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Abstract: In this article we explain the architecture for the environment and sensors that has

been built for the European project URUS (Ubiquitous Networking Robotics in Urban Sites), a

project whose objective is to develop an adaptable network robot architecture for cooperation

between network robots and human beings and/or the environment in urban areas. The project

goal is to deploy a team of robots in an urban area to give a set of services to a user community.

This paper addresses the sensor architecture devised for URUS and the type of robots and

sensors used, including environment sensors and sensors onboard the robots. Furthermore,

we also explain how sensor fusion takes place to achieve urban outdoor execution of robotic

services. Finally some results of the project related to the sensor network are highlighted.
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1. Introduction

In the URUS project [1] we needed to interconnect and manage multiple services that enable urban

robots to perform social urban tasks. To this end, we have designed an architecture that takes advantage

of all information available within a large set of ubiquitous sensors, including fixed cameras, wireless

sensors, Mica2 sensors and various sensing devices onboard the robots, such as cameras and laser range

finders. Two characteristics of this architecture are of particular relevance: it is a highly distributed

architecture, and it is scalable. Contrary to other architectures for multiple robot interoperability, our

system does not make use of a central server that receives and combines all the information available

to obtain, for instance, a fused estimation of a given variable, say a tracked person position [2]. Such

kind of systems are dependent on a central node, thus not robust to communication failures, latencies

or drop outs, and they do not scale well with the number of nodes. In the URUS architecture, we opted

for a decentralized system in which each subsystem only manages local information and exchanges with

its peers local estimates of any given variable. Decentralized data fusion takes place by means of an

information filter (IF), dual to the more common Kalman filter typically used for data fusion [3]. The

IF has very nice characteristics for decentralization, with applications in other robotics contexts such as

aerial robot decentralized perception [4]. One of the applications of decentralized data fusion in URUS

is person tracking and guiding, employing the local sensors of the robot and the environment camera

network, efficiently coping with occlusions, and single module tracking failures.

The article is organized as follows. We first present the objectives of the URUS project, the partners

and the robot sites where the experiments take place. Then, we explain the distributed URUS architecture

and the sensors in a network that combines cameras and Mica2 sensors. Next, we describe the sensors

that are included in some of the robots used for the experiments. The robotic systems described in

this paper include Tibi and Dabo from the Institut de Robòtica i Informàtica Industrial (CSIC-UPC),

Romeo from the Asociación de Investigación y Cooperación Industrial de Andalucı́a (AICIA) and a fleet

of Pioneer robots from the Instituto Superior Técnico (IST). Next we describe how information fusion

from several sensors takes place, and the software architecture that we have developed to manage such

heterogeneous set of sensors and systems. Finally, we explain how we use these sensors for several

robot services as required by some of the URUS experiments, including for instance robot localization

and people tracking.

2. The URUS Project

2.1. Objectives of the URUS Project

The general objective of the URUS project is the development of new ways for the cooperation

between network robots and human beings and/or the environment in urban areas, in order to achieve

efficiently tasks that for single systems would be too complex, time consuming or costly. For instance,
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the cooperation between robots and video cameras can solve surveillance problems for blind spots

in urban areas, or the cooperation between robots and wireless communications devices can improve

efficiency in people assistance services. The focus of the project is in urban pedestrian areas, for which

there exists a growing interest in reducing the number of cars and improving the quality of life. Network

robots become an important instrument towards these goals.

Network robots is a new concept that integrates robots, sensors, communications and mobile devices

in a cooperative way. Meaning that, not only a physical connection between these elements exists, but

also, that there is a need for the development of novel intelligent cooperation methods for task oriented

purposes, new ways of communication between the different elements, and new robot mobility methods

using the ubiquity of sensors and robots.

The URUS project is focused on designing and developing a network of robots that in a cooperative

way interact with human beings and the environment for tasks of guidance and assistance, transportation

of goods, and surveillance in urban areas. Specifically, our objective has been the design and

development of a networked robot architecture that integrates cooperating urban robots, intelligent

sensors (video cameras, acoustic sensors, etc.), intelligent devices (PDA, mobile telephones, etc.) and

communications. The main scientific and technological challenges that have been addressed during the

course of the project are: navigation and motion coordination among robots; cooperative environment

perception; cooperative map building and updating; task negotiation within cooperative systems; human

robot interaction; and wireless communication strategies between users (through mobile phones, PDAs),

the environment (cameras, acoustic sensors, etc.), and the robots.

Figure 1. Barcelona Robot Lab.

Moreover, we have devised two demonstration scenarios in the Barcelona Robot Lab, a 10,000 m2

area devoted to urban robotics experimentation (Figure 1). Scenario 1 involves transporting a person or

goods to a destination; and Scenario 2 is devoted to drive people slowly and orderly towards the main exit

in public spaces at closing hour. In the first case, a person calls, by means of a mobile phone, for a robots

in order to receive the service. The robot that has the transport functionality, is available and closest

to that person, approaches the person, identifies the person, and guides him or her to the requested

final destination. All this, with the aid of the distributed sensor network for the tasks of localization,
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identification, guidance, and robot navigation. In the second case, the trigger signal for the surveillance

service of public space is the closing time or a human gesture. Then, the appropriate robots available for

this service approach the area where people is gathered and directs them to leave the space.

2.2. Project Participants

The project participants are:

• Institut de Robòtica i Informàtica Industrial, CSIC-UPC, Barcelona, Spain

• Laboratoire d’Analyse et d’Architecture des Systèmes, CNRS, Toulouse, France

• Swiss Federal Institute of Technology Zurich, Switzerland

• Asociación de Investigación y Cooperación Industrial de Andalucı́a, Seville, Spain

• Scuola Superiore di Studi Universitari e di Perfezionamento Sant’Anna, Pisa, Italy

• Universidad de Zaragoza, Spain

• Institute for Systems and Robotics, Instituto Superior Técnico, Lisbon, Portugal

• University of Surrey, Guildford, UK

• Urban Ecology Agency of Barcelona, Spain

• Telefónica I + D, Spain

• RoboTech, Italy

2.3. Barcelona Robot Lab

The Barcelona Robot Lab, built within the context of this project, is an outdoor urban experimental

robotics site located at the Universitat Politècnica de Catalunya (UPC) campus, which includes 6

university buildings over a 10,000 m2 area. In this area we have placed 21 fixed color video cameras

connected through a Gigabit Ethernet connection to a computer rack. The position of the cameras is

shown in Figure 2, with varying density in the positioning of the cameras, according to the various

objectives of the project. Specifically, there are five cameras directed towards the Computer Science

School (FIB) square, to have enough resolution for the detection of human gestures. There is also

increased density in the positioning of the cameras in front of building A6, for the same reason. The rest

of the area is covered with sparser density only to guarantee almost complete coverage of the area during

people and robot tracking.

This outdoor facility is also equipped with 9 WLAN antennas with complete area coverage.

Specifically for this project, we have installed the IEEE 802.11a protocol, contrary to the more common

b/g/ or n networks. The reason was to limit as much as possible interferences with the university

WLAN also covering the same area. The laboratory is also equipped with 802.15.4 wireless sensors

for location purposes. Further information on the Barcelona Robot Lab experimental site can be seen at

(http://www.urus.upc.es).
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Figure 2. Camera network. (a) Colour video camera deployed in the URUS project.

(b) The position of the cameras within the Barcelona Robot Lab.

(a) (b)

2.4. ISRobotNet

The Institute for Systems and Robotics at Instituto Superior Técnico, in Lisbon, has developed also

a testbed for NRS, the Intelligent Sensor and Robot Network (ISRobotNet), that enables testing a wide

range of perception and robot navigation techniques, as well as human robot-interaction, distributed

decision making, and task and resource allocation. The ISRobotNet testbed, also part of the URUS

project, is composed of a 160 m2 indoor area with 10 webcams placed at the ceiling such that some of

their fields of view do not overlap. The cameras are distributed in 4 groups, each of which is managed by

its own computer for image acquisition. The managing computers are connected to the global ISR/IST

network and can be accessed by duly authorized external agents. Ongoing work will extend the number

of cameras and the usable indoor space to include multiple floors. Robots will use the same elevators as

ordinary people to move between floors. Besides the camera sensors, four Pioneer ATs and one ATRV-Jr

robots are available. Each of the robots is equipped with sonar, onboard cameras, laser range finder and

is Wi-Fi connected to the network. Figure 3 shows one of the floors at ISR/IST where the testbed is

implemented and a map with the camera fields of view.

ISRobotNet is built around the kernel of a service-oriented architecture (MeRMaID) [5], and extended

to use the YARP networking software [6]. The testbed is being used to develop different components,

namely, cooperative perception, people and robot detection and tracking using the camera network,

and decision making. Arbitrary computational resources can be distributed over the network for fully

decentralized use. Basic services such as robot teleoperation and direct image acquisition and recording

from the camera network, as well as event logging, are also available.
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Figure 3. ISRobotNet.

3. The URUS Architecture

The sensor architecture of URUS has being designed to manage distributed information coming from

different sensors and systems, and they have to be used for flexible and dynamic robot services. The

architecture is distributed among subsystems which are interconnected through various means, Ethernet

cable, WLAN and GSM/3G (see Figure 4).

The architecture is divided in three layers:

• Environment Layer:

– The networked cameras oversee the environment and are connected through a Gigabit

connection to a rack of servers.

– The wireless Zigbee sensors all communicate to a single subsystem which is also connected

to the system through one computer.

– The WLAN environment antennas are connected through the Gigabit connection to the

rack servers.

– People use devices to connect to the robots and the environment sensors. For instance, a

mobile phone with PDA features is connected through GSM/3G to the system.

• Robot Sensor Layer:

– The robots have their own sensors connected through proprietary networks (usually

Ethernet) which are connected through WLAN and GSM/3G to the system. A proprietary

communications service has been developed to transparently switch between WLAN and 3G

depending on network availability.

• Server Layer:

– The server rack (8 servers with 4 cores each) are connected through Ethernet to the

Environment Layer and the Robot Sensor Layer.

The network of cameras is used to detect, track and identify people gestures in the urban area, as

well as to detect and identify the robots. They can also be used for other services, such as surveillance,
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obstacle detection, etc. The wireless sensors, in this case Mica 2 sensor motes, are used mainly to

enhance person and robot localization, based on radio signals. The Mica2 localization estimates are

robustly fused with map-based localization methods in a decentralized way. Robot localization using

GPS signals is not possible in the Barcelona Robot Lab, as in many urban areas due to satellite occlusion.

The localization of the robots is so important, that we need to use as many methods as possible in order

to minimize localization uncertainty.

Figure 4. URUS global architecture.

The sensors onboard the robots are used mainly for navigation, localization and security; for robot

and person identification, including the identification of human gestures and actions; and for human

robot interaction.

Robots share information with other robots and with the server layer, through WLAN and GSM/3G.

If WLAN is lost, for example when a robot crosses an area where the signal strength of the assigned AP

(Access Point) is lost, then the robot either connects to another AP, or the robot connects to the system

through GSM/3G.

The fully distributed software architecture is developed over YARP [6]. It can be used on any type of

robots, sensors and human wearable devices. Specifically, we have developed standard procedures for

connecting software modules allowing the share of information among the robots, sensors and human

wearable devices.
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At the level of sensor fusion for estimating system variables such as robot or people localization, data

was fused in a decentralized form, with each component implementation independent from each other.

However, at the experiment level, a central station was devised to handle task allocation and human

operator commands through a GSM interface. This station had a finite state automata that took care of

processing the experiment scripts and handling contingencies.

4. Sensors in the Urban Site

4.1. Camera Network

The camera network consists of 21 IP color video cameras distributed around the Barcelona Robot

Lab. The cameras are connected to each building switch with a Gigabit link. From each building, there

is a Gigabit connection to the computer rack with servers dedicated to process URUS software. These

servers are in a rack located in another building 200 m away from the NRS (Network Robot System)

area. Each camera has a dedicated IP and is only accessible from the proprietary network that we have

built. The parameters of the cameras can be modified independently and they include a time stamp that

is used in the tracking functions.

The camera network serves as a mean to detect, localize and map environmental information in a

globally coherent frame of reference. Persons and robots must be localized in a unique coordinate

system even though they are observed by distant cameras. We perform image-feature registration for

camera calibration. In contrast to other approaches that use a calibration pattern or stereo geometry over

architectural features to infer depth, depth information is obtained from the range map. The reason to use

the range map to geometrically relate the cameras is because no overlapping fields of view are available

in the camera network. Additionally, being an outdoor system, it is constantly susceptible to weather

conditions, such as rain and wind, and thus it is expected to have slight but visible positioning and

orientation changes from time to time. The calibration methodology must therefore encompass simple

self-adjusting mechanisms.

The development of powerful laser sensors combined with Simultaneous Location and Mapping

(SLAM) methodologies [7, 8] allow the possibility to have available high precision Laser Range Finder

(LRF) data registered over large areas. These large outdoor LRF datasets have started recently to be

acquired also for the purpose of creating robot navigation systems in urban areas. The LRF map is

acquired over the complete area of the network and, in particular, contains the areas corresponding to

the fields of view of the cameras. We exploit these novel technologies proposing a methodology for

calibrating an outdoor distributed camera network using LRF data.

The laser based map, whose construction is discussed further in this section, is used as external

information to aid the calibration procedure of the distributed camera network. For our case, in which

the cameras have non-overlapping fields of view, it is impossible to estimate the relative position between

them unless external data is used to refer the camera calibration parameters to a global reference frame.

Since calibration inevitably requires some user intervention, in large camera networks this can be a very

tedious procedure if one does not develop practical and semiautomated methods that facilitate and speed

up user input. See Figure 5.
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Figure 5. Camera calibration. (a) Lines are automatically extracted by intersecting planes

on the LRF map, (b) The optimization method registers these 3D features with 2D lines on

the images, and (c) Final reprojection of the segmented laser data after calibration.

(a) (b) (c)

The idea of the approach is the following: in a first stage, the LRF map is registered to an aerial

view of the site and the user sets up the position and nominal calibration parameters of the cameras in

the network. This allows user selection of an initial camera field of view onto the LRF area of interest

likely to be observed by each camera. In a second stage, lines extracted from the LRF area of interest are

represented in the nominally calibrated camera coordinate system and are reprojected to the real-time

cameras’ acquired images. This allows the user to perceive the calibration errors and input information

to a non-linear optimization procedure that refines both intrinsic and extrinsic calibration parameters.

The optimization process matches 3D lines to image lines. The 3D lines are extracted by intersecting

planes on the segmented LRF set. A novel approach to 3D range segmentation based on local variation

is used [9]. To show the applicability of the calibration results, homographies of the walking areas are

computed [10].

4.2. Mica2 Network

Latest advances in low-power electronics and wireless communication systems have made possible

a new generation of devices able to sense environmental variables and process this information.

Moreover, they have wireless communication capabilities and are able to form ad-hoc networks and

relay the information they gather to a gateway. This kind of system is usually called a Wireless Sensor

Network (WSN).

In URUS, a network of wireless Crossbow’s Mica2 sensor nodes is deployed in the urban scenario.

Each Mica2 node (see Figure 6, a) has a suite of sensorial devices, including accelerometers, light and

sound sensors, humidity sensors, etc., a tiny processor, based on the ATmega128L microcontroller, and

a communication module on the 868/916 MHz band. These sensor nodes can be used for monitoring

applications. In addition, the signal strength received by the set of static nodes of the WSN (Received

Signal Strength Indicator, RSSI) can be used to infer the position of a mobile object or a person carrying

one of the nodes. And thus, one of the applications developed in the project is an algorithm for mobile

sensor tracking, which can be used for tracking persons in urban scenarios.
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Figure 6. Mica2 network. (a) One of the sensor nodes employed in the system. (b) Scheme

of the integration of the nodes into the architecture.

(a) (b)

These sensors are integrated within the URUS system through a gateway which receives the

information from the sensor nodes (see Figure 6b). The sensor nodes build themselves an ad-hoc network

to send all the information to this gateway. In the gateway, a service that provides estimations on the

position of mobile nodes is placed.

4.3. Site Map

We need to build the required maps for our heterogeneous fleet of service robots in urban settings [1].

With these maps the robots should be able to perform path planning and navigate to accomplish their

tasks, such as guidance, assistance, transportation of goods, and surveillance. The experimental area has

several levels and underpasses, poor GPS coverage, moderate vegetation, several points with aliasing

(different points in the environment which cannot be disambiguated form local sensory data), large

amounts of regularity from building structures, and sunlight exposure severely subject to shadows.

Our technique to Simultaneous Localization and Mapping (SLAM) is described in detail in [7, 11, 12],

and is summarized here. We introduce a principled on-line approach for Pose SLAM, the variant

of SLAM in which the state vector contains a history of visited robot locations, which only keeps

non-redundant poses and highly informative links (see Figure 7). This is achieved by computing two

measures; the distance between a given pair of poses and the mutual information gain when linking two

poses. In [11], we show that, in Pose SLAM, the exact form of these two measures can be computed in

constant time. When compared to other existing approaches [13], the proposed system produces a more

compact map that translates into a significant reduction of the computational cost and a delay of the filter

inconsistency, maintaining the quality of the estimation for longer mapping sequences.

By applying the proposed strategy, the robot closes only few loops and operates in open loop for

long periods, which is feasible using recent odometric techniques [14, 15]. Our Pose SLAM approach

includes a novel state recovery procedure at loop closure that takes advantage of the inherent sparsity

of the information matrix scaling linearly both in time and memory. This computational cost is further
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amortized over the period where the robot operates in open loop, for which we introduce a factorization

of the cross- covariance that allows the state to be updated in constant time. Thus, the proposed

state recovery strategy outperforms state of the art approaches that take linear time for very sparse

matrices (i.e., when the robot operates in open loop), but are worst case quadratic when many loops are

closed [13]. After this, the bottleneck for real time execution is not state recovery, but data association.

That is, detecting poses close to the current one for which feature matching is likely. Exploiting the

factorization of the cross-covariance, we introduced also in [11] a tree-based method for data association

using interval arithmetic to encode the internal nodes of the tree. The main advantage of that method is

that it improves the search up to logarithmic time. Moreover, by taking into account the cross-covariances

from the very beginning it also avoids false positives, typically present in existing tree-based data

association techniques[16]. This offers the possibility to use Pose SLAM for mapping large scale

environments, such as the Barcelona Robot Lab.

Figure 7. Filtered trajectory (in red) using encoder and visual odometry on a dataset

collected at the Barcelona Robot Lab. Loop closure links are displayed in green, the black

ellipse indicates the final robot location and its associated covariance at a 95% confidence

level. (a) standard approach: incorporating all poses and all links to the filter; and (b)

proposed approach: incorporating only relevant poses and links.

(a) (b)

Aerial views of the site are shown in Figures 7 and 8. In order to build the maps described in this

paper, we built our proprietary 3D scanning system, using a Leuze RS4 scanner and controlling its

pitch with a DC motor and a computer. The system was installed atop an Activmedia Pioneer 2AT

robotic platform. The system yields 3D point clouds with ranges up to 30 m, and sizes of about 76,000

points. The sensor noise level is 5 cm in depth estimation for each laser beam. Figure 9 portrays the

complete device. The robot was tele-operated through the site along a path of over 600 m (see Figure 9b).
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Figure 8. Traversability map built from 2D layers of three-dimensional aligned point

clouds. (a) 2D layer superimposed on an aerial image. (b) Corresponding traversability

map. Velocity varies from 0 m/s (blue) to 1 m/s (red).

(a) (b)

Figure 9. Site map. (a) Custom built 3D laser range scanner mounted on a Pioneer robotic

platform. (b) Top view of the 3D map.

(a) (b)

The figure contains results from state augmentation by concatenation of ICP computed motion

constraints through the EIF Pose SLAM algorithm that closes 19 loops in the trajectory [7, 11, 12].

The figure also shows a comparison of the mapping results to a manually built CAD model of the

experimental site. This model is made using geo-referenced information.
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5. Sensors Included in Urban Robots

5.1. Sensors in the Robots Tibi and Dabo - Architecture and Functionalities

Tibi and Dabo (Figure 10) are two robots built at IRI with functionalities to navigate in urban areas, to

assist and guide people from one origin to a destination. Traction is based on Segway RMP200 robotic

platforms, and they have been customized with a variety of sensors:

Figure 10. (a) Tibi and Dabo; (b) Tibi sensors.

(a) (b)

• Sensors for navigation: Two Leuze RS4 and one Hokuyo laser rangefinders, as well as Segway’s

own odometric sensors (encoders and IMU).

– The first Leuze rangefinder is located in the bottom front with a 180◦ horizontal view. This

sensor is used for localization, security and navigation.

– The second Leuze rangefinder is located in the bottom back, also with a 180◦ horizontal view.

This sensor is used for localization, security and navigation.

– The Hokuyo rangefinder is located in the front, but placed vertically about the robot chest,

also with a 180◦ field of view. It is used for navigation and security.

• Sensors for global localization: GPS and compass.

– The GPS is used for low resolution global localization, and can only be used in open areas

where several satellites are visible. In particular, for the URUS scenario, this type of sensor

has very limited functionality due to loss of line of sight to satellites from building structures.

– The compass is used also used for recovering robot orientation. Also, in the URUS scenario,

this sensor has proven of limited functionality due to its large uncertainty in the presence of

metallic structures.
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• Sensors for map building: One custom built 3D range scanner and two cameras.

– The two cameras are located to the sides of the robots and facing front to ensure a good

baseline for stereo triangulation, and they are used for map building in conjunction with the

laser sensors. These cameras can also be used for localization and navigation.

– A custom built 3D laser range finder unit has been developed in the context of the project.

This unit, placed on top of a Pioneer platform has been used to register finely detailed

three dimensional maps of the Barcelona Robot Lab that allow localization, map building,

traversability computation, and calibration of the camera sensor network.

– Vision sensors: One Bumblebee camera sensor.

– The Bumblebee camera sensor is a stereo-vision system that is used for detection, tracking

and identification of robots and human beings. Moreover we use this camera as image

supplier for robot teleoperation.

• Tactile display:

– The tactile display is used for Human Robot Interaction (HRI), to assist people and to

display information about the status of the robot, as well as task specific information, such as

destination information during a guidance service.

The internal architecture of these robots can be seen in Figure 11. We can see all hardware and sensors

on the left side and their connection to the Acquisition/Actuation system. Colors in the figure indicate

development state at an early stage of the project. Green indicates software modules that were completed,

yellow indicates software modules that were in development at that time, and red indicates software

modules that were still not developed. The second Acquisition/Actuation subsystem, second column in

the figure, includes all drivers that connect hardware and sensors to the localization, motion controller,

visual tracking, obstacle avoidance, gesture server and TS interaction modules. The safety subsystem

in the third column uses the process monitor to control the robot platform, using the information from

the robot sensors and the heart beats of the robot systems. The Estimation and Planning subsystem use

the localization and path planning to control the robot motion. The different operation modes for these

robots are: path execution, guiding person, tele-operation and human robot interaction. Each one of

these operation modes are used in the URUS project to give specific services.
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Figure 11. Internal architecture of Tibi & Dabo.

(a)

5.2. Romeo Sensors—Architecture and Functionalities

Romeo is an electric car modified with sensors and actuators to navigate autonomously in outdoor

scenarios, including urban environments. Figure 12 shows the robot and its main sensors:

• Odometric sensors: Romeo has wheel encoders for velocity estimation, and a KVH Industries’

gyroscope and an Inertial Measurement Unit (IMU) for angular velocity estimation.

• Rangefinders: Romeo has one SICK’s LMS 220-30106 laser rangefinder located in the frontal

part of the robot, at a height of 95 cm, for obstacle avoidance and localization. Moreover, it

has 2 Hokuyo’s URG-04LX (low range, up to 4 meters) in the back for backwards perception,

and 1 Hokuyo’s UTM-30LX (up to 30 meters) at the top of Romeo’s roof and tilted

for 3D perception.

• Novatel’s OEM differential GPS receiver.

• Firewire color camera, which can be used for person tracking and guiding.

• Tactile screen, which is used for robot control and for human-robot interaction.
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Figure 12. Sensors on board Romeo. Sensors for localization (GPS, gyro, encoders, Sick

laser), map building and navigation (laser rangefinders). (a) front view; (b) rear view.

(a) (b)

Figure 13, a, shows the basic software architecture for robot navigation in pedestrian environments.

For localization, Romeo fuses all its odometric sensors (encoders, gyroscope, IMU) with an Extended

Kalman Filter (EKF-LOC) to estimate its 6D pose. In order to compensate the drift associated to

odometry, Romeo carries a differential GPS receiver. However, as stated before, in urban environments,

often the GPS measurements are not available, or are affected by multi-path effects, which can produce

erroneous estimates, thus localization is map-based and only assisted by GPS. All robots, Tibi, Dabo,

and Romeo use the same map-based localization mechanism developed by Corominas et al. [17, 18],

and described further in this paper, allowing the cancelation of drift error at a rate of 1 Hz.

Figure 13. (a) basic architecture of Romeo. (b) 3D information obtained by Romeo from

the Romeo lasers. Different obstacles can be identified, like stairs, trees or small steps.

(a) (b)
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For navigation, Romeo combines the pose information from the localization algorithm with the data

from its lasers to build a 3D representation of the environment (see Figure 13b). From this representation,

it is possible to obtain a traversability map; that is, a grid in which each cell indicates if it can be drivable

by Romeo or not, such as the one shown in Figure 8b. The analysis to decide if a place is drivable or not

depends mainly on the slope at each point of the map. At the same time, mobile obstacles can be also

identified. This is used by the obstacle avoidance module to command the robot.

Romeo carries on board cameras that can be used for person tracking and guiding. The algorithms

employed for this are based on a combination of person detection and tracking. The tracking algorithm is

based on the mean shift technique [19]. In parallel, a face detection algorithm is applied to the image [20],

the results from the tracking and the detection applications are combined, so that the robot employs the

face detector when the tracker is lost to recover the track. As a result, the robots can obtain estimates of

the pose of a person face on the image plane (see Figure 14).

Figure 14. People tracking from Romeo for guidance.

5.3. ISTRobotNet Architecture and Functionalities

IST is using Pioneer 3AT robots equipped with odometry, ultrasound, and laser range finder sensors

(Figure 15). Basic navigation capabilities, namely path planning and obstacle avoidance, are available

for each robot. Localization for these robots is also is based on the fusion of odometry and range

information and the a priori defined world map. Contrary to the robots that navigate in the Barcelona

Robot Lab, the CARMEN package is used for map building and localization at the ISRobotNet site.

A grid is superimposed on the map obtained with CARMEN, and the centers of each cell constitute the

set of waypoints used in the robot navigation.

An auction based high level supervision is implemented by a distributed component [21]. This

approach is flexible enough to allow fast prototyping in behavior development. The robot tasks consist in

the use of navigation behaviors to reach a given cell in the grid map. The robot supervisor is synthesized

by formulating POMDP’s for each possible task [22]. Thus, the robots task fitness is the value function

of the POMDP for each task. The benefit of using the POMDP approach is that it is possible to compare

the fitness of unrelated tasks, such as navigation and the use of onboard sensors for tracking.

The camera detection events are sent to the speculators, see Figure 15, which process this information

and determine if a robot should approach the cell where the detection occurred. Since in general the
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number of detection events and mobile robots is different, an auction protocol is implemented to compute

the optimal task assignment solution given the robots individual fitness values.

Figure 15. (a) IST robots and, (b) the auction based distributed approach to high level

supervision.

(a) (b)

Experiments integrating all the components required for the URUS project have been carried out at

the ISRobotNet. A typical experiment can be identified with a rendezvous scenario where a service robot

meets a person detected by the camera network. Each camera detecting persons and robots associates

an uncertainty measure (covariance matrix) to each localization hypothesis in world coordinates. When

targets are observed by more than one camera, a Bayesian data fusion process joins the information from

the several cameras and provides a posteriori distribution of the data, assuming Gaussian uncertainties.

Figure 16. Rendezvous experiment. Integrated experiment at ISRobotNet.

Figure 16 shows (i) the detections provided by the camera network; (ii) the person and robot positions

displayed in the 2D world map and (iii) the environment discrete grid cells. The maps show trajectories

of persons and robots obtained by gathering information from all the cameras. False positive detections
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are due mainly to occlusions in the field of view of the cameras, but the false detection rate is very

low and does not influence the probabilistic localization methods. The green and red dots indicate

estimated robot and people trajectories, respectively. The box and circles map represents the likelihood

of person and robot positions (the darker the cell, the higher the likelihood) and the blue circle shows

the selected cell for commanding the next robot position, determined by the decision process. This

information is then used to plan minimal cost paths accounting, for instance, for the relevance of visiting

extra locations [23, 24].

6. Decentralized Sensor Fusion for Robotic Services

From the perception point of view, in the URUS system (Figure 17), the information obtained by the

fixed camera network or the wireless sensor network is fused with the information each robot obtains

about the environment to improve perception estimates. In a guiding task for instance, the targets

identified by the camera network (see Figure 17, right) can be combined with the information from

the other systems (robots, and WSN, see Figure 17) to improve the tracking of the person being guided.

Combining information from several sources, allows to cope with occlusions, to obtain better tracking

capabilities as information of different modalities is employed, and to obtain predictions for uncovered

zones, as the robots can move to cover these zones.

Figure 17. A block description of the sensor fusion architecture in URUS.

One option is to have a centralized system that receives all the information and performs data fusion.

However, such approach presents some drawbacks, as it does not scale well with the number of robots

and other systems; the central element can be a bottleneck; and communication failures are critical.

Therefore, in URUS we have implemented a decentralized estimation system (as shown in Figure 17).

In a decentralized data fusion system [25, 26], there are a set of fusion nodes which only employ local



Sensors 2010, 10 2293

information (data from local sensors; for instance, a camera subnet, or the sensors on board the robot) to

obtain a local estimate on the quantity of interest (for instance, the position of the person being guided).

Then, these nodes share their local estimates among themselves if they are within communication range.

The main idea is that, as the nodes only use local communications, the system is scalable. Also, as each

node accumulates information from its local sensors, temporal communication failures can be coped

without losing information. Finally, fusing information from neighbor nodes allows for consistent global

estimation in a decentralized form.

Figure 18. (a-b) Tracks obtained by the camera on board Romeo. (c-d) Tracks obtained by

the camera network in the same experiment.

(a) (b)

(c) (d)

Using the trackers developed in the project, the camera network and the robots are able to obtain local

estimates of the variable at hand (i.e., the position of people on the image plane, see Figure 18). These

estimates, characterized as Gaussian distributions (mean and covariance matrix) and the ones provided

by the WSN, can be fused in order to obtain an accurate estimate of such variable. The Information

Filter (IF), which corresponds to the dual implementation of the Kalman Filter (KF), is very suitable

for decentralized data fusion using Gaussian estimates. While the KF represents the distribution using

its first and second order moments (mean μ and covariance Σ ), the IF employs the so-called canonical

representation, encoded by the information vector η = Σ−1μ and the information matrix Ω = Σ−1.

Prediction and updates for the linear IF are easily derived from the linear KF [3]. In the case of nonlinear
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motion models (i.e., robot kinematics) and nonlinear measurement functions (i.e., perspective projection

on cameras), first order linearization leads to the Extended Information Filter (EIF).

The main interest of the EIF, compared to the EKF, is that it can be easily decentralized. In a

decentralized approach, each node of the network employs only local measurements zi, of the event

at hand (as said, for instance, the position of the person as observed by a local sensor), to obtain a

local estimate of such event (the person trajectory), represented by ηi and Ωi, and then, shares this

estimate with its neighbors. The information coming from neighboring nodes is locally fused in order to

improve such local estimate. The decentralized fusion rule produces locally, the same result that would

be obtained using a centralized EIF. This is because for the EIF, data fusion is an additive process [26]:

ηi ← ηi + ηj − ηij

Ωi ← Ωi + Ωj − Ωij

The update rules state that each node should sum up the information received from other nodes.

The additional terms ηij and Ωij represent the common information between nodes. This common

information is due to previous communications between nodes, and should be removed to avoid double

counting of information, known as rumor propagation. This common information is maintained by

a separated EIF called channel filter [27]. This common information is locally estimated assuming a

tree-shaped network topology, i.e., there exist no cycles or duplicated paths of information.

The decentralized system has as advantages that the system is scalable, as each fusion node employs

only local communications. Moreover, communications dropouts do not compromise the system

(although the performance can be degraded during the dropout). Another advantage of using delayed

states is that the belief states can be received asynchronously. Each node in the network can accumulate

evidence, and send it whenever it is possible. However, as the dimension of the state trajectories grow

with time, the size of the message needed to communicate the estimate of a node also does. For the

normal operation of the system, only the state trajectory over a limited time interval is needed, so these

trajectories can be bounded. Note that the trajectories should be longer than the maximum expected

delay in the network in order not to miss any measurements information.

7. Software Architecture to Manage Sensors Networks

The ever-increasing level of autonomy demanded by networked robotic systems is naturally leading to

an increase in the complexity in their components. In robotics parlance these components and strategies

are known as middleware, following similar designations in computer engineering, referring to computer

software that connects software components or applications. MeRMaID (Multiple-Robot Middleware

for Intelligent Decision-making) is a robot programming framework, used in URUS, whose goal is

to provide a simplified and systematic high-level behavior programming environment for multi-robot

teams, supported on a middleware layer [5]. This middleware layer uses the Service concept as its basic

building block.

The middleware layer used in URUS extends that developed for RoboCup competitions [28]. The

functional architecture, guides the development of the embedded components so as to improve overall

dependability. This way, MeRMaID ensures that separately developed components will be more easily
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assembled together at integration time. The use of this architectural layer is not mandatory. The

developer can build its application using only the support layer, without any constraints on how to

connect subsystems. Figure 19 depicts an overview of the structure of both levels of MeRMaID. For

a thorough description of MeRMaID and its functionalities, refer to [5].

Figure 19. General structure overview of the middleware layer MeRMaID::support.

Among the advantages in using the MeRMaID framework are (i) reduced time to have third part

components fully integrated in to the system, and (ii) the automatic validation of the interactions

among services, assuring the developer that all protocols and specifications are correctly followed. The

integration of functionality provided by image processing software connected to the camera network in

this setup is an example of quick integration with software not developed using MeRMaID. The software

to detect people and robots was developed by an independent team without any constraint on how they

would later integrate it with the rest of the system at ISRobotNet. Given that the software was able to

detect events visible by the camera network that occur asynchronously, the Data Feed mechanism was

chosen as appropriate to make this information available. In fact, the whole camera network can be seen

as just a producer of a stream of asynchronous events. It was quite simple to insert a valid data feed

mechanism in the camera network code. Developers only needed to write data to a YARP Port (which is

YARP’s fundamental building block for communications) and populate the system’s description file with

a declaration of what data they were exporting. This approach can be applied for any data producing

software component in the system. Services developed using MeRMaID Support also benefit from

simplified access and full syntactic validation of the sent data.

8. Some Results in the URUS Project

In this section we only explain briefly three examples developed in the URUS project, where a

combination of sensors is used for specific robotic functionalities: localization using robot sensors and

environment sensors; tracking people and detection of gestures; and tracking of persons and robots using

Mica2 sensors.
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8.1. Localization

One of the main functions that any robot operating in an urban environment must have is localization.

Without this functionality the robots cannot perform missions like, “Go to destination X to pick up a

person and guide him to destination Y”. The robot must first know its position and pose with respect

to the global reference frame, and then know where is the X and Y positions are within that reference

frame, to be able to navigate and guide the person. One could think this is a trivial task in an urban

setting that could be solved for instance, with a GPS sensor. However, GPS signals are often unreliable

for autonomous robot navigation in urban pedestrian areas: there is lack of satellite visibility for accurate

position estimation. For this reason, we have developed a map-based position estimation method for

precise and fast localization using the information sensed by the laser rangefinders installed in the robot,

a GIS-augmented map of the environment, and the camera network. For the robots Tibi and Dabo, we

use the front and rear laser sensors. Usually, the aggregation of evidence from laser data is sufficient

for accurate map-based localization. Nonetheless, in some cases of aliasing, estimates on robot location

coming from the camera network help disambiguate between similar localization hypotheses, and also

as strong localization evidence in densely populated areas [17, 29]. The method in [30] is based on a

particle filter approach [31], and is summarized here. Note that the localization mechanism described

next accounts for a local node of the decentralized position estimation mechanism detailed in Section 6.

Other nodes include for instance, each robot localization estimate coming from each of the cameras in

the network.

Let X t
r = (xt

r, y
t
r, θ

t
r) be the robot state a time t, and assume it is limited to a bounding box in

the three-dimensional pose space, X t
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where σ1 is the noise for the laser observation and

σg
1,i(X

t
i ) = raytr

(
xt
i, y

t
i , θ

t
i −

Δα

2
+ j

Δα

NL

)

with Δα the aperture angle of the laser scan and raytr(Xp) is a function to evaluate the distance

of a given position in the map, Xp, with the closest obstacle of the map, following an extended ray

casted at the proper heading. The details of the other two steps, set estimate and resampling, can

be seen in [30].

Integration of Asynchronous Data

Given the asynchronous nature of the data coming from the various sensors (laser scanners, odometry,

and eventually GPS) (see Figure 20a), the particle filter integrates observations taking into account their

time stamps. The filter does not propagate the particle set once per iteration as classical approaches do.

Instead, the proposed algorithm propagates the particle set only when a new observation arrives with

a time stamp greater than the last propagation. At this point, the filter propagates with the kinematic

model and the odometric observation and, then, integrates the observation as a delayed one. In order

to integrate delayed observations, the proposed approach maintains a delayed history of past estimates

and back-propagates particles to compute observation models at those instances where particles were

expected to be [32] (see Figure 20b). The experiments using this particle filter in the Barcelona Robot

Lab can be seen in Figure 21.

Figure 20. (a) Tibi and Dabo asynchronous navigation. (b) Particle propagation. Backward

propagation of the particle X t
i when integrating observation otk.

(a) (b)
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Figure 21. Robot localization. (a) Simulated results with multiple sensors. (b) Robot

localization in the real outdoor campus environment with the robot Tibi. The red path

indicates ground truth, the green path indicates robot odometry, and the blue path the

resulting filter estimate. (c) Map based localization results in the same environment for

the robot Romeo. The red path indicates local estimates, and the blue path indicates

global localization.

(a) (b) (c)

8.2. Tracking People and Detecting Gestures Using the Camera Network of Barcelona Robot Lab

8.2.1. The Method

The fixed cameras cover a wide area of the experiment site and are the basis for the fusion of the other

sensors, they are able to track objects of interest both on and across different cameras without explicit

calibration. The approach is based on a method proposed by Gilbert and Bowden [33]. Intra camera

objects of interest are identified with a Gaussian mixture model [34] and are linked temporally with a

Kalman filter to provide intra camera movement trajectories. When the object of interest enters a new

camera field of view, the transfer of the object position estimate to the new camera is challenging since

cameras have no overlapping fields of view, making many traditional image plane calibration techniques

impossible. In addition, handling a large number of cameras means that traditional time consuming

calibration is impractical. Therefore, the approach needs to learn the relationships between the cameras

automatically. This is achieved by the way of two cues, modeling the color, and the inter-camera motion

of objects. These two weak cues, are then combined to allow the technique to determine if objects

have been previously tracked on another camera or are new object instances. The approach learns these

camera relationships, and unlike previous work, it does not require a priori calibration or explicit training

periods. Incrementally learning the cues over time allows for accuracy increase without supervised input.

8.2.2. Forming Temporal Links between Cameras

To learn the temporal links between cameras, we make use of the key assumption that, given time,

objects (such as people) will follow similar routes inter-camera and that the repetition of the routes will
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form marked and consistent trends in the overall data. Initially the system is subdivided so that each

camera is a single region. It identifies temporal reappearance links at the camera-to-camera level. After

sufficient evidence has been accumulated, the noise floor level is measured for each link. If the maximum

peak of the distribution is found to exceed the noise floor level, this indicates a possible correlation

between the two blocks as shown in Figure 22. If a link is found between two regions, they are both

subdivided to each create four new equal sized regions providing a higher level of detail. Regions with

little or no data are removed to maintain scalability.

Figure 22. An example of a probability distribution showing a distinct link between

two regions.

8.2.3. Modelling Color Variations

The color quantization descriptor, used to form temporal reappearance links, assumes a similar color

response between cameras. However this is seldom the case. Therefore, a color calibration of these

cameras is proposed that can be learnt incrementally, simultaneously with the temporal relationships

discussed in the section above. People tracked inter-camera are automatically used as the calibration

objects, and a transformation matrix is formed incrementally to model the color changes between

specific cameras.

The transformation matrices for the cameras are initialized as identity matrices assuming a uniform

prior of color variation between cameras. When a person is tracked inter-camera and is identified as the

same object, the difference between the two color descriptors, is modeled by a transform matrix. The

matrix is calculated by computing the transformation that maps the person’s descriptor from the previous

camera to the person’s current descriptor. This transformation is computed via SVD. The matrix is then

averaged with the appropriate camera transformation matrix, and repeated with other tracked people to

gradually build a color transformation between cameras.
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8.2.4. Calculating Posterior Appearance Distributions

With the weak cues learnt, when an object which leaves a region, we can model its reappearance

probability over time as

P (Ot|Oy) =
∑
∀x

wxP (Ox,t|Oy)

where the weight wx at time t is given as

wx =

∑T
i=0 f

x|y
Φ∑

∀y
∑T

i=0 f
x|y
Φ

representing the ratio of weak feature responses in region x given the feature has also been observed

in region y. This probability is then used to weight the observation likelihood obtained through color

similarity to obtain a posterior probability of a match. Tracking objects is then achieved by maximizing

the posterior probability within a set time window.

In order to provide additional information of the objects of interest being tracked over the cameras,

we also address the distinction of the objects by classifying them as a person or a robot.

8.2.5. Classification of Objects of Interest as Person or Robot

The intra camera tracking algorithm provides a unique identifier for every object of interest based

on color cues. In addition to the identifier, the discrimination of the objects between people and robots

provides a useful cue for the fusion procedure. We propose to categorize the objects of interest as human

or robots by the differences on their motion patterns, which are obtained from the optical flow [35].

We assume the robots are rigid bodies that produce flow vectors with very similar orientations, while a

person produces patterns on different orientations.

The discrimination of the motion patterns relies on: (i) optical flow-based features and (ii) a learning

algorithm with temporal consistency. We compare two types of flow features, which have been used

previously to detect people: (i) Histogram of gradients (HOG) [36], which computes the histogram of

the optic flow orientation weighted by its magnitude and (ii) Motion boundary histogram (MBH) [37],

computed from the gradient of the optical flow. Similarly to HOG, this feature is obtained by the

weighted histogram of the optical flow’s gradient.

In order to classify an object of interest at every frame, a boosting algorithm uses labeled samples of

either HOG or MBH features in a binary problem: person vs. robot. We use the GentleBoost algorithm,

which provides a framework to sequentially fit additive models (i.e., weak learners) in order to build a

final strong classifier. We select a weak learner that considers the temporal evolution of the features, the

Temporal Stumps [35], which are an extension of the commonly used decision stumps. The output of

the strong classifier at each frame is related to the person/robot likelihood.

8.2.6. Gesture Detection

The key gesture to be recognized by the camera network is people waving. The importance of this

specific gesture is due to its “universal” nature: it is used as an attention triggering and emergency

indicator by most people independently of their culture. It is worth to point that state-of-the-art,
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high performance, hand gesture recognition systems still present robustness problems that limit their

application to (i) high resolution targets and (ii) uncluttered backgrounds. Thus, the project team

concentrated its efforts in developing practical and robust waving detectors that can be applied to low

resolution targets and arbitrary background clutter for outdoors environments. We address the robustness

under different conditions by implementing two specialized waving detectors: (a) one suited for low

resolution targets that relies on the local temporal consistency of optical flow-based features and (ii) the

second one suited for arbitrary clutter on the image, which relies on data mining of a very large set of

spatio-temporal features. In the following we describe the techniques utilized for each detector.

1. Local temporal consistency of flow-based features [38]. This approach relies on a qualitative

representation of body parts’ movements in order to build the model of waving patterns. Human

activity is modeled using simple motion statistics information, not requiring the (time-consuming)

pose reconstruction of parts of the human body. We use focus of attention (FOA) features [39],

which compute optical flow statistics with respect to the target’s centroid. In order to detect waving

activities at every frame, a boosting algorithm uses labeled samples of FOA features in a binary

problem: waving vs not waving. We use the Temporal Gentleboost algorithm [40], which improves

boosting performance by adding a new parameter to the weak classifier: the (short-term) temporal

support of the features. We improve the noise robustness of the boosting classification by defining

a waving event, which imposes the occurrence of a minimum number of single-frame waving

classifications in a suitably defined temporal window.

2. Scale Invariant Mined Dense Corners Method. The generic human action detector [33] utilizes

an over complete set of features, that are data mined to find the optimal subset to represent an

action class.

Space-time features have shown good performance for action recognition [41, 42]. They can

provide a compact representation of interest points, with the ability to be invariant to some image

transformations. While many are designed to be sparse in occurrence [40], we use dense simple

2D Harris corners [43]. While sparsity makes the problem tractable, it is not necessarily optimal

in terms of class separability and classification.

The features are detected in (x,y), (x,t) and (y,t) channels in the sequences at multiple image scales.

This provides information on spatial and temporal image changes but is a far denser detection rate

than 3D Harris corners [44] and encodes both spatial and spatio-temporal aspects of the data. The

over complete set of features are then reduced through the levels of mining. Figure 23 shows the

large amount of corners detected on two frames.
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Figure 23. 2D Harris corner detection on two frames.

8.2.7. Neighbourhood Grouping

Given a set of encoded corners, their relationships to other corners are used to build stronger

compound features. Our approach is to define neighborhoods centered upon the feature that encode

the relative displacement in terms of angle rather than distance hence achieving scale invariance. To

do this, each detected interest point forms the centre of a neighborhood. The neighborhood is divided

into 8 quadrants in the x, y, t domain which radiate from the centre of the neighborhood out to the borders

of the image in x, y and one frame either side either t− 1 or t, t+ 1 (see Figure 24b,c).

Figure 24. (a) Close-up example of a 3x3x3 neighborhood of an interest point, with size

local features shown as corners. (b) Spatial and temporal encoding applied to each local

feature. (c) Concatenating the local features into a transaction vector for this interest point.

Each quadrant is given a label, all feature codes found within a unique quadrant are appended

with the quadrant label. A vector of these elements is formed for every interest point found in
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the video sequence and contains the relative spatial encoding to all other features on the frame.

This called a Transaction file, these are collected together into a large single file, containing

around 2,000,000 transactions, where a single transaction contains around 400 items or encoded features.

To condense or summarize this vast amount of information, a priori data mining is employed [45]. This

computationally efficient approach, finds the frequent co-occurring configurations of encoded features

among the tens of thousands of transaction vectors from the training sequences. Given a new query

frame sequence, the features are detected and grouped as outlined above. This forms a new query set of

transactions. A global classifier then exhaustively compares frequent mined configurations to the image

feature groups in the query transaction set. It works as a voting scheme by accumulating the occurrences

of the mined compound features. In order to learn the wave class for the URUS system, the training

database is based on the KTH dataset [41]. We used the training setup proposed by the authors, in

addition we added training examples from the URUS fixed cameras, and negative examples from other

action classes and false positive detections from the URUS cameras.

8.2.8. Fixed Camera Experiments

A series of experiments were performed on the fixed camera system, to illustrate the incrementally

learnt cross camera relations, the inter-camera relationships were learnt for a total of 5 days. The number

of tracked objects on each camera was 200 per day. This is relatively low and made the region subdivision

unsuitable after the second level of subdivision. Figure 25 shows resultant temporal likelihoods for a

number of inter-camera links at a single subdivision level.

Figure 25. Inter camera temporal likelihoods.

The black vertical line indicates a reappearance of zero seconds, it can be seen that there is strong

links between cameras 3 and 4 and between 3 and 5, while there is no visible link between 3 and

6 and between 3 and 14. This is due to the increased distance and people will rarely reappear on

cameras 6 and 14 after they were tracked on camera 3.
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Table 1 shows the accuracy results of tracking people inter-camera. The inter-camera links were

formed over up to 5 days and the test sequence consists of a 1 hour sequence on the cameras, with

a total of 50 people tracked inter-camera. A 1 subdivision is a region per camera, 2 subdivision is

the where any linked regions are subdivided. All people that moved inter-camera were ground-truthed

and a true positive occurred when a person was assigned the same ID as that they were assigned on a

previous camera.

Table 1. Accuracy of fixed inter-camera tracking over days.

Data amount (days)

Method 0 1 2 5

1 Subdiv 34% 38% 56% 78%

2 Subdiv 34% 10% 60% 83%

Figure 26. Cross camera tracking; (a) Person 11000001 on camera 11, (b) Person 11000001

correctly identified on camera 12 (c) Person 13000027 on camera 13 (d) Person 13000027

correctly identified on camera 12.

The column for 0 days indicates performance without learning the camera time and color

relationships. It is poor generally due to large color variations inter-camera due to shadow and

lighting changes. The 2 level subdivision initially performs poorly as it requires greater data to build

relationships. However by 5 days significant improvement is shown for both one and two levels of

region subdivision. Little performance is gained from the additional subdivision on this system due to

the lower levels of traffic and low level of routes between the cameras due to their closeness. However

for a more distributed system the additional detail of the region relationships would aid the tracking

performance greater. Figure 26 gives example frames of tracking inter-camera for two separate people.

8.2.9. Classification of Robots and Humans

An initial test of the person vs. robot classifier was performed on the ISRobotNet. We grabbed

five groups of sequences, where each one includes images from 10 cameras. One group with a person

walking, another group with a different person walking, two groups with the same Pioneer robot moving

in two different conditions, and the last group with a third person loitering. The people class videos have
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a total of 9,500 samples of the optical flow and the robot class videos have a total of 4,100 samples. We

follow a cross validation approach to compare the classification result of the GentleBoost algorithm, so

we build two different groups of training and testing sets. The best classification result for this setup

was 95% recognition rate, provided by the MBH feature [35]. Figure 27 shows examples of correct

detections of people and robots.

Figure 27. Examples of correct detections of (a) a person and (b) a Pioneer robot.

(a) (b)

Figure 28. Examples of correct detections of (a) a person and (b) two robots.

(a) (b)

From the results at the ISRobotNet, we select the MBH feature for a second group of tests, at the

Barcelona Robot Lab. It is important to mention that the localization of some of the cameras on the

Barcelona Robot Lab provide a point of view with large perspective effects on the optical flow features,

so it is necessary to perform the training step with the new sequences. We grabbed sequences with people

and robots performing naturally (i.e., no given script or pre-defined actions known) for each camera.

The actions include walking, loitering and waiting for person. The people class videos have a total
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of 19,444 samples of the optical flow and the robot class videos have a total of 2,955 samples. We

follow the approach of the ISRobotNet test, building two different groups of training and testing sets.

The average recognition rate of the two sets is 88.4%. Figure 28 shows examples of correct detections

of people and robots.

8.2.10. Gesture Detection with Local Temporal Consistency of Flow-based Features

The learning step of the Temporal Gentleboost algorithm with the FOA features was performed at the

ISRobotNet. The training sequences have 4,229 frames (2,303 waving and 1,926 not waving), and the

testing sequence has 4,600 frames (1,355 waving and 3,245 not waving). The FOA feature sampling is

π/4. The support window of the Temporal boost algorithm is 20 frames. The event window size is 2 s

(20 frames), considering a waving event if at least 60% of the single-frame classifications are positive.

We follow a cross validation approach to compare the classification result of the GentleBoost algorithm,

so we build two different groups of training and testing sets. The average performance of the two sets is

94.4%, on the ISRobotNet.

We assume that the person is not translating on the image while performing the waving action, so the

features selected by the Gentleboost algorithm on the ISRobotNet setup, are able to generalize well to

different conditions, such as the target distance to the camera and the target size on the image. Thus,

we use the parameters of the GentleBoost algorithm learned on the ISRobotNet in order to classify

waving events in sequences grabbed at the Barcelona Robot Lab. The testing sequences have 3,288

(1,150 waving and 2,138 not waving). The recognition rate was 86.3%, which shows the generalization

capabilities of the method. Figure 29 shows examples of the waving detection on a sequence recorded at

the Barcelona Robot Lab.

Figure 29. Examples of correct detections of a waving event, marked by the word waving

on the bounding box.

(a) (b)

It should be noted however that these performance results are preliminary, and a more exhaustive

test campaign of the method is envisaged. It is necessary for instance, to validate the method under
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significant variations of illuminants (severe shadows, cloudy days, different hours of the day, etc.). This

is the subject of further research.

8.3. Tracking with Mica2 Nodes

The WSN deployed in the environment can be used to estimate the position of mobile nodes of the

network from the measured signal strength received by each static node, which is used for person tracking

(see Figure 30a).

Figure 30. (a) Setup for person tracking based on radio-signal power. (b) Each power

measurement delimits a feasible region within the map.

(a) (b)

The algorithm to estimate the mobile node position is, as the robot localization algorithm discussed

earlier, also based on particle filtering. In this case however, the current belief represents the position of

the mobile node and is described by a set of particles; each particle representing a potential hypothesis

about the actual position of the person carrying the node (see Figure 30a). At each filter iteration,

kinematic models of the motion of the person and map information are used to predict the future position

of the particles. The addition of the map information allows identifying and discarding unlikely motions

with simple collision analysis. When the network of static nodes receives new messages from the mobile

node, the weight of the different particles is updated with the RSSI indicator. By considering radio

propagation models, it is possible to determine the likelihood of receiving a certain signal power as a

function of the distance from the particle to the receiving node [46]. Each transmission restricts the

position of the particles to an annular shaped area around the receiving node (see Figure 30b).

As a result, the filter provides an estimate of the 3D position of the mobile node with one meter

accuracy (depending on the density of nodes in the network). Figure 31 shows the evolution of the

particles for a particular person guiding experiment at the Barcelona Robot Lab. Figure 32 shows the

estimated position of the person estimated by the WSN, compared to that of the guiding robot which is

in average about 3 meters ahead of the tracked person. The red dots indicate individual estimates of the

particle filter and are shown to give an idea of the distribution of the localization estimate.
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Figure 31. The evolution of the tracking estimates. Particle evolution (in red), and signal

strength of each node (in green).

Figure 32. Estimated position of the person (green) and its standard deviation (red),

compared with the position of the robot (blue) during a guiding mission.

(a)

Decentralized Tracking with Cameras and Wireless Sensor Network

The full system can take advantage of all the information sources (cameras, robots, WSN) to improve

the reliability and accuracy of the different services, as for example in tracking applications. In order to

illustrate the benefits of the data fusion process described in Section 6, results from a simple setup are

presented here. This setup consists of two fixed cameras and a WSN. The objective was to track one

person cooperatively. In the experiment, the person is not always in the field of view of the cameras,

appearing and disappearing from the image plane several times.

Three instances of the decentralized algorithm summarized in Section VI (see [26] for a thorough

description) are launched, processing each camera’s data and the WSN estimations. They communicate

to exchange estimated trajectories. The received data is fused with the local estimations (tracks on the

image plane), leading to a decentralized tracking of the person.
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Figure 33 shows the estimated person position (X and Y coordinates) compared with a centralized

estimation (employing a central EKF filter). One important benefit from the system is that, if the

communications channels are active, the different elements have nearly the same information. That

way, one robot or camera, even not seeing the person, can know where it is. Also, the uncertainty is

decreased due to the redundancies in the system.

Figure 33. Estimated X and Y by the camera (red) compared to the centralized estimation

(black), with the 3-sigma bound. The estimations are nearly the same, except during times

when no communications occur.

(a) (b)

9. Lessons Learned

Sensor fusion has proven to be a difficult undertaking in the URUS project. The issues that make it

difficult include heterogeneity and latency of sensors and systems, the mobility of some of the sensors

translating to network connectivity issues, and the challenges of environment perception in outdoor

dynamic environments.

With regards to robot localization, we report here on results for a pair of experimental sessions

that lasted for nearly three hours of autonomous navigation, and traversing over 3.5 km. The session

included 35 navigation requests of which 77% of them were completed successfully. Of the 8 missions

that did not reach completion, 1 was due to hardware malfunction of the Wifi interface, and 7 were due

to software glitches. Of these, 5 resulted in poor localization, 1 was due to a failure in the path execution

module, and 1 was the cause of limited obstacle avoidance capabilities.

The URUS localization module has room for improvement especially for those areas in the

environment in which 3D perception is still an issue. This is, on ramps and near stairs. Moreover,

path planning should also be improved to more robustly avoid obstacle-occluded intermediate waypoints.

Furthermore, the robot sensing capabilities should also be enhanced. Our laser-based localization module

cannot deal consistently with glass walls and in situations with extreme illumination conditions. Finally

little but dangerous obstacles such as small holes and curbs in the path remain a perception challenge for

Segway-type robotic platforms.
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For the case of detection and tracking, the use of delayed states and a decentralized system was

very important, as the switching between 3G and Wifi, which occurred from time to time in the system,

produced significant latencies and communications drop-outs. The system was able to operate in guiding

missions under these circumstances. For instance, when communications were re-established, the local

estimates at each robot were combined with the accumulated information from other nodes, obtaining a

good global estimate (see Section 8).

The point of fusing the data from cameras and the Mica2 WSN together was to increase reliability

of the tracking compared to just using the cameras alone, as in cross camera tracking, occlusions and

illumination changes will cause the tracking to fail between the uncalibrated non-overlapping cameras. A

decentralized approach was used where each sensor had its own processing engine. This meant that they

could work independently, and the system was not vulnerable to a sensor failing elsewhere in the system.

This improves scalability and robustness of the system. A more detailed account of our decentralized

tracking approach that fuses information from the camera network, the Mica sensors, and the onboard

robot cameras is presented in [47].

10. Conclusions

We have presented in this article the architecture design of the URUS sensors for a Network Robot

System. This architecture has been deployed in a real urban environment and is used to test and verify

people assistant robot services. We have described the sensors used in several of the robots that we have

built and the sensors that we have deployed in the urban environment. Moreover, we have described

an example how to fuse such heterogeneous sensor information during urban robotic tasks using among

other techniques, decentralized data fusion, information-based filtering, and asynchronous data handling.

The paper also discussed specific results on some of the application domains of the architecture.

This paper presents significant advances in urban robotic sensor integration. During the course of our

research, we have identified several important technological issues that must be solved in order to be

able to unleash robots in cities at a commercial level. For instance, the WLAN communication systems

and protocols are not appropriate for robot deployment, the laser range sensors must be redesigned to

capture 3D data or the HRI sensors must be further developed.

Moreover we have realized that the experimental sites, such as the Barcelona Robot Lab, have allowed

us to test the technology in real environments and in contact with people, a main feature required for

city robots.

The URUS project is touching upon a very new and exciting technology, that of networked robotics

services in urban outdoor environments. The choice of methods and architecture portrayed in this article

is of course not the only choice, and perhaps not the most suited in some occasions, but we hope that

with this articles and with our research endeavors, we can identify scientific and technological aspects

for which the state of the art does not provide compelling solutions, paving the road for future work in

the field.
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