
Bounded Approximations for Linear Multi-Objective Planning under Uncertainty

Diederik M. Roijers1 Joris Scharpff2 Matthijs T. J. Spaan2 Frans A. Oliehoek1

Mathijs de Weerdt2 Shimon Whiteson1

{d.m.roijers, f.a.oliehoek, s.a.whiteson}@uva.nl
1University of Amsterdam, The Netherlands

{j.c.d.scharpff, m.t.j.spaan, m.m.deweerdt}@tudelft.nl
2Delft University of Technology, The Netherlands

Abstract

Planning under uncertainty poses a complex problem in
which multiple objectives often need to be balanced. When
dealing with multiple objectives, it is often assumed that the
relative importance of the objectives is known a priori. How-
ever, in practice human decision makers often find it hard to
specify such preferences, and would prefer a decision sup-
port system that presents a range of possible alternatives.
We propose two algorithms for computing these alternatives
for the case of linearly weighted objectives. First, we pro-
pose an anytime method, approximate optimistic linear sup-
port (AOLS), that incrementally builds up a complete set of
ε-optimal plans, exploiting the piecewise-linear and convex
shape of the value function. Second, we propose an approx-
imate anytime method, scalarised sample incremental im-
provement (SSII), that employs weight sampling to focus on
the most interesting regions in weight space, as suggested by
a prior over preferences. We show empirically that our meth-
ods are able to produce (near-)optimal alternative sets orders
of magnitude faster than existing techniques.

1 Introduction
Many real-world problems involve parallel scheduling of
activities of uncertain duration, while considering multiple
objectives (Alarcon-Rodriguez et al. 2009; Mouaddib 2004;
Calisi et al. 2007). For example, a factory that produces on
demand wants to minimise orders delays while keeping pro-
duction costs in check. This is difficult because, although
planning a tight schedule might improve the efficiency and
hence decrease costs, it leaves little room for dealing with
setbacks and thereby increases expected delay.

Planning problems that deal with uncertain actions and
multiple objectives can be naturally expressed using the
multi-objective Markov decision process (MOMDP) frame-
work (Roijers et al. 2013). The presence of multiple objec-
tives does not necessarily require specialised solution meth-
ods; when the problem can be scalarised, i.e., translated
to a single objective problem using a predefined scalarisa-
tion function, single objective methods can be applied. How-
ever, defining the scalarisation function requires specifying
weights for each objective that are often hard to quantify
without prior knowledge of the trade-offs inherent to the

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

problem. When such knowledge is not available, solving an
MOMDP requires computing the set of solutions optimal for
all possible weights.

When policies are deterministic and the scalarisation
function is monotonically increasing in all objectives, then
this solution set is the Pareto front. However, this set can
be large and difficult to compute.1 Fortunately, it is often
not necessary to compute the Pareto front. If the scalarisa-
tion function is linear, the convex coverage set (CCS) suf-
fices. In addition, when policies can be stochastic, optimal
policies for every monotonically increasing scalarisation can
be constructed by mixing policies from the CCS (Vamplew
et al. 2011). Many examples of MOMDPs with either lin-
ear scalarisation or stochastic policies can be found in the
MOMDP survey by Roijers et al. (2013).

When we apply linear scalarisation to MOMDPs, we can
define an optimal value function as a function of the scalar-
isation weights. Due to the linearity, this is a piecewise lin-
ear and convex (PWLC) function. Existing methods, such
as optimistic linear support (OLS) (Roijers, Whiteson, and
Oliehoek 2014), exploit this shape in order to guarantee an
optimal solution for each weight while solving only a finite
number of scalarised problems. However, in order to do this,
OLS requires an exact single objective method as a subrou-
tine. In the stochastic planning domain this corresponds to
solving Markov decision processes (MDPs), which is pro-
hibitively expensive when the state space is large and renders
this approach infeasible for many realistic planning prob-
lems.

Typically, we would therefore consider using approximate
single-objective algorithms for large MOMDPs. However,
without an exact algorithm to evaluate single-objective solu-
tions, OLS can no longer bound the number of weights it has
to consider. To address this, we present approximate OLS
(AOLS), which converges to an approximation of the CCS
when an approximate MDP solver is used as a subroutine.
Moreover, we prove that when the MDP solver is ε-optimal,
i.e., produces a solution that has a value of at least 1 − ε
times the optimum, AOLS guarantees an ε-optimal solution
for every weight. Like OLS, AOLS is an anytime algorithm,

1This is because for arbitrary monotonically increasing scalari-
sation functions it does not suffice to consider only stationary poli-
cies (Roijers et al. 2013).

i.e., at every iteration AOLS produces an intermediate re-
sult, for which maximum the error in scalarised value goes
down with every iteration. Unlike OLS however, AOLS does
not converge to the optimal solution, but to an ε-optimal so-
lution, due to the usage of ε-approximate single-objective
algorithms as subroutines.

In addition to AOLS, we present scalarised sampling in-
cremental improvement (SSII), a different anytime approx-
imation algorithm that is expected to perform better when
some information about the weights is available in the form
of a prior distribution over weights, e.g. “objective 1 is defi-
nitely more important than objective 2”. The SSII algorithm
draws samples from this prior and distributes its available
runtime over these samples, thereby iteratively improving
these samples. By focusing on these samples, it is likely to
find a better solution in the region that corresponds to the
prior.

We experimentally compare the algorithms we propose
against the optimal OLS algorithm on moderately sized in-
stances of the maintenance planning problem (Scharpff et
al. 2013). For all algorithms we analyse the runtime and ap-
proximation quality versus the optimal solution set. We find
that both AOSL and SSII are able to produce (near-)optimal
solutions within minutes, whereas the exact method requires
several hours. Moreover, we establish evidence that the SSII
algorithm performs slightly better when a prior is specified.

2 Background
In this section, we first discuss Markov decision processes
(MDPs) and the multi-objective variant MOMDP, which we
use to model the problem of planning under uncertainty. We
then discuss an algorithm to solve MOMDPs exactly given
a linear scalarisation function.

2.1 Markov Decision Processes
We model the planning problem as a Markov decision pro-
cess (MDP) (Bellman 1957a). An MDP is a model for se-
quential decision-making under uncertainty in which an au-
tonomous agent interacts with its environment. An MDP is
a tuple 〈S,A, T,R〉, where S is the set of states,A is the ac-
tion space, T : S ×A×S → [0, 1] is the transition function
and R : S ×A× S → < is a real-valued reward function.

The agent aims to compute a policy π : S×t→ A (where
t indicates time) that optimises the expected return, or value
function, defined by the Bellman equation for MDPs:

V π(s, t)=∑
s′∈S

T (s, π(s, t), s′)(R(s, π(s, t), s′) + V π(s′, t+ 1)).

We can determine a state-independent value V π by fixing
t = 0 and marginalising over an initial state distribution µ0.
For convenience we consider only a finite-horizon setting.

Finding optimal policies can be done via standard
stochastic solving techniques such as SPUDD (Hoey et al.
1999). SPUDD uses algebraic decision diagrams to repre-
sent values and states compactly, and finds the optimal pol-
icy through a modified version of structured value iteration

(maximising the above equation). Since exact MDP solu-
tion methods suffer from the infamous curse of dimension-
ality, we have to rely on approximate methods for large
MDPs. In this work we consider the UCT* algorithm (Keller
and Helmert 2013), which evaluates states in a Monte-Carlo
fashion and outputs partial policies, i.e., an (estimated) best
action for each state-time pair it has evaluated.

2.2 MOMDP
A multi-objective Markov decision process (MOMDP) (Roi-
jers et al. 2013) is a tuple 〈S,A, T,R〉, where S, A and T
are specified as before, but R : S × A × S → <d is a d-
dimensional vector-valued reward function. In this case the
Bellman equation specifies a multi-objective value function:

Vπ(s, t)=∑
s′∈S

T (s, π(s, t), s′)(R(s, π(s, t), s′) + Vπ(s′, t+ 1)).

As before, we can obtain the state-independent value of a
policy Vπ by marginalising over the initial state distribution,
and filling in t = 0.

The presence of multiple objectives does not necessar-
ily mean that special solution methods are required. If the
problem can be scalarised, i.e., converted to a problem with
a scalar reward function Rso, the problem may be solv-
able with existing single-objective methods. A scalarisation
function f converts a payoff vector (either reward R or value
Vπ) to a scalar, using parameter w that expresses the rela-
tive importance of each objective. In order to scalarise an
MOMDP to an MDP, the values V πso(s, t) of the scalarised
problem must be consistent with the scalarised value of the
original problem, f(Vπ(s, t),w) for all policies π, states s
and time steps t. To achieve this, the reward function needs
to be scalarised to a single objective reward Rso:

V πso(s, t) = f(Vπ(s, t),w) =∑
s′∈S

T (s, π(s, t), s′) (Rso(s, π(s, t), s′) + V πso(s
′, t+ 1)).

This equation holds only if f distributes over the sum of
rewards, which is true only if f is linear, i.e., f(Vπ,w) =
w ·Vπ , where ‘·’ denotes the inner product:

V πso(s, t) = f(Vπ(s, t),w) =∑
s′∈S

T (s, π(s, t), s′) (w·R(s, π(s, t), s′)+w·Vπ(s′, t+1)).

After scalarisation with a specific w, the problem becomes
a regular MDP and can be solved using the previously men-
tioned methods to find (approximately) optimal policies.

However, a priori scalarisation of the problem is not pos-
sible when the weights of the scalarisation function are not
known in advance. When, for example, a group of human
decision makers needs to decide on which policy to follow,
an a priori specification would require specifying the pref-
erences of the group for every hypothetical multi-objective
value in advance. This is a very difficult process, and hu-
mans are notoriously bad at it. It is much easier for humans
to be presented with a set of alternatives, and decide which

algorithm alternative
policies

user
selection

single
schedule

execution phase

MOMDP

selection phaseplanning phase

Figure 1: Decision support for MOMDPs

element of this set would be most preferred (Clemen 1997).
Such a scenario is called decision support, i.e., the actual val-
ues for alternatives Vπ are input to the discussion between
human decision makers (Clemen 1997), as illustrated in Fig-
ure 1. In this case, we need an MOMDP method that returns
the best possible value Vπ for each possible w, from which
in the selection phase human decision makers can select one
to execute.

The solution to an MOMDP for linear scalarisations is
called the convex coverage set (CCS)2,3

CCS =
{
Vπ : ∃w∀π′ w ·Vπ ≥ w ·Vπ′

}
.

We assume that all objectives are desirable, i.e., all weights
are positive. And, because only relative importance between
the objectives is important when computing optimal solu-
tions, we assume without loss of generality that the weights
lie between 0 and 1 and sum to 1. To compute the CCS we
can thus restrict ourselves to weights on a simplex (see Fig-
ure 2).

In order to find the CCS we can make use of specialised
algorithms. One such method is optimistic linear support
(Roijers, Whiteson, and Oliehoek 2014) which was origi-
nally proposed for multi-objective coordination graphs but
can be applied to MOMDPs as well. OLS requires a sub-
routine that solves a linearly scalarised version of a problem
exactly. We first explain OLS and known MDP techniques
that we use to form an MOMDP method.

2.3 Optimistic Linear Support
Roijers, Whiteson, and Oliehoek (2014) propose a CCS al-
gorithm called optimistic linear support (OLS), that works
by computing the exact solution to weighted MDPs for
specifically chosen weights by scalarising a multi-objective
decision problem and running a single-objective solver.
They show that the single-objective method only needs to
be called for a finite number of weights in order to obtain
the exact CCS. In order to see why only a finite number of
weights are necessary to compute the full CCS, we first need
to define the scalarised value function:

V ∗CCS(w) = max
Vπ∈CCS

w ·Vπ,

and note that this is a piecewise-linear and convex (PWLC)
function. Note that we only need to define this function on
the weight simplex. We plot the PWLC function V ∗CCS of

2The convex coverage set is often called the convex hull. We
avoid this term because it is imprecise: the convex hull is a superset
of the convex coverage set.

3The CCS is a subset of the Pareto front. Please refer to (Roijers
et al. 2013) for an extensive discussion on both.

a two-objective problem as a function of the weight for the
first objective in Figure 2a. Because the scalarisation is lin-
ear, the value of a policy becomes a line. The function V ∗CCS
is indicated by the bold line segments.

OLS builds the CCS incrementally from an initially
empty partial CCS, S, adding vectors that are optimal for
specific weights on the weight simplex. In order to find
the optimal solution for a specific weight, OLS runs an ex-
act single objective solver solveMDP on an instance of the
MOMDP scalarised using w. S contains the known value
vectors, i.e., the vectors we know are definitely in the CCS.
The scalarised value function over S is defined similarly as
the one for the complete CCS: V ∗S (w) = maxVπ∈S w ·Vπ ,
and again, is PWLC.

OLS starts by looking at the extrema of the weight sim-
plex. Figure 2a shows the two value vectors found at the ex-
trema of the weight simplex of a 2-objective example. The
weights at which the vectors are found are indicated with
bold red vertical lines. The area above the function V ∗S (w)
is a polyhedron (Bertsimas and Tsitsiklis 1997) whose ver-
tices correspond to unique weights called corner weights.
Using only the corner weights, OLS can find the exact CCS.
This is possible due to a theorem by Cheng (1988) that
states that there is a corner weight of V ∗S (w) that maximises
∆(w) = V ∗CCS(w) − V ∗S (w), i.e., the maximal improve-
ment of S that can be made by adding a value vector to it,
with respect to the true CCS, is at one of the corner weights.
This results from two observations: the values at the cor-
ner weights of V ∗S (w) are smaller than or equal to those
of V ∗CCS(w) by definition and S ⊆ CCS. Therefore the
maximal error can only be in a region for which the op-
timal vector is not in S. Under this region the difference
V ∗CCS(w)−V ∗S (w) is a concave function, with identical cor-
ner weights V ∗S (w) that hence necessarily specify the unique
maximum for these regions.

Because of Cheng’s theorem, if all the corner points are
checked and no improvement has been found, the residual
error must be zero. OLS checks the corner weights of S,
prioritising on maximal possible improvement. As the ex-
act CCS is unknown, OLS measures the maximal possi-
ble improvement with respect to the most optimistic hypo-
thetical CCS, CCS, that is still consistent with S, and the
values V ∗S (w) at the weights where the vectors in S have
been found (at these weights OLS knows that V ∗S (w) =
V ∗CCS(w) = V ∗

CCS
(w)).

Figure 2 illustrates how the process of checking at cor-
ner weights leads to convergence. In (a), all value vectors
are shown for an example problem. In (b) OLS has dis-
covered the optimal value vectors for the extrema of the
weight space, and identified a new corner weight. This cor-
ner weight is checked, leading to a new vector and two new
corner weights. Then, in (c) OLS has checked both these
corner weights but has not found a new vector, and has thus
converged. The corner weights that have been checked are
indicated with red vertical lines. Note that OLS thus needs
to check only 5 corner weights to discover the CCS.

(a) (b) (c) (d)
Figure 2: (a) All possible value vectors for a 2-objective MOMDP. (b) OLS finds two payoff vectors at the extrema w = (0, 1)
and w = (1, 0), a new corner weight wc = (0.5, 0.5) is found, with maximal possible improvement ∆. CCS is shown as the
dotted line. (c) OLS finds a new vector at (0.5, 0.5), resulting in two new corner points which do not result in new vectors,
making S = CCS = CCS. (d) AOLS computes the priorities using an adjusted optimistic CCS.

3 Approximate Optimistic Linear Support
OLS can find the exact CCS only when we can find exact
solutions for all weights. This is an important limitation, be-
cause it is often computationally infeasible to compute exact
solutions for the (often large) MDPs used to model stochas-
tic planning problems. In this section, we propose approx-
imate OLS (AOLS), which does not require an exact MDP
solver. Because AOLS employs approximate MDP solvers,
the so-called corner weights need to be recomputed every-
time we find a new value vector, which is not necessary in
OLS. Furthermore, the computation of maximal possible er-
ror and the next weight for which to call the MDP solver are
different from OLS. We establish both a convergence guar-
antee and show that AOLS provides a bounded approxima-
tion over all weights.

First, we assume that instead of an exact algorithm for
solveMDP we have an ε- approximate algorithm.

Definition 1. An ε-approximate MDP solver is an algorithm
that produces a policy, whose expected value is at least (1−
ε)V∗, where V ∗ is the optimal value for the MDP and ε ≥ 0.

Given an ε-approximate MDP solver we can compute a
set of policies for which the scalarised value for each possi-
ble w is at most a factor ε away from the optimum (ε-CCS).
In Section 3.2 we show that AOLS can still be applied even
without this assumption, though with weaker guarantees.

AOLS, shown in Algorithm 1, takes as input an
MOMDP M , and a single objective MDP solver solveMDP
that is ε-approximate. AOLS maintains the set of value vec-
tors and associated policies in a set S (initialised on line 1).
It keeps track of the tuples of weights already searched with
their corresponding scalarised values (initialised on line 2).
AOLS starts by selecting the first extremum (the unit vec-
tor e1, e.g. (0, 1) or (1, 0) in the two-objective case) of the
weight simplex with an infinite maximal possible improve-
ment (line 3 and 4). Until there is no corner weight with
a maximal relative improvement of at least ε left (line 5),
AOLS scalarises the MOMDP M with weight wmax and
computes an ε-optimal policy π (line 6). AOLS then uses
policy evaluation to determine the expected value of said
policy (line 7) (Bellman 1957b). This evaluation step can be
expensive, but is usually much less expensive than finding an

Algorithm 1: AOLS(M, solveMDP, ε)

Input: An MDP1 S ← ∅ //partial CCS
2 WVold ← ∅ //searched weights and scalarised values
3 ∆max ←∞
4 wmax ← e1

5 while ∆max > ε ∧ ¬timeOut do
6 π ← solveMDP(scalarise(M,wmax))
7 Vπ←evaluatePolicy(M,π)
8 WVold = WVold ∪ {(wmax, wmax ·Vπ)}
9 if Vπ 6∈ S then

10 S ← S ∪ {Vπ}
11 W ← recompute corner weights V ∗

S (w)
12 (wmax,∆max)← calcOCCS(S,WVold,W, ε)
13 end
14 end
15 return S, ∆max

(ε-)optimal policy. After computing the value, the searched
weight and corresponding scalarised value is added to the
set WVold (line 8), which is necessary to compute the opti-
mistic CCS.

If the vector Vπ found at wmax is new, i.e., not in S, it is
added to this solution set (line 10). However, because these
values are approximate values, it is not certain that they are
optimal anywhere. Therefore, contrary to OLS, we need to
test whether any of the vectors in S ∪ {Vπ} is dominated,
and recompute all the corner weights accordingly (line 11).
This recomputation can be done by solving a system of lin-
ear equations. For all corner weights, we compute the max-
imal possible improvement ∆(w) = V ∗

CCS
(w) − V ∗S (w).

This happens in Algorithm 2, in which for each corner
weight, ∆(w) is evaluated, using a linear program.

The definition of the optimistic CCS is different than the
CCS used in OLS because it incorporates the possibility
of being ε-wrong, shifting the scalarised value V ∗

CCS
(w)

upwards (as shown in Figure 2d). The maximal scalarised
value of V ∗

CCS
(w) for a given w can be found by solving

the linear program given on line 6 in Algorithm 2. This lin-
ear program is different than that of OLS, because of the
ε term in the constraints. By prioritising weights according
to their maximal possible improvement, AOLS becomes an

Algorithm 2: calcOCCS(S,WV,W, ε)

Input: An MDP1 for i ∈ 1...length(w) do
2 if ei 6∈WV then
3 return (ei,∞) //extrema should be tested first
4 end
5 end
6 VCCS [·]← for all weights in W [·] calculate:

max w · v
subject to ∀(w, u) ∈WV : w · v ≤ u+ ε

7 i← arg maxi VCCS [i]− V ∗
S (W [i])

8 return (W [i], VCCS [i]−V ∗
S (W [i]))

(a) (b) (c)
Figure 3: Possible cases for the maximum possible improve-
ment of S with respect to the CCS.

anytime algorithm, i.e., the highest value of ∆(w) is the cur-
rent ε of an ε-CCS.

3.1 Correctness
We now establish the correctness of AOLS. Because the
scalarised value of V ∗

CCS
(w) (as computed by Algorithm 2)

obtained through using the ε of the approximate solveMDP
is no longer identical to V ∗S (w), we need to make an adjust-
ment to Cheng’s theorem.

Theorem 1. There is a corner weight of V ∗S (w) that max-
imises:

∆(w) = V ∗CCS(w)− V ∗S (w),

where S is an intermediate set of value vectors computed by
AOLS.

This theorem is identical in form to Cheng’s, but, because S
is no longer a subset of CCS, the proof is different.

Proof. ∆(w) is a PWLC function because it is constructed
as the difference between two PWLC functions. To max-
imise this function, we have three possible cases, shown in
Figure 3: (a) the maximum is at a weight that is neither a
corner point of V ∗CCS(w), nor of V ∗S (w); (b) it is at a corner
point of V ∗CCS(w) but not of V ∗S (w); or (c) it is at a corner
point of V ∗S (w).

Case (a) only applies if the slope of ∆(w) is 0, and there-
fore the value is never higher than the value at the corner
points where this slope changes. Case (b) can never occur,
because if w is a corner point of CCS, and not of S, and
V ∗CCS(w) − V ∗S (w) is at a maximum, then V ∗CCS(w) must
be at a maximum at w. If V ∗CCS(w) is at a maximum at a
weight w then it cannot be a PWLC function, leading to a
contradiction. Therefore, only case (c) remains.

Because the maximum possible improvement is still
at the corner points of S, even though S now contains
ε-approximate solutions, the original scheme of calling
solveMDP for the corner weights still applies.

AOLS terminates when the maximal possible improve-
ment is smaller than or equal to ε · V ∗

CCS
(w), i.e., corner

weights with a possible improvement less than that are no
longer considered.

Theorem 2. AOLS terminates after a finite number of calls
to an ε-approximate implementation of solveMDP and pro-
duces an ε-CCS.

Proof. AOLS runs until there are no corner points left in
the priority queue to check, and returns S. Once a corner
point is evaluated, it is never considered again because the
established value lies within (1 − ε)V ∗

CCS
(w). AOLS thus

terminates after checking a finite number of corner weights.
All other corner weights have a possible improvement less
than εV ∗

CCS
(w). Therefore S must be an ε-CCS.

3.2 Unbounded Approximations
When the ε that solveMDP guarantees is known, Theorem 1
guarantees an ε-CCS. When solveMDP uses an approximate
implementation where ε is not known beforehand, AOLS
still converges on some approximation of the CCS. but,
since ε is unknown, it cannot prioritise which corner weight
to check first. Therefore, ∆max cannot be computed, and
AOLS selects a random yet unchecked corner weight. In this
case. AOLS cannot guarantee a certain ε. In Section 5, we
use such an implementation (PROST) and determine the ε
empirically by comparing against an exact implementation
of solveMDP (SPUDD).

4 Scalarised Sample-based Incremental
Improvement

If no a priori information about the weights is known, the
AOLS algorithm can successfully approximate the CCS for
all possible weights and, when the single-objective subrou-
tine is bounded, AOLS provides an ε-CCS. However, deci-
sion makers can often provide an indication as to the prefer-
ences they might have. We can expression this information
using a prior distribution over the weights that we can ex-
ploit, e.g., if they cannot exactly specify the economic im-
pact of delay but instead know a distribution over its poten-
tial impact cost.

In such scenarios, AOLS might not be the best approach
since it distributes its planning effort equally over the cor-
ner weights (which might not be in the right region), i.e.,
the allowed time budget for the single objective planner for
each corner weight is the same. Approximate single objec-
tive methods such as UCT* provide better approximations
when given more time. If we can focus on important weights
we may be able to establish a better ε in the regions where
it matters most, and as a result discover more relevant avail-
able trade-offs than possible without a prior.

We propose the scalarised sample-based incremental im-
provement (SSII) algorithm (Algorithm 3) that uses the prior
to sample weights, thereby focusing more attention on the

Algorithm 3: SSII(M, solveMDP, pr,N, timeOut)

Input: An MOMDP M , a prior pr over the weights, an
number of samples N

1 weightsList← sample N weights from pr
2 for i ∈ [1...N] do
3 ti ← minimum runtime solveMDP
4 vectorList[i]← run solveMDP(m,weightsList[i], ti)
5 end
6 while ¬timeOut do
7 (wmax,∆max)←

calcOCCS(vectorList, weightsList, ε)
8 get i for which wmax = weightsList[i] and increase ti
9 vectorList[i]←cont. solveMDP(M,weightsList[i], ti)

10 end
11 return vectorList

most interesting regions. The algorithm takes as input the
MOMDP M , an anytime single objective solver solveMDP,
a prior distribution over weights pr, the number of sam-
ples N , and a timeout timeOut; it produces an optimistic
CCS.

For each weight w sampled from the prior distribution pr,
the algorithm quickly computes an initial approximate pol-
icy and associated value vector V̂π

w (lines 1-5). After deter-
mining this initial set of value vectors, it improves on the ex-
pected reward by incrementally allowing the anytime solver
more runtime to improve the solution for one sample at a
time (lines 6-10). Note that we abuse the notation of the call
to calcOCCS, the argumentWV is composed of vectorList
and weightsList, and S is just vectorList and W is just
weightsList.

The incremental improvement per sample is guided by a
procedure that prioritises these weight samples. At each it-
eration, one sample is selected, and SSII will continue to
improve until a specified time limit has been reached for the
runtime of the single objective MDP solver (line 9). Improv-
ing on one of vectors by running solveMDP does not require
a full rerun; instead solveMDP saves its state and resumes
from there. In UCT*, we can preserve the search tree and
continue from there if an improvement of the same sample
weight is required.

Selecting which sampled weight w to improve can be
done in various ways, yielding different anytime and final
solutions. Our implementation of SSII prioritises the sam-
ples based on their improvement ∆(w) as defined in the pre-
vious section. Intuitively, this will focus the SSII algorithm
on samples with the highest potential improvement.

5 Experiments
In this section, we present an empirical analysis of the per-
formance of the AOLS and SSII algorithms in terms of both
runtime and quality of the CCS. In order to illustrate the run-
time difference with exact methods, we compare against the
exact OLS/SPUDD algorithm. Both AOLS and SSII use the
UCT* algorithm to approximate policies. Because we can-
not let UCT* run until all states have been evaluated, we can
only obtain a partial policy. In our experiments we ‘repair’
partial policies, i.e., supplement these policies by taking a
conservative action; in the problems we consider this means
inserting no-ops and corresponding result states (see next

section), thereby not changing the expected value of the pol-
icy. Note that one could use any heuristic to supplement the
partial policies.

Our experiments are performed on the maintenance plan-
ning problem (MPP) (Scharpff et al. 2013). Using generated
instances of this problem, we measure the error with respect
to the exact CCS. The experiments use a JAVA implemen-
tation that calls the SPUDD and PROST packages.4 All ex-
periments were conducted on an Intel i7 1.60 GHz computer
with 6 GB memory.

5.1 Maintenance Planning
The maintenance planning problem consists of a set of con-
tractors, i.e. the agents, N and a period of discrete time
steps T = [t1, t2, . . . , th] where h is the horizon length. Ev-
ery agent i ∈ N is responsible for a set Ai of maintenance
activities. The main goal in this problem is to find a contin-
gent maintenance schedule that minimises both the cost as
well as the traffic hindrance.

The maintenance activities a ∈ Ai are defined by tu-
ples 〈w, d, p, d̂〉 where w ∈ R+ is the payment upon com-
pletion of the task, d ∈ Z+ is the number of consecutive
time steps required to complete the task, p ∈ [0, 1] the prob-
ability that a task will delay and d̂ ∈ Z+ the additional
duration if the task is delayed. Each agent also has a cost
function ci(a, t) that captures the cost of maintenance (e.g.
personnel, materials, etc.) for all of its activities a ∈ Ai and
every time step t ∈ T . Agents are restricted to executing at
most a single maintenance activity and they can only plan
activities if they are guaranteed to finish them within the
plan horizon. The utility of an agent is defined by the sum of
payments minus the costs for every completed activity and
therefore depends on the executed maintenance schedule Pi.
When we assume that Pi contains for each time step t ∈ T
the activity that was executed we can write this utility as
ui =

∑
ai∈Pi wai −

∑
t∈T c(Pi(t), t).

The impact of maintenance on the network throughput
is given by the function `(At, t), expressed in traffic time
lost (TTL). In this function, At is used to denote any
combination of maintenance activities being performed at
time t, by one or more agents. This function allows us to
employ arbitrary models, e.g., extrapolated from past re-
sults, obtained through (micro-)simulation or computed us-
ing heuristic rules.

We model the MPP as an MOMDP in which the state is
defined as the activities yet to be performed, the time left to
perform them, and the availability of the individual agents.
Because the agents are cooperative we can treat the set of
agents as a single agent: the actions at each time step are the
possible combinations of actions that could be started at that
time step, i.e., the Cartesian product of the possible actions
for each agent. The activities have an uncertain completion
time, as maintenance activities can run into delays, result-
ing in a stochastic transition function. The reward is of the
form

∑
i∈N ui −

∑
t `(A

t, t)

4These can be found at www.computing.dundee.
ac.uk/staff/jessehoey/spudd/ and prost.
informatik.uni-freiburg.de/, respectively.

Figure 4: Typical example of solution sets found by AOLS, SSII
and OLS/SPUDD, using different runtimes.

For our experiments, we generated many instances of the
problem with various sizes. All of them are fully coupled,
i.e., for each pair ai ∈ Ai, aj ∈ Aj there exists a network
cost `(ai, aj) > 0.

5.2 CCS Quality Metrics
The error of the coverage sets obtained through AOLS
and SSII is defined with respect to the actual CCS (ob-
tained through OLS/SPUDD). We describe the output sets
of AOLS or SSII as S, and the actual CCS as CCS. We
define two error metrics: maximal and expected error.

The maximal error εmax is a conservative measure that
specifies the maximal scalarised error over all possible w.
This measure does not include any prior information over
the weights:

εmax(S, V ∗CCS) = max
w

V ∗CCS(w)− V ∗S (w).

Note that this metric is absolute rather than relative.
The expected error incorporates the prior distribution

over w, pr in order to give a larger penalty to errors in more
important regions:

εexp(S, V
∗
CCS) =

∫
w

pr(w)(V ∗CCS(w)− V ∗S (w))dw.

5.3 Comparison of Algorithms
In order to test the performance of AOLS and SSII in terms
of runtime and solution quality, we apply these algorithms
to the MPP domain. We take moderately sized instances
so that it is possible to find the exact CCS for compari-
son. To compute the exact CCS, we apply OLS with ex-
act solutions found by SPUDD (Hoey et al. 1999) as the
exact single-objective MDP solver subroutine. The approxi-
mation of policies for both AOLS and SSII is done using the
UCT* algorithm from the PROST toolbox (Keller and Eye-
rich 2012). UCT* is an anytime algorithm which is expected
to perform better when it is given more time to compute ap-
proximate solutions. Therefore, we test AOLS and SSII with
various settings for the allowed runtime for UCT*. For SSII
we ran both experiments with and without prior knowledge

about weights. We use limited information of the form “costs
are more important than TTLs” leading to a uniform prior in
a limited range of weights, [0.5, 1] for the cost weight (and
hence [0, 0.5] for the TTL weight).

To develop an intuition on the quality of the solution sets
found by AOLS and SSII for varying runtimes, we first test
them on a single test problem, with two maintenance compa-
nies and three activities each, and visualise the resulting so-
lution sets S by plotting V ∗S (w), as shown in Figure 4. SSII
was given a uniform prior on the interval [0.5,1]. For low
runtimes we observe that AOLS is better than SSII where
the prior has probability mass 0, i.e., w1 < 0.5, but SSII is
better in the region it focuses on. For higher runtimes, AOLS
and SSII both happen to find a good vector for the left side
of the weight space, and both methods find the same value
for w1 = 0.5.

Neither AOLS nor SSII achieves the value of the exact
CCS with their solution sets. However, much less runtime
was used compared to finding the optimum. OLS/SPUDD
used around 3 hours, while AOLS used close to 6 minutes,
and SSII just over 7 minutes, both with 10s allowed for the
single objective solver.

In order to test the error with respect to the CCS numer-
ically, we averaged over 12 MPP instances with 2 mainte-
nance companies with 3 activities each with randomly (uni-
formly) drawn horizons between 5 and 15. Table 1 shows
the average performance per algorithm, expressed in terms
of εmax, εexp and the fraction of instances solved optimally.
The exact solver was run once for each problem, whereas
the AOLS and SSII algorithms were run 5 times on the same
problem to compute the average performances and runtimes,
because UCT* is a randomised algorithm.

These results show a striking difference between the ex-
act and approximation runtimes. Whereas the average run-
time required to find the optimum CCS is in the range of
hours (the longest took 3.5 hours), SSII and AOLS require
time in the order of seconds to a few minutes to find an op-
timistic CCS. Moreover, our experiments confirm that the
maximal and expected errors decrease when more runtime
is given. Also very interesting is that both AOLS and SSII
are able to find a (near-)optimal CCS in many cases, where
OLS takes hours to do the same, and that SSII is competitive
with AOLS.

In order to demonstrate that prior information on the dis-
tribution over the weight can be exploited, we ran SSII with
two different sample ranges. ‘SSII no prior’ used 5 evenly
distributed samples over the entire region, i.e., assuming no
prior information is available. The ‘SSII prior’ algorithm,
also distributed its samples evenly, but only in the range
[0.5, 1]. Note that any CCS found with samples in this range
is also a CCS for the full weight range, although not likely to
be close to optimal outside the sample range. The results in
the last three columns show the errors for only the range of
the prior, illustrating that both the maximal error, expected
error and even the percentage of optimal solutions found
within this range is slightly better when exploiting the prior.

[0, 1] [0.5, 1]

Algorithm Runtime |CCS| εexp εmax %OPT εexp εmax %OPT
OLS + SPUDD 2390.819 9.250 - - - - - -
AOLS + UCT* 0.01s 8.612 3.389 0.701 325.354 0.000 0.692 325.025 0.000
AOLS + UCT* 1s 19.940 4.111 0.119 65.668 0.167 0.117 65.426 0.167
AOLS + UCT* 10s 65.478 4.528 0.084 56.439 0.333 0.091 56.381 0.333
AOLS + UCT* 20s 165.873 5.694 0.044 38.667 0.417 0.048 38.627 0.417
SSII 1s, no prior 18.795 4.306 0.118 70.244 0.167 0.116 70.195 0.167
SSII 10s, no prior 59.336 3.889 0.061 51.800 0.333 0.068 51.747 0.333
SSII 1s, prior 17.892 3.944 0.221 95.189 0.000 0.125 61.667 0.167
SSII 10s, prior 59.154 4.083 0.141 71.290 0.083 0.057 43.006 0.333

Table 1: Comparison of averaged performance of the algorithms presented in this paper for various parameters, shown for two
regions of the scalarised reward space. Runtimes are in seconds, the expected error εexp and maximum error εmax are relative
to the optimum CCS and %OPT denotes the fraction of instances that were solved optimally.

Figure 5: Average runtime for UCT* to attain various ε levels and
the runtime required to compute the optimal policy using SPUDD.

5.4 UCT* approximation quality
Although the UCT* algorithm does not provide a guarantee
on the resulting policy value, we establish empirically that,
given sufficient runtime, it can produce ε-approximations for
various values of ε. Using the same instances as before, we
determine the average runtime that is required to obtain such
approximation levels. For each instance, we run the UCT*
algorithm 10 times, where we iteratively increase the al-
lowed runtime in each run until a solution of the required
quality is obtained. Figure 5 shows the average runtimes in
seconds required to obtain various ε compared to the run-
time of SPUDD, for different horizon lengths. From the fig-
ure we can see that UCT* obtains at least half of the optimal
value within mere seconds. Interestingly, UCT* is also able
to produce near-optimal solutions within a minute for these
problem instances (sometimes the optimum is found, see Ta-
ble 1). Unfortunately, we do not know whether these results
translate to larger problem sizes, as a comparison with exact
solutions is computationally infeasible for bigger problems.

6 Related Work
Several other methods exist for computing the CCS
MOMDPs. Viswanathan, Aggarwal, and Nair (1977) de-

vise a linear programming method for episodic MOMDPs;
Wakuta and Togawa (1998) use a policy iteration based
method and Barrett and Narayanan (2008) extend value iter-
ation with CCS computations in the back-up phase to form
convex hull value iteration (CHVI). However, unlike our ap-
proach, all these methods assume the state space is small
enough to allow exact solution. Moreover, they deal with
the multiple objectives on a low level, deep inside the algo-
rithms. In contrast, we deal with the multiple objectives in
a modular fashion, i.e., both AOLS and SSII have an outer
loop to deal with the multiple objectives and call approxi-
mate single-objective MDP solvers as a subroutine. We can
thus easily replace these subroutines with any future method.

The closest MOMDP method to our work is Li-
zotte, Bowling, and Murphy (2010)’s finite-horizon multi-
objective value iteration algorithm for continuous state-
spaces, and its extended version (Lizotte, Bowling, and Mur-
phy 2012). This method plans backwards from the plan-
ning horizon, computing a point-based (i.e., using sampled
weights) value backup for each timestep until t = 0 is
reached. However, their approach is infeasible in our setting
because of the large number of reachable end states. Instead,
UCT* performs a forward Monte-Carlo tree search starting
at t = 0, reducing the number of end states visited.

7 Conclusions and Future Work
Solving MDPs with multiple objectives is challenging when
the relative importance of objectives is unclear or impossi-
ble to determine a priori. When MOMDPs can be linearly
scalarised, we should find the set of alternatives – the con-
vex coverage set – which for each choice of weight span
the maximal achievable expected rewards. Finding the exact
convex coverage set is however often not feasible, because
finding exact solution of a (single-objective) MDP is already
polynomial in the number of states, and the number of states
in many problems is huge. In this work we therefore focused
on methods to approximate the CCS for MOMDPs.

Our main contributions are the approximate optimistic
linear support (AOLS) and scalarised sample-based in-
cremental improvement (SSII) algorithms. For AOLS, we
proved a modified version of Cheng’s theorem (Cheng 1988)
such that the main results for OLS also hold when using

an approximation method to compute the multi-objective
value at corner weights (Theorem 1). Moreover, when an
ε-approximation algorithm is used, we can bound the loss in
scalarised value of the resulting approximate CCS.

Although AOLS is generally applicable, it cannot exploit
prior information on the distribution of weights. When such
a prior is available we want to focus most of our attention to
the regions of the CCS that correspond to this distribution.
Instead, SSII samples weights from this prior for which it it-
eratively tries to improve the policy, prioritising the samples
that are the furthest away from the best known CCS.

We compared the performance of the approximate algo-
rithms proposed in this paper with the optimal algorithm in
terms of runtime, expected CCS error and maximum CCS
error, on problems from the maintenance planning domain
(Scharpff et al. 2013). These experiments show that both al-
gorithms can compete with the exact algorithm in terms of
quality, but require several orders of magnitude less runtime.
When a prior is known, our experiments show that SSII has
a slight advantage over AOLS.

In this paper, we assume that it is feasible to perform exact
evaluation of Vπ , i.e., the multi-objective value. In MPP this
assumption appears valid. In general, however, this also be-
comes an expensive operation for large problems. An impor-
tant direction of future research, therefore, is to investigate if
it is possible to extend our results to the case of approximate
evaluation of Vπ .

Another direction for future work is to combine the two
main ideas presented in this work for cases when no single
objective solver with a known ε bound is available. We are
interested in improving the performance of AOLS by apply-
ing a heuristic exploiting a prior on the weights to decide on
which corner point to evaluate.

This work assumes that the agents are fully cooperative,
but many problems exists where this is not the case. For in-
stance in the MPP domain, when agents are self-interested
they will not likely give up profits in favour of traffic hin-
drance reduction unless they are explicitly motivated to do
so. A mechanism design approach, similar to (Scharpff et al.
2013), could help to extend this work to the wider class of
non-cooperative planning problems.

Acknowledgements
This research is supported by the NWO DTC-NCAP
(#612.001.109), Next Generation Infrastructures/Almende BV and
NWO VENI (#639.021.336) projects.

References
Alarcon-Rodriguez, A.; Haesen, E.; Ault, G.; Driesen, J.;
and Belmans, R. 2009. Multi-objective Planning Frame-
work for Stochastic and Controllable Distributed Energy Re-
sources. IET Renewable Power Generation 3(2):227–238.
Barrett, L., and Narayanan, S. 2008. Learning All Optimal
Policies with Multiple Criteria. In Proc. of the International
Conference on Machine Learning, 41–47. New York, NY,
USA: ACM.
Bellman, R. E. 1957a. A Markov Decision Process. Journal
of Mathematical Mechanics 6:679–684.

Bellman, R. E. 1957b. Dynamic Programming. Princeton,
NJ: Princeton University Press.
Bertsimas, D., and Tsitsiklis, J. 1997. Introduction to Linear
Optimization. Athena Scientific.
Calisi, D.; Farinelli, A.; Iocchi, L.; and Nardi, D. 2007.
Multi-objective Exploration and Search for Autonomous
Rescue Robots. Journal of Field Robotics 24(8-9):763–777.
Cheng, H.-T. 1988. Algorithms for Partially Observable
Markov Decision Processes. Ph.D. Dissertation, UBC.
Clemen, R. T. 1997. Making Hard Decisions: An Intro-
duction to Decision Analysis. South-Western College Pub, 2
edition.
Hoey, J.; St-Aubin, R.; Hu, A.; and Boutilier, C. 1999.
SPUDD: Stochastic Planning Using Decision Diagrams. In
Proc. of the Fifteenth conference on Uncertainty in artificial
intelligence, 279–288.
Keller, T., and Eyerich, P. 2012. PROST: Probabilistic Plan-
ning Based on UCT. In Proc. of the International Confer-
ence on Automated Planning and Scheduling.
Keller, T., and Helmert, M. 2013. Trial-based Heuristic Tree
Search for Finite Horizon MDPs. In Proc. of the Interna-
tional Conference on Automated Planning and Scheduling.
Lizotte, D. J.; Bowling, M.; and Murphy, S. A. 2010. Effi-
cient Reinforcement Learning with Multiple Reward Func-
tions for Randomized Clinical Trial Analysis. In 27th Inter-
national Conference on Machine Learning, 695–702.
Lizotte, D. J.; Bowling, M.; and Murphy, S. A. 2012. Linear
Fitted-Q Iteration with Multiple Reward Functions. Journal
of Machine Learning Research 13:3253–3295.
Mouaddib, A.-I. 2004. Multi-objective Decision-theoretic
Path Planning. In Proc. of the International Conference on
Robotics and Automation, volume 3, 2814–2819. IEEE.
Roijers, D. M.; Vamplew, P.; Whiteson, S.; and Dazeley, R.
2013. A Survey of Multi-Objective Sequential Decision-
Making. Journal of Artificial Intelligence Research 47:67–
113.
Roijers, D. M.; Whiteson, S.; and Oliehoek, F. 2014. Linear
Support for Multi-Objective Coordination Graphs. In Proc.
of the Autonomous Agents and Multi-Agent Systems confer-
ence.
Scharpff, J.; Spaan, M. T. J.; Volker, L.; and de Weerdt, M.
2013. Planning Under Uncertainty for Coordinating Infras-
tructural Maintenance. Proc. of the International Confer-
ence on Automated Planning and Scheduling.
Vamplew, P.; Dazeley, R.; Berry, A.; Issabekov, R.; and
Dekker, E. 2011. Empirical Evaluation Methods for Mul-
tiobjective Reinforcement Learning Algorithms. Machine
Learning 84(1-2):51–80.
Viswanathan, B.; Aggarwal, V. V.; and Nair, K. P. K. 1977.
Multiple Criteria Markov Decision Processes. TIMS Studies
Management Science 6:263–272.
Wakuta, K., and Togawa, K. 1998. Solution Procedures
for Markov Decision Processes. Optimization: A Journal
of Mathematical Programming and Operations Research
43(1):29–46.

