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Lisbon, Portugal

Email: mtjspaan@isr.ist.utl.pt

L. Enrique Sucar
Computer Science Department

INAOE
Puebla, México
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Abstract— Making good operation decisions during abnormal
power plant conditions represents in many cases the possibility
to avoid a unit trip or having economical losses. This paper
introduces AsistO, an intelligent assistant for the decision support
based on decision theoretic planning techniques. It provides
power plant operators with useful recommendations to (i) main-
tain a plant running under safe conditions, or (ii) deal with
process transients when an unexpected event occurs. We present
the formalism of Markov decision processes as the core of the
intelligent assistant which uses a factored representation of plant
states. We also show a very intutive algorithm to approximate
decision models based on training data collected through random
exploration routines in a simulated environment. We have tested
our system in the steam generation system of a combined power
plant to deal with load disturbances.

I. I NTRODUCTION

In many industrial processes, plant operators are faced
with a large amount of problems and information based on
which they have to take decisions. To support such decisions,
automatic assistants exist that provide operators with a list of
suggested commands [1]. Either when the operator executes a
command or when a unexpected disturbance occurs, a new list
of recommended actions is presented. This recommendation
process can be modelled as a sequential decision problem
under uncertainty with an optimization criteria such as perfor-
mance, availability, reliability, or security. Thus, we suggest
the use of Markov Decision Processes (MDP) [2], a well
known stochastic method for sequential decisions.

In the context of our application, intelligent assistants
(IA) are knowledge-based systems for the decision support.
They should provide users with accurate information at the
right moment, and do suggestions and criticisms during the
decision making process [3]. The basic functions of an IA
are: knowledge acquisition and representation, simulation, test
case generation, problem solving, and knowledge transfer
through explanations to users [4]. They could additionally
include an effective human-computer interaction mean to i)
provide the system with big amounts of world knowledge [5],
and ii) integrate data base management functions with other
information and knowledge-based systems [3]. Optionally,an
assistant could also adapt to users through simply observing
their general behavior [6]. In other words, the system could
learn from user’s experiences.

Among the most representative work in the field of intel-
ligent assistants, the following systems can be found: AS-
TRAL [7], which is a simulator-based assistant for power
operator’s training. Its main functions are the recognition of
the actions executed by an operator in a plant simulator,
and the classification of detected errors with respect to an
expected behavior. The main effort in this work is oriented
to the development of explanation systems that support the
operator’s understanding about the plant state. SOCRATES
[8] is a real time assistant for control center operators in
alarm processing and energy restoration. The core of the
system is SPARSE, an expert system initially developed to
use it in power transmission and distribution control centers.
SOCRATES also provides an intelligent tutor, SPARSE-IT,
which fulfills two purposes: i) to show users how a trained
operator solves problems and ii) to train the user to deal with
specific situations and evaluate its performance. SART [9] is a
traffic control support system for the French subway system,
and implements an intelligent tutor with several functionssuch
as: knowledge acquisition from operators, traffic simulation,
model management of the network to test with alternative
cases, enumeration of alternative solutions to incidents,and
training of new operators. SART uses a multi-agent approach
to have an evolutionary architecture.

In this paper we present AsistO (standing forOperation
ASSISTantin Spanish), an intelligent assistant for power plant
operators with similar features to the systems described above.
Its main advantage is that it provides on-line guidance in the
form of ordered recommendations based on techniques such
as decision-theoretic planning, machine learning, and proba-
bilistic reasoning. The system allows to deal with abnormal
situations, non-expected events, or the occurrence of process
transients.

The paper is organized as follows: Section 2 presents a
typical load disturbance in the steam generation system of
a combined cycle power station that can be treated using an
intelligent assistant. In section 3, we explain the formalism
of factored MDPs and show a simple algorithm for learning
factored decision models. Section 4 shows the AsistO’s general
architecture. In section 5 some experiments are commented.
Finally, we discuss some important issues and future work in
section 6.



Fig. 1. Simplified diagram of the steam generation system showing its main
components, control devices and instrumentation. The gas turbine connection
is not shown.

II. PROBLEM DOMAIN

Modern power plants are following two clear tendencies.
First, they are very complex processes working close to their
limits. Second, they are highly automated and instrumented,
leaving the operator with very few decisions. However, there
still exist some maneuvers that require the experience and
ability of the operator. In order to illustrate how important the
decisions of a human operator are to overcome a transient, we
have selected an electric load disturbance as a typical problem
in the steam generation system of a power plant.

The complete process control domain is shown in Fig. 1. A
heat recovery steam generator (HRSG) is a process machinery
capable of recovering residual energy from the exhaust gases
of a gas turbine to generate high pressure (Pd) steam in
a special tank (steam drum). The recirculation pump is a
device that extracts residual water from the steam drum to
keep a water supply in the HRSG (Ffw). The result of this
process is a high-pressure steam flow (Fms) that keeps running
a steam turbineto produce electric energy (g) in a power
generator. The main control elements associated are the feed-
water valve (fwv) and main steam valve (msv). An electric
load disturbance (d) is an exogenous event that, as well as the
control valves, could induce a state transition. The problem is
to obtain a control strategy that considers stochastic commands
on the valves and, according to an experience-based preference
function, maximizes the security in the drum, and/or the power
generation.

A practical solution is the use of an intelligent operator
assistant providing recommendations about how to take the
best action on the process that corrects the problem. The
operator assistant should be able to find an action policy
according to the crisis dimension, take into account that
actuators are not perfect and can produce non-desired effects,

and consider the performance, availability and reliability of
the actual plant installations under these situations.

III. FACTORED MARKOV DECISION PROCESSES

A Markov decision process (MDP) [2] models a sequential
decision problem, in which a system evolves over time and
is controlled by an agent. At discrete time intervals the agent
observes the state of the system and chooses an action. The
system dynamics are governed by a probabilistic transition
function Φ that maps statesS and actionsA (both at time
t) to new statesS’ (at time t + 1). At each time, an agent
receives a scalar reward signalR that depends on the current
states and the applied actiona. The performance criterion
the agent should maximize considers the discounted sum of
expected future rewards, or valueV : E[

∑
∞

t=0
γtR(st)], where

0 ≤ γ < 1 is a discount rate. The main problem is to find
a control strategy orpolicy π that maximizes the expected
rewardV over time.

For the discounted infinite-horizon case with any given
discount factorγ, there is a policyπ∗ that is optimal regardless
of the starting state and that satisfies theBellman equation
[10]:

V ∗(s) = maxa{R(s, a) + γ
∑

s∈S
Φ(a, s, s′)V ∗(s′)} (1)

Two methods for solving this equation and finding an
optimal policy for an MDP are: (a) dynamic programming [2]
and (b) linear programming.

In a factored MDP, the set of states is described via a
set of random variablesS = {X1, ..., Xn}, where eachXi

takes on values in some finite domainDom(Xi). A state x
defines a valuexi ∈ Dom(Xi) for each variableXi. Thus,
as the set of statesS = Dom(Xi) is exponentially large, it
results impractical to represent the transition model explicitly
as matrices. Fortunately, the framework of dynamic Bayesian
networks (DBN) [11], [12] gives us the tools to describe the
transition model concisely. In these representations, thepost-
action nodes (at the timet + 1) contain smaller matrices with
the probabilities of their values given their parents’ values
under the effects of an action. For a more detailed description
of factored MDPs see [13].

A. Learning factored models

The MDP model is learned from data based on a random
exploration in a simulated environment. We assume that the
agent can explore the state space, and that for each state–
action cycle it can receive some immediate reward. Based on
this random exploration, the reward and transition functions
are induced.

Given a set ofM non-ordered and rough (discrete and/or
continuous) random variablesSj = X1, ..., Xn defining a
deterministic state, an actionaj executed by an agent from
a finite set of actionsA = {a0, a1, ...}, and a reward (or cost)
Rj associated to each state in an instantj = 1, 2, . . . , M , we
can learn a factored MDP model as follows:



1) Discretize the continuous attributes from the original
sampleD = {S, R, a}. This transformed data set is
called the discrete data setDd = {Sd, Rd, ad}. For small
state spaces, use conventional statistical discretization
techniques. However, in complex state spaces, abstrac-
tion techniques are more efficent. For further details see
[14], [15].

2) From the subset{Sd, Rd} induce a decision tree,RDT ,
using the algorithm C4.5 [16]. This predicts the reward
function Rd in terms of the discrete state variables,
X1, . . . , Xn.

3) Format the discrete data set in such a way that the at-
tributes follow a temporal causal ordering. For example
variable X0,t before X0,t+1, X1,t before X1,t+1, and
so on. The whole set of attributes should have the form
Xt, Xt+1, at.

4) Prepare a data set for the induction of a set of 2-stage
dynamic Bayesian nets. According to the action space
dimension, split the discrete data set into|A| subsets of
samples for each action. Remove the attributeat from
all of them.

5) Induce a transition model for each subset using the K2
algorithm [17]. The result is a 2-stage dynamic Bayesian
net for each actiona ∈ A.

This approximate model can be solved using value iteration
to obtain the optimal policy. This approach has been success-
fully applied in other domains [18].

IV. RECOMMENDER SYSTEM FOR THESTEAM

GENERATOROPERATION

AsistO is an intelligent assistant that provides useful recom-
mendations for training and on-line assistance in the power
plant domain. The assistant is coupled to a power plant
simulator capable to partially reproduce the operation of a
combined cycle power plant, in particular, the steam generation
process described in section II.

The simulator (Fig. 2) is provided with controls for setting
power conditions in the gas and steam turbines (nominal
load, medium load, minimum load, hot standby, low speed,
and start-up). It also provides an operation panel to set load
demands, unit trips, shutdowns, and other high-level operations
in different subsystems. It includes a visualization tool for
tracking the behavior of user-selected variables in time, and
recording historical data. The simulator, that was implemented
in MS Visual C++, can replicate data to MS SQL-Server and
MySQL database formats.

The AsistO system is composed by a decision model base,
a simulation data base, and the following subsystems:

1) Data management.
2) Model management.
3) Planning subsystem.
4) User interface.
The simulation data base comprises process signals gener-

ated in the simulator (outputs), and control signals (inputs)
sent from the user interface to set a specific electric load or
failure condition in the process.

Fig. 2. Steam Generation Simulator provided with controls,an operation
panel, and data visualization tools.

Fig. 3. AsistO’s general architecture. Given a current state, the planning
subsystem queries a recommendation to the model base. This is presented to
the user interface for the decision making.

The decision model base stores the transition and reward
functions in a factored form. The transition model is im-
plemented in Elvira [19] (which was extended to compute
Dynamic Bayesian Networks) and the reward function in
Weka [20]. The transition and reward functions are effectively
learned using the K2 algorithm available in Elvira, and the
reward function using a Java implementation of the C4.5
algorithm available in Weka (J4.8).

In AsistO’s general architecture the planning subsystem
obtains the plant state from the simulation data base. Then
it queries the policy function for the current state in the
model base to obtain a recommendation. Both current state
and recommendation, are shown graphically through the user
interface to the operator who finally decides whether or not to
execute the recommended command. Fig. 3 shows the basic
AsistO’s general architecture.

The data management subsystem is composed by a set
of tools for data administration and analysis software. The
formats supported by AsistO are Microsoft SQL Server and
MySQL. MySQL is open source and provides fast perfor-
mance, high reliability and easy use. This format was selected
because it can run in more than 20 platforms such as Linux,



Fig. 4. The user interface is the link between the recommender system and
the operator. It includes supervision, problem specification and manual control
capabilities.

Windows, OS/X and HP-UX.
The model management subsystem manipulates the struc-

tures stored in the model base. It is also based on the academic
tools Elvira and Weka.

The planning subsystem uses the decision models allocated
in the model base and its inference algorithms to build
an optimal policy plant state-recommendation. The resulting
policy and utility functions are also stored in the model base.
The planning subsystem in AsistO is based on SPUDD [21],
that includes a very efficient version of the value iteration
algorithm for factored MDPs.

The user interface provides the communication with the
environment. In this case, the power plant simulator is the
environment, and the operator is the actor which provides
the goals and executes the recommendations that modify the
environment. The user interface is implemented in the Java
language and it is provided with controls for command execu-
tion, load selection, failure simulation, and recommendation
display. This module, that can also be used as a supervi-
sion console, includes the controls for random exploration
and system sampling for the learning purposes described in
section III-A. It also provides a graphical interface to observe
how fast the correct execution of recommendations impact in
the plant operation. The main features of the user interfaceare
shown in Fig. 4.

V. EXPERIMENTAL RESULTS

We used AsistO to run a series of experiments with different
complexities. In the first set of experiments, we specified a 5-
action hybrid problem with 5 variables (Fms, Ffw, Pd, g, d).
We also defined a simple binary reward function based on the
safety parameters of the drum (Pd andFms). The relationship
between their values and the reward received can be seen in
Fig. 5 (top). Central black squares denote safe states (desired
operation regions), and white zones represent non-rewarded

Fig. 5. Process control problem. Top: reward function whereblack dots
represent desired regions, discrete state partition (in this case 10 states) and
policy found with value iteration. Bottom: exploration trace, where black dots
Black represent sampled states with positive reward, red dots have no reward,
and white regions unexplored zones.

zones (indifferent regions). To learn the model and the initial
abstraction, samples of the system dynamics were gathered
using simulation. Black dots in figure 5 (bottom) represent
sampled states with positive reward, red dots have no reward,
and white zones were simply not explored. Figure 5 (top)
shows the state partition and policy found (green arrows) by
the learning system. For this simple example, although the
resulting policy is not very detailed (discrete states are quite
large), it follows the idea of going to the lower black regions.
When analyzed by an expert operator, this control strategy is
near-optimal in most of the abstract states.

We solved the same problem but adding two extra variables,
the position for valvesmsv andfwv, and using 9 actions (all
the combinations of open-close valvesmsv andfwv). We also
redefined the reward function to maximize power generation,
g, under safe conditions in the drum. Although the problem
increased significantly in complexity, the policy obtainedis
“smoother” than the 5-action simple version presented above.
To give an idea about the computational effort, for a fine



discretization (15,200 discrete states) this problem was solved
in 859.2350 seconds, while using a more abstract representa-
tion (40 discrete states) it took only 14.2970 seconds. In both
cases, the approximated models were found using the SPUDD
system.

VI. D ISCUSSION AND FUTURE WORK

This paper introduced AsistO, an intelligent assistant based
on factored MDPs that provides power plant operators with
useful recommendations. We explained the formalism of fac-
tored Markov decision processes and a intutive algorithm
to approximate decision models based on training data. The
paper also describes the AsistO’s general architecture which
in general might be implemented using conventional software
tools. The academic software for planning and learning is also
a well known and robust platform for research in artificial
intelligence. The results demonstrate the factibility of the
method for the decision making and plant optimization, an
reveal that eventually the assistant could also be extendedfor
personnel training purposes.

A drawback of an MDP model is that is assumes that all
the state variables relevant for decision making are observed
without noise. However, real-world sensors are prone to noise.
Furthermore, there might be situations that cannot be detected
directly using the available sensors. In this case the state
observed by the MDP is no longer Markovian, and hence the
value of the computed policies will no longer be accurate.

For instance, during normal operation, the conventional
three-element feedwater control system (3eCS) commands the
feedwater control valve (fwv) to regulate the steam drum level
(Ld). However, when a partial or total electric load rejection (a
partial or total decrement in the load connected to the power
generatorg) is presented this traditional control loop is not
longer capable to stabilize the drum level. In this case, the
steam-water equilibrium point changes, causing an enthalpy
change of both fluids (steam and water). Consequently, the
enthalpy change causes an increment in the water level because
of a strong water displacement to the steam drum. The control
system reacts by closing the feedwater control valve. However,
an increment of feedwater is needed instead of a decrement.
A similar effect is presented when a sudden high load demand
occurs.

To tackle at the same time the problem of noisy sensors
and limited observability, we are extending AsistO to consider
Partially Observable MDPs (POMDPs) [22]. POMDPs extend
the MDP framework with an observation function, which
stochastically related observations to states. Instead ofreason-
ing over states, policies now map probability distributions over
states, so-called beliefs, to actions. Efficient algorithms for
approximately solving factored POMDPs are available [23],
and no global changes to the AsistO architecture have to be
made.

We can model the load rejection problem detailed above by
adding a (binary) state variable that models whether or not a
load rejection is occurring. This variable cannot be observed
directly, but we maintain a belief whether its true or false.This

belief can be updated (using Bayes’ rule) given observations
of the other state variables, as they can give a clue about its
state, for instance because actions do not have the intended
effect. In a POMDP formulation such clues can be directly
coupled to the state of the load-rejection variable. Addingthe
variable in a POMDP setting will allow the system to consider
the possibility of a load rejection, and to optimize the policy
in case it happens, even if it cannot be detected directly.

Finally, since AsistO is aimed at either operation assistance
or operator training, we are currently developing an extra mod-
ule that explains the recommended commands generated by
the planning subsystem and, provides, after a bad decision,the
reason why a recommendation should have been followed [24].
We are also integrating capabilities of diagnosis [25] into
AsistO.
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[4] P. Brézillion and E. Cases, “Cooperating for assistingintelligently
operators,” inProceedings of COOP-95. INRIA Ed., 1995, pp. 370–
384.

[5] G. Fischer, “Communication requirements for cooperative problem solv-
ing systems,”Information Systems, vol. 15, no. 1, pp. 21–36, 1990.

[6] J. Frontin, A. H. Kacem, and J. Soubie, “Acquérir des connaisances et
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[25] E. Morales and P. Ibargüengoytia, “On-line diagnosisusing influence
diagrams,” inAdvances in Artificial Intelligence - MICAI 2004, LNAI
2313, G. A. L.E. Sucar R. Monroy and e. H. Sossa, Eds. Berlin
Heidelberg: Springer-Verlag, 2004, pp. 546–554.


