solve the MDP.

Solutions to MDPs are policies m : S — A that dictate the
best action to take in expectation, given the current state it is in.
Formally, the optimal policy 7* is defined such that for all start
states s € .S:

7*(s) = argmax V°(,s) “)
well

with
VO (r,5) = E[30 11t m(s)) | 5 = s)

in which s' is the state at time ¢ and y € [0, 1) is a shared dis-

count factor commonly used to solve problems with infinite hori-
Zons.

We can obtain the individual policies 7; for each agent by solv-
ing its local plan problem MDP M;. However, in order to develop
an (optimal) joint policy 7™, required to consider throughput pay-
ments, we need to solve the multi-agent MDP that results from
combining all individual MDPs. Formally, the joint MDP is defined
by M = (S, A,r,7) where S = X;enS; is the joint state space
containing in each state s € S a local state s; for all agents ¢ € N,
A is the set of combined actions, r the reward function defined as
Vs € S,a € A:r(s,a) =Y ,cn7i(5i,a;) and 7 the combined
transition probability function. The joint action set can always be
obtained by including an action for each element of the Cartesian
product set of all individual action spaces but smarter construction
can greatly reduce the joint action set. For planning problems (at
least) we have developed a two-stage MDP encoding that effec-
tively reduces the joint action set size from exponential to linear
in the number of players and their action sets. This is discussed in
detail in Section 4.2.

3.2 Dynamic mechanism design

Although MDPs facilitate modelling uncertainties, they assume
global knowledge of all these uncertainties, as well as costs and
rewards. As the maintenance activities are performed by different,
usually competing companies, we cannot assume that this knowl-
edge is globally available. We therefore aim to design a game such
that utility-maximising companies behave in a way that (also) max-
imises the global reward. This is exactly the field of mechanism
design, sometimes referred to as inverse game theory.

Formally, in a static or one-shot game, each agent ¢ € N has
some private information 6; usually known as its type. In so-called
direct mechanisms, players are asked for their type, and then a de-
cision is made based on this elicited information. Groves mecha-
nisms [12] take the optimal decision (7*) and define payments 7
such that each player’s utility is maximised when it declares its type
truthfully.

Dynamic mechanisms extend ‘static’ mechanisms to deal with
games in which the outcome of actions is uncertain and private in-
formation of players may evolve over time. In each time step ¢,
players need to determine the best action (in expectation) to take
while considering current private information and possible future
outcomes. Private rewards are therefore defined depending on the
state and the policy, given by r;(s*, 7w(s"))), in which the state con-
tains the player’s type. This type is denoted by 67 to express the
possibility of this changing over time. With 6* we denote the type
of all players at time ¢ which are encoded in the state s”.

An extension of Groves mechanisms for such a dynamic and un-
certain setting is dynamic-VCG [2, 6]. For dynamic-VCG the deci-
sion policy is the optimal one maximising the reward of all players,
identical to Eq. 4 when the types 6" are encoded into the state s*.
We denote this optimal policy for time step ¢ given the reported
types 6" encoded in state s° by 7 (s*). A policy optimised for the
game with all players except i is denoted by 7* ;(s") and we define
ri(st, 7 (s1) = 0.

In every time step each player ¢ pays the expected marginal cost
he incurs on other players j for the current time step. This is de-
fined as the difference between the reward of the other players
for the socially optimal decision for the current time step ¢, i.e.
>,4i7i(s', ™ (s")) and their expected reward optimised for just
them in future time steps, i.e. V'™ (7*;, s'™") (Eq. 5) minus the
expected reward of the other players for a policy optimised for them
for all time steps including the current one, i.e. V*(r*,, s*). Sum-
marising, the payment 7} (") for an agent i at time step ¢ given that

reports ' are encoded in state s” is thus is defined as
Ti(0") = ri(s', 7 (sh) + VI (s, s = Vi, sY)

J#i

(6)
The dynamic-VCG mechanism yields maximum revenue among
all mechanisms that satisfy efficiency, incentive compatibility and
individual rationality in within-period, ex-post Nash equilibrium.
This means that at all times for each player the sum of its expected
reward and its expected payments is never more than when declar-

ing its true type.

4. COORDINATING MAINTENANCE PLAN-
NING

In this work we combine existing work on planning under uncer-
tainty and dynamic mechanism design to solve the complex prob-
lem of maintenance planning where agents are selfish and execu-
tion is uncertain. Using the dynamic VCG mechanism we ensure
that agents are truthful in reporting their costs. Then, using these re-
ports to model agent rewards, we apply planning-under-uncertainty
techniques to find efficient policies and finally we determine the
payments of the mechanism, as discussed in the previous section.
Basically this approach can be seen as a series of auctions in which
agents bid activities and their associated costs for an assignment of
time-slots.

An important condition for the dynamic VCG mechanism is that
the chosen policy is optimal. If it is not, the payments are not guar-
anteed to achieve truthful cost reports and agents may want to devi-
ate. Therefore we focus on exact solving methods in our approach.

We implemented our mechanism using the SPUDD solver [13]
to determine optimal policies. The SPUDD solver allows for a very
compact but expressive formulation of MDPs in terms of algebraic
decision diagrams (ADDs) and uses a structured policy iteration
algorithm to maximally exploit this structure. This allows it to find
optimal solutions to moderately sized problems. We note, however,
that our mechanism is independent of the particular MDP solver
used, as long as it returns optimal solutions.

4.1 MDP models for maintenance planning

Recall that we want to find an efficient joint policy 7 that max-
imises the sum of all agent utilities u; (Eq. 3). However, this utility
function cannot be directly translated into an equivalent MDP en-
coding. Although in our model C, () and ¢ can be general functions,
encoding general functions in the MDP formulation potentially re-
quires exponential space. Hence to be able to use the SPUDD solver
in our experiments, we necessarily restricted ourselves to only lin-
ear functions.

The current state of the network, i.e. the quality levels ge, are
modelled using a 5 star classification (from (0) very bad to (5) ex-
cellent) are encoded as discrete variables [0, 5]. Road degradation
functions ¢ are modelled using decision diagrams that probabilisti-
cally decrease the road quality in each time slot by one state. Com-
pleting an activity &’ increases the corresponding road quality gj,
by a specified number of states (additive), corresponding to its ef-
fect Agy,.

Encoding the social cost £ can be cumbersome, depending on the
complexity of the chosen cost model. Again, general cost models
could result in exponential MDP encoding sizes. Using only unary
and binary rules to express social cost, we can overcome this ex-
ponential growth. (at the cost of losing some expressiveness). The
unary rules [: A — R express the marginal latency introduced by
each activity independently. Dependencies between activities are
expressed using binary relations [: A; X A; — R that specify the

additional social cost when both activities are planned concurrently.
The costs incurred by the set of chosen activities A® can be com-

puted using £(A") = 37, o LK) +FD0, car Dopyny cnr LK1, K2).

4.2 Avoiding exponentially-sized action spaces

Factored MDP solvers are typically geared towards exploiting
structure in transition and reward models, but scale linearly with the
number of actions. In multi-agent problem domains such as ours,
however, a naive construction of the joint action set — such as enu-
merating all elements of the Cartesian product of individual action
sets — can be exponential in the number of agents. To overcome this
issue, we model each time step in the real world by two stages in the
multi-agent MDP, resulting in a larger number of search backups
due to additional variables, but crucially avoiding exponentially-
sized action spaces. Note that the encoding technique we discuss in
this section is not restricted to our problem; they can be applied on
any multi-agent decision problem MDP formulation in which agent
actions are dependent only through their rewards.

In our MDP encoding we have used a two-stage approach for
each time step in the plan problem length 7'. In the first step agents
decide on the activity to perform (or continue) and this activity
is then ‘executed’ in the second stage (illustrated in Sections 4.3
and 4.4 for two example scenarios). We implement this separation
through the use of additional variables that for each agent state the
activity to perform in the current time step. These variables can
be set independent from the actions available to other players (un-
like the Cartesian product action space). The second stage then en-
codes the ‘execution’ of their choices using one additional action.
Still there are multiple ways in which this first-stage activity selec-
tion can be implemented. Again enumeration is possible (although
obliterating the purpose of the two-stage approach) but we have de-
veloped two smarter encodings: action chains and activity chains.

The action chain encoding exploits the fact that we can decide on
an action for each player sequentially, instead of deciding on them
all at once (as with enumeration). Through the use of a player to-
ken, each agent gets a ‘turn’ to determine his action within a single
time step. Therefore we require only | A;| actions for each agent i,
one for each activity it can choose, and hence a total of 3, _ \ | A
states (and one additional variable), instead of the [, |A:| ac-
tions needed for enumerating the Cartesian product.

For activity chains we exploit a similar idea. We group the ac-
tivities of agents into activity chains to obtain an even smaller set
of joint MDP actions. Let D = max;ecn |A;| be the size of the
largest activity set of any player, then the activity chains are de-
fined as ACy, = ;e km € A; form =1,2,..., D. Hence we
group all m-th activities of each player into set AC,,. If a player ¢
has no m-th activity, i.e. m > | 4;|, we exclude the player from this
activity chain using a high penalty. Again using the player token we
enforce that each player sequentially chooses an activity from one
of these chains. This encoding requires exactly D actions in the
joint MDP for the first stage and is therefore often more compact
than the).\ | A:| actions required for action chains.

In the second stage we model the execution of these choices, i.e.
apply maintenance effects, and compute the sum of utilities (Eq. 3)
for this time step as the reward. Note that we only proceed in time
after the second stage, hence both stages are effectively within one
time slott € 7.

So far we have introduced a general encoding for maintenance
scheduling problems. Now we will go into the the specifics for two
real-world application we have chosen to study in this paper: one
with unit-time activities that may fail, and one where activities al-
ways succeed, but possibly have a much longer duration. A sum-
mary of the main differences can be found in Table 1.

repeat duration success delay delay

prob. dur. prob.

d ak hi Br

1| yes 1 [0,1] 0 0
2 | no VA 1 zZ* [0,1]

Table 1: The differences between scenario 1 and 2

4.3 Scenario 1: Activities with failures

As a step towards network maintenance, we first focus on schedul-
ing repeatable unit-time activities with possible failures. Although
this problem is conceptually rather simple, it captures essential parts
of real-world applications such as factory scheduling and supply
chain planning problems. In this scenario, activities k € A; are re-
peatable, of unit-time (dy, = 1) and succeed with probability oy €
[0, 1]. It is possible for any activity k¥ € A; to fail with probability
1 — ax. Whether an activity fails will become apparent at its actual
execution time. When an activity fails, it has no positive effect on
the quality but its associated maintenance and throughput costs are
still charged. If the agent still wants to perform the maintenance it
has to include the activity in his plan again at a later time.

Because activities in this scenario are unit-time and repeatable,
we can directly translate these into actions of the single-agent MDPs.
For each activity k € A; of agent 7 we create an action ay, with re-
ward c(k, t,1). This action improves the quality level gi by the
number of levels corresponding to Agx with probability ay. Thus
with probability 1 — «y the maintenance fails and the quality level
remains unchanged.

4.4 Scenario 2: Portfolio Management

Portfolio management is a second variant of our model. Inspired
by real-world consequences of signing a maintenance contract, in
this setting agents have to perform each activity exactly once, al-
though multiple alternatives exists for the activity, and instead of
activity failure we consider delays. More formally, for each activ-
ity k we now additionally have a delay duration hj and delay prob-
ability .

Encoding the portfolio management planning in an MDP re-
quires a substantially greater effort as we can no longer translate
activities directly to actions. This problem is more complex because
of (1) possible non-unit activity durations, (2) activities can be de-
layed, (3) for each road we can only choose one activity to perform,
and (4) each road can be serviced only once. The latter two are eas-
ily resolved by introducing a variable that flags whether a road has
been serviced and using corresponding penalties to prohibit plan-
ning of these activities in a later time; the first two require more
work.

From the single agent MDP perspective, non-unit activity du-
rations (including possible delay) do not pose any difficulties. We
could use actions that update the time variable ¢ according to the
activity duration. For the joint MDP however, this time variable is
shared over all the agents. Increasing the time by the activity dura-
tion makes it impossible for other agents to start their activities in
this time period.

Our solution is to decompose each activity k into a series of unit-
time MDP actions {starty, dok, delayx, doney} and use a timer
variable to keep track of the remaining activity duration and its de-
lay status (pending, no or yes). The start, action marks the be-
ginning of the activity. This action sets the delay status to pending
and the activity timer to the duration dj. In subsequent time steps,
the agent has to perform a doy, action until the activity timer reaches
zero. At this point, the activity delay status is pending and the activ-

ity is delayed with probability B (also updating the delay status).

If the activity is not delayed, the doney, action is executed and
the associated road ey is flagged as serviced. When an activity is
delayed however, we set the activity timer to the delay duration hy,
and continue with doy, actions until again the timer reaches zero, at
which point the stop;, action is executed (not delay, again because
of the delay status value).

Important to keep in mind is that during the search for optimal
policies, a solver might decide on any order of these actions. Hence
we need to constrain the actions such that only feasible action se-
quences are considered. For example, the doy action can only be
chosen if the activity timer is greater than zero, otherwise a high
penalty results.

Rewards are encoded using the two-stage approach as before.
In the first stage, each agent chooses a start, do, delay or stop
action. Then the second stage implements these actions and incurs
maintenance, quality and social costs for the current time step t.

4.5 Planning Methods

Using the encodings we discussed, we can find the optimal pol-
icy 7™ that minimises costs over all three objectives. In the experi-
ments, we then compare this centralised computation that relies on
truthful reporting to (1) the approach where each agent plans its
own actions optimally individually, i.e. disregarding other agents,
and (2) a best-response approach [14].

In the best-response approach, agents alternatingly compute their
best plan (in expectation) in response to the current (joint) plan
of the others. This approach allows us to solve much easier single
agent problems but still consider agent dependencies (e.g. social
cost). Of course, the downside of this approach is that we will have
to settle for Nash equilibria (if they exist).

S. EVALUATION

The combination of planning under uncertainty and mechanism
design has been studied in only a handful of papers, their focus
mainly on theoretical aspects. Little is known about application of
such a combination on practical problems. We have performed a
substantial number of experiments to gain insight into this previ-
ously uncharted area.

For both problem scenarios we have generated large benchmark
sets on which we tested the various planning approaches and their
encodings discussed in the previous section. These experiments are
mainly of an exploratory nature in which we study the effect of
each of the problem variables.

The solver used in these experiments has been implemented in
Java, using SPUDD as its internal MDP solver. All experiments
have been run on a system with an 1.60 Ghz Intel i7 processor.

5.1 Activities with failures

In the first series of experiments we have been mainly interested
in exploring the computational limits of solving the problem cen-
trally using an exact algorithm. To this end we generated a set of
simple instances that vary in both the number of players N (2-5)
and activity set A; sizes (1-15). We solved these instances using
different planning period lengths 7" (1-46). From these experiments
we identify the parameters that contribute the most to the complex-
ity of the problem.

Activity sets are generated using random, linear, time-dependent
cost functions and always increase the quality level of the associ-
ated road by one. Quality cost functions are also generated for each
road. Road quality is decreasing linearly in the quality with a ran-
dom factor from [1, 3], which is fixed per road. Recall from Section
4.1 that linearity of this and other cost functions is a restriction not

Runtime Memory usage

4 8

o 10 » 10
[}
8 8
@
1) c
£ ks)
o 10? 5 108
.g -g —+— Enumeration
g =} —=— Action chain
o z Activity chain
10° 104 L
2 3 4 5 2 3 4 5

Number of players Number of players

Figure 1: Comparison of runtime (left) and memory use (right)
for different encoding methods and number of player, | 4;| = 3,
|T'| = 46, |Q| = 6 (both log scale).

—INI=2
T INI=3

IN| =4
—INI=5

—2| —2
10 0 5 10 10 0 10 20 30 40 50

Activity set size Period length

Figure 2: Runtime for different activity set sizes with 7" = 46
(left) and plan period lengths with |A;| = 10 (right) using the
activity chain encoding (again both log scale).

imposed by our model but is required to combat a potential expo-
nential MDP encoding size.

The choice of activity and quality cost functions mostly influence
the rewards players can obtain, their impact on the computational
complexity is negligible (unless very complex models are used to
compute costs). Regarding the social costs ¢ we study the worst-
case where all activities always interfere and define these costs us-
ing randomly chosen (marginal) cost [(k1, k2) € [1,10] for each
ki € A; and k2 € Aj; where ¢ # j. We do not consider the
marginal cost for individual actions, i.e. [(k) = 0.

In Figure 1 we have depicted both the runtime (left) and the
memory (right) required to solve each of these instances, under dif-
ferent encoding methods. The memory required is expressed in the
number of nodes SPUDD generates.

Not surprisingly this figure illustrates that the performance of the
solver is exponential in both time and memory, and greatly depends
on the structure of its input. By exploiting the problem structure, the
activity chain encoding is able to greatly reduce the required run-
time. With it we have been able to solve instances with 5 players
and 3 activities per player within the time limit of 3 hours, whereas
the other two failed on such instances. Observe that activity chain
encoding requires slightly more memory, but this will be of no bur-
den to most modern day computer systems.

For the reasons stated above, we have illustrated the results of
the remaining experiments only using the activity chain encoding
(which indeed outperformed the others in all tests). In Figure 2 we
have plotted the required runtime for solving instances using activ-
ity chains for various activity set sizes and period lengths.

From the figure we can conclude that the runtime is only lin-
early affected by the number of activities each player has. The plan
period length shows almost the same: although the required run-
time increases rapidly at first, for larger plan horizons the increase
is again almost linear. It is expected that instances with small plan
lengths are easily solvable because only a small number of plans

O Individual -
400 | ‘T T n Best-response
|
- T O Centralised
300 | | - T :
g I E " Q | + + +
S 200 I 1 H B T B T + T N 4
L ! E L H i g H g L
1 1 Q T
100 | L L I g]
1 11
1

B=02 B=04 B=06 AB=058

®
Il

Activity success probability

Figure 3: Total cost using different planning approaches for the
activities with failure problems (lower is better).

is possible. Increasing the plan length introduces an exponential
number of new possible plans and therefore the computation time
increases rapidly, up to the point where the roads reach maximum
quality. From this time on, agents have to consider planning an ac-
tivity only when the quality degrades.

Having identified the computational boundaries of the centralised
problem, we compared the performance of different planning ap-
proaches discussed in Section 4.5 in terms of total reward obtained.
For these experiments we have used 60 generated two-player in-
stances in which each player is responsible for one road.

The activity set of each player contains the no-operation and 1,
2 or 3 available maintenance operations that improve the quality
of the road by 1, 2 or 3 levels respectively. The cost of each ac-
tion k € A; is drawn randomly from [1, 3 * Agy] and is therefore
independent from its execution time.

We have generated 20 instances for each different activity set
size and we ran our planning algorithms from Section 4.5. In these
experiments all activities have the same success rate « and we
solved all the instances with rates [0.2,0.4,0.6,0.8,1]. For the
best-response algorithm we have used 3 iterations and in each of
these iterations the order of agents is randomly determined. Smaller
experiments support our choice for 3 iterations: less iterations result
in far worse results while more iterations only slightly improve the
quality but increase the runtime substantially. Note that we have
no guarantee that the best-response approach will converge to an
equilibrium at this point. This is an issue that remains open at this
point, however early experiments have shown that best-response
almost always improves the initial solution at least.

Figure 3 illustrates the total cost obtained for each of the methods
under different levels of uncertainty with a box plot. In the plot,
the box contains the upper and lower quartile of the result values
with the mean shown by the horizontal line. The whiskers show the
smallest and largest values and outliers are plotted as red crosses.

The centralised algorithm always computes the social optimal
solution in which the total cost is minimal. As to be expected,
the individual planning method perform much worse on these in-
stances. Because in this approach the dependencies between agents
are ignored, the resulting plan may suffer from high social cost.
Indeed this figure shows that the total costs are much higher on
average, compared to the central solution.

Using only 3 iterations, the best-response algorithm produces
fairly acceptable plans. As we have mentioned before, best-response
can been seen as a compromise between individual and central
planning. Indeed our experiments show that the total cost is lower
on average than when using individual planning, but higher than
the centralised method.

106 -

10*

Runtime (s)

|Al =3

0 5 10 15 20
Plan period length

Figure 4: Runtimes of best-response planning for portfolio
management for various road set sizes | F;|, activities per road
|A| and plan length T (log scale).

5.2 Portfolio Management

For portfolio management we have performed similar experi-
ments. We have generated a set of 5 games for each combination
of [N| € [2,5], |E;| € [1,5], |Ai] € [1,3] and 8 € [0.2,0.4, 0.6,
0.8, 1.0] (delay risk is the same for all activities in these instances).
We ran our solver on these instances for different values of T'.
Again we study the worst case in which players are tightly coupled
(all activities interfere with at least one of another agent), and we
strive to gain insight in the factors contributing to the complexity.

Although exact solving for multiple agents poses a difficult chal-
lenge, we have been able to solve several non-trivial instances using
the best-response approach. Figure 4 shows the runtime required
for several of these instances. These early experiments show that
best-responses can be computed in the order of a few minutes for
problems where agents are responsible for multiple roads with sev-
eral activities to choose from.

6. CONCLUSIONS AND CHALLENGES

This paper introduces the practically very relevant problem of
infrastructural maintenance planning under uncertainty for selfish
agents in a private-values setting. With the help of experts in the
field of asset management we developed a model that captures the
essence of this coordination problem. Dynamic mechanism design
combined with optimally solving MDPs theoretically solves this
modelled problem. Through experimental analysis with different
encodings in an existing solver, we found that run times become
large for more than 5 players, 3 activities, 6 quality levels and 46
time steps (for scenario 1), which is reasonable in practice. For sce-
nario 2, run times for best-response can be computed for multiple
agents in a small network. We have thus made an important step
towards this practical planning problem, but, additionally we can
identify a number of challenges for our community.

In this paper, we used scalar weighting to balance the different
objectives in the system. However, asset maintenance planning for
infrastructures is inherently a multi-objective problem, even though
this has not been acknowledged in procurements until recently. The
weighting model has two difficulties. Firstly, it requires accurate
and exhaustive operationalisation of objectives in terms of mone-
tary rewards schemes. Secondly, in any practical application, hu-
man decision makers are more likely to prefer insight into possible
solutions trade-offs over a single black-box solution. In this con-
text, the work by [11] is relevant, in which the authors study ap-
proximation techniques for mechanism design on multi-objective
problems. Nevertheless, their work has only been applied to static
mechanisms. Developing methods combining multi-objective plan-

ning under uncertainty with dynamic mechanism design is a hard
challenge for the community, but with high potential payoffs in
terms of real-world relevance.

Scaling MDP solvers in terms of number of actions has not re-
ceived large amounts of attention, but is crucial for solving multi-
agent problems that suffer from exponential blow up of their action
space. Furthermore, the best-response approach that we employed
is not guaranteed to converge to the optimal solution, except for
special cases such as potential games [14]. Bounding the loss, e.g.,
by building on those special cases, will provide benefits to the adop-
tion of best-response methods.

Finally, as mentioned in the related work section, approximate
solutions often preclude many of the theoretical mechanism-design
results to apply. A major challenge here is to identify mechanisms
that are more robust to such approximations.

With respect to the implications of our work, it is clear that
the planning and coordination of (maintenance) activities in the
presence of uncertainty is a complex problem. However, applica-
tions exist in several other domains such as bandwidth allocation
or smart power grids, and hence the need for a practical solution is
high.

The concept of traffic time loss can also be used to stimulate
market parties in rethinking current working methods. By adjusting
tendering criteria to specific needs on certain areas of the network,
bidders can distinguish themselves by offering innovative propos-
als with limited traffic loss hours. The road authority and several
provinces are currently experimenting with this method.

Acknowledgements

This research is part of the Dynamic Contracting in Infrastructures
project and is supported by Next Generation Infrastructures and
Almende BV. Matthijs Spaan is funded by the FP7 Marie Curie
Actions Individual Fellowship #275217 (FP7-PEOPLE-2010-IEF).

7. REFERENCES

[1] S. Athey and I. Segal. An efficient dynamic mechanism.
Technical report, UCLA Department of Economics, 2007.

[2] D. Bergemann and J. Valimaki. Efficient dynamic auctions.
Cowles Foundation Discussion Papers, 2006.

[3] D.S. Bernstein, R. Givan, N. Immerman, and S. Zilberstein.
The complexity of decentralized control of Markov decision
processes. Mathematics of Operations Research,
27(4):819-840, 2002.

[4] C. Boutilier. Planning, learning and coordination in
multiagent decision processes. In Proc. of 6th Conf. on
Theoretical Aspects of Rationality and Knowledge, pages
195-201, 1996.

[5] R.I. Brafman, C. Domshlak, Y. Engel, and M. Tennenholtz.
Planning games. In Proc. Int. Joint Conf. on Artificial
Intelligence, pages 73-78, 2009.

[6] R. Cavallo. Efficiency and redistribution in dynamic
mechanism design. In Proc. of 9th ACM conference on
Electronic commerce, pages 220-229. ACM, 2008.

[7]1 R. Cavallo, D. C. Parkes, and S. Singh. Optimal coordinated
planning amongst self-interested agents with private state. In
Proc. of Conf. on Uncertainty in Artificial Intelligence, pages
55-62, 2006.

[8] C.d’Aspremont and L. Gérard-Varet. Incentives and
incomplete information. Journal of Public Economics,
11(1):25-45, 1979.

[9] Der Spiegel. A40: Autobahn nach dreimonatiger sperre
freigegeben, 2012. Online, Sep 30.

[10] B. Detienne, S. Dauzere-Péres, and C. Yugma. Scheduling
jobs on parallel machines to minimize a regular step total
cost function. Journal of Scheduling, pages 1-16, 2009.

[11] F. Grandoni, P. Krysta, S. Leonardi, and C. Ventre.
Utilitarian mechanism design for multi-objective
optimization. In Proc. of 21st Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 573-584. Society
for Industrial and Applied Mathematics, 2010.

[12] T. Groves. Incentives in teams. Econometrica,
41(4):617-631, 1973.

[13] J. Hoey, R. St-Aubin, A. Hu, and C. Boutilier. Spudd:
Stochastic planning using decision diagrams. In Proc. of
Conf. on Uncertainty in Artificial Intelligence, pages
279-288, 1999.

[14] A.Jonsson and M. Rovatsos. Scaling up multiagent
planning: A best-response approach. In Int. Conf. on
Automated Planning and Scheduling, pages 114-121, 2011.

[15] J. R. Kok, P. Hoen, B. Bakker, and N. Vlassis. Utile
coordination: Learning interdependencies among cooperative
agents. In Proc. Symp. on Computational Intelligence and
Games, pages 29-36, 2005.

[16] F. S. Melo and M. Veloso. Learning of coordination:
Exploiting sparse interactions in multiagent systems. In
Proceedings of The 8th International Conference on
Autonomous Agents and Multiagent Systems-Volume 2, pages
773-780. International Foundation for Autonomous Agents
and Multiagent Systems, 20009.

[17] R. Porter, A. Ronen, Y. Shoham, and M. Tennenholtz. Fault
tolerant mechanism design. Artificial Intelligence,
172(15):1783-1799, 2008.

[18] D. Procaccia and M. Tennenholtz. Approximate mechanism
design without money. In Proc. of ACM Conf. on Electronic
Commerce, pages 177-186, 2009.

[19] M. L. Puterman. Markov Decision Processes—Discrete
Stochastic Dynamic Programming. John Wiley & Sons, Inc.,
New York, NY, 1994.

[20] J. Scharpff, M. T. J. Spaan, L. Volker, and M. M. de Weerdt.
Planning under Uncertainty for Coordinating Infrastructural
Maintenance. In Proc. of the International Conference on
Automated Planning and Scheduling (ICAPS), 2013. To
appear.

[21] S. Seuken, R. Cavallo, and D. Parkes. Partially-synchronized
DEC-MDPs in dynamic mechanism design. In Proc. of
National Conf. on Artificial Intelligence, pages 162—169,
2008.

[22] J. Snellen, D. Ettema, and M. Dijst. Activiteitenpatronen en
reistijdwaardering (dutch). Technical report, Transumo,
December 2007.

[23] R. P. van der Krogt, M. M. de Weerdt, and Y. Zhang. Of
mechanism design and multiagent planning. In M. Ghallab,
C. D. Spyropoulos, N. Fakotakis, and N. Avouris, editors,
European Conf. on Artificial Intelligence, pages 423-427,
2008.

[24] L. Volker, J. Scharpff, M. De Weerdt, and P. Herder.
Designing a dynamic network based approach for asset
management activities. In Proc. of 28th Annual Conference
of Association of Researchers in Construction Management
(ARCOM), 2012.

[25] D. H. Wolpert, K. Tumer, and J. Frank. Using collective
intelligence to route internet traffic. In Proceedings of the
1998 conference on Advances in neural information
processing systems 11, pages 952-958. MIT Press, 1999.

