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Abstract— Making good operation decisions during abnormal Among the most representative work in the field of intel-
power plant conditions represents in many cases the possitty  |igent assistants, the following systems can be found: AS-

to avoid a unit trip or having economical losses. This paper TRa [7], which is a simulator-based assistant for power
introduces AsistO, an intelligent assistant for the decigin support '

based on decision theoretic planning techniques. It provies operatolr’s training. Its main functions ar.e the recc’g'_“tm
power plant operators with useful recommendations to (i) min- the actions executed by an operator in a plant simulator,
tain a plant running under safe conditions, or (i) deal with and the classification of detected errors with respect to an
process transients when an unexpected event occurs. We pee$  expected behavior. The main effort in this work is oriented
the formalism of Markov decision processes as the core of the y the gevelopment of explanation systems that support the
intelligent assistant which uses a factored representatioof plant , .
states. We also show a very intutive algorithm to approximag Ope_rators und_erStand'_ng about the plant state. SOCRATES
decision models based on training data collected through rdom  [8] is a real time assistant for control center operators in
exploration routines in a simulated environment. We have teted alarm processing and energy restoration. The core of the
our system in the steam generation system of a combined power system is SPARSE, an expert system initially developed to
plant to deal with load disturbances. use it in power transmission and distribution control cesite
SOCRATES also provides an intelligent tutor, SPARSE-IT,
which fulfills two purposes: i) to show users how a trained

In many industrial processes, plant operators are facegerator solves problems and ii) to train the user to dedl wit
with a large amount of problems and information based @pecific situations and evaluate its performance. SARTY9] i
which they have to take decisions. To support such decisiotgffic control support system for the French subway system,
automatic assistants exist that provide operators witsteofi and implements an intelligent tutor with several functisosh
suggested commands [1]. Either when the operator executessa knowledge acquisition from operators, traffic simolati
command or when a unexpected disturbance occurs, a newrigtdel management of the network to test with alternative
of recommended actions is presented. This recommendatiases, enumeration of alternative solutions to incidesmts]
process can be modelled as a sequential decision probleaining of new operators. SART uses a multi-agent approach
under uncertainty with an optimization criteria such adqrer to have an evolutionary architecture.
mance, availability, reliability, or security. Thus, weggest In this paper we present AsistO (standing fOperation
the use of Markov Decision Processes (MDP) [2], a weASSISTanin Spanish), an intelligent assistant for power plant
known stochastic method for sequential decisions. operators with similar features to the systems describedeab

In the context of our application, intelligent assistantds main advantage is that it provides on-line guidance @ th
(IA) are knowledge-based systems for the decision suppddrm of ordered recommendations based on techniques such
They should provide users with accurate information at ttees decision-theoretic planning, machine learning, andbgro
right moment, and do suggestions and criticisms during thédistic reasoning. The system allows to deal with abnormal
decision making process [3]. The basic functions of an l8ituations, non-expected events, or the occurrence ofepsoc
are: knowledge acquisition and representation, simulatest transients.
case generation, problem solving, and knowledge transfefThe paper is organized as follows: Section 2 presents a
through explanations to users [4]. They could additionallypical load disturbance in the steam generation system of
include an effective human-computer interaction mean to d)combined cycle power station that can be treated using an
provide the system with big amounts of world knowledge [5]ntelligent assistant. In section 3, we explain the forsrali
and ii) integrate data base management functions with ottedrfactored MDPs and show a simple algorithm for learning
information and knowledge-based systems [3]. Optionalty, factored decision models. Section 4 shows the AsistO’srg¢ne
assistant could also adapt to users through simply obggrvarchitecture. In section 5 some experiments are commented.
their general behavior [6]. In other words, the system couknally, we discuss some important issues and future work in
learn from user’s experiences. section 6.

|I. INTRODUCTION



Steam Generation System and consider the performance, availability and reliapitf

Jeedwatzr flow the actual plant installations under these situations.
ragn siearn fow
oL Ill. FACTORED MARKOV DECISION PROCESSES
( j — A Markov decision process (MDP) [2] models a sequential

decision problem, in which a system evolves over time and

3eCs| dren pressure |

is controlled by an agent. At discrete time intervals thenage
Dhi:,\ observes the state of the system and chooses an action. The
fepdwater 1 system dynamics are governed by a probabilistic transition
e T i ) 4 function ® that maps state§ and actionsA (both at time
e N m t) to new statesS’ (at timet + 1). At each time, an agent
e receives a scalar reward signalthat depends on the current
Heat Recovery states and the applied actiom. The performance criterion
>, Sm&l{gesrgamr the agent should maximize considers the discounted sum of
! o expected future rewards, or vallle E[>,° 7" R(s¢)], where
< ‘“‘:‘;"m“lr;“"“ 0 < v < 1 is a discount rate. The main problem is to find

a control strategy opolicy = that maximizes the expected
rewardV over time.

Fig. 1. Simplified diagrqm of the steam generation syster_w'rmy)its ma_in For the discounted infinite-horizon case with any given

components, control devices and instrumentation. Thewghine connection . . . . .

is not shown. discount factory, there is a policyr* that is optimal regardless
of the starting state and that satisfies Bellman equation
[10]:

Il. PROBLEM DOMAIN

Modern power plants are following two clear tendencies. V' (s) = maza{R(s, a) +9> (a5, s)WV(s) (D)
First, they are very complex processes working close ta thei seS
limits. Second, they are highly automated and instrumented Two methods for solving this equation and finding an
leaving the operator with very few decisions. However, ¢hepptimal policy for an MDP are: (a) dynamic programming [2]
still exist some maneuvers that require the experience ag§ld (b) linear programming.

ability of the operator. In order to illustrate how importahne In a factored MDP, the set of states is described via a
decisions of a human operator are to overcome a transient, & of random variable§ = {X1,..., X,}, where eachX;
have selected an electric load disturbance as a typicaleob takes on values in some finite domadom(X;). A state x
in the steam generation system of a power plant. defines a valuer; € Dom(X;) for each variableX;. Thus,
The complete process control domain is shown in Fig. 1. s the set of stateS = Dom(X;) is exponentially large, it
heat recovery steam generatbiRSQ is a process machineryresults impractical to represent the transition modelieitfyl
capable of recovering residual energy from the exhaustsgagg matrices. Fortunately, the framework of dynamic Bayesia
of a gas turbine to generate high pressule)(steam in networks (DBN) [11], [12] gives us the tools to describe the
a special tank gteam dru The recirculation pumpis a transition model concisely. In these representationsptr-
device that extracts residual water from the steam drum getion nodes (at the time+ 1) contain smaller matrices with
keep a water supply in the HRSGf(). The result of this the probabilities of their values given their parents’ slu
process is a high-pressure steam fl&n§ that keeps running under the effects of an action. For a more detailed deseripti
a steam turbineto produce electric energyg) in a power of factored MDPs see [13].

generator The main control elements associated are the feed-

water valve fwy) and main steam valven(sy. An electric A. Learning factored models

load disturbanced) is an exogenous event that, as well as the The MDP model is learned from data based on a random
control valves, could induce a state transition. The pmokie exploration in a simulated environment. We assume that the
to obtain a control strategy that considers stochastic cantisi agent can explore the state space, and that for each state—
on the valves and, according to an experience-based pnetereaction cycle it can receive some immediate reward. Based on
function, maximizes the security in the drum, and/or the @owthis random exploration, the reward and transition funio
generation. are induced.

A practical solution is the use of an intelligent operator Given a set ofM non-ordered and rough (discrete and/or
assistant providing recommendations about how to take tbentinuous) random variableS’ = Xi,..., X,, defining a
best action on the process that corrects the problem. Tdeterministic state, an actio## executed by an agent from
operator assistant should be able to find an action poliayfinite set of actionsl = {ao, a1, ...}, and a reward (or cost)
according to the crisis dimension, take into account th&’ associated to each state in an instaet 1,2, ..., M, we
actuators are not perfect and can produce non-desiredsffecan learn a factored MDP model as follows:



1) Discretize the continuous attributes from the origine™ 0 T | P snrerone
sampleD = {S,R,a}. This transformed data set is = : = P = [T
called the discrete data sBf; = {Sq, Rq, aq}. FOr small  iliim™ ) el cosmtomal =] s ) sommtmama| ] soon | _ammsense
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state spaces, use conventional statistical discretizati
techniques. However, in complex state spaces, abstr
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2) From the subseltS,, Ry} induce a decision treeR DT, i e (e =

. . . . SENALES DEL CONT J. URBINA DE VAPOR

using the algorithm C4.5 [16]. This predicts the rewar s = s ot i | AP e P
function R; in terms of the discrete state variables e e e D
X1, X

3) Format the discrete data set in such a way that the = = i
tributes follow a temporal causal ordering. For exampl ' o il o e
variable X, ; before X .y, X;, before X; 41, and
so on. The whole set of attributes should have the for... = 2 = 2
X, Xet1, at-

. . Fig. 2. Steam Generation Simulator provided with contrals,operation
4) Prepare a data set for the induction of a set of 2-stagéhel. and data visualization tools.

dynamic Bayesian nets. According to the action space

dimension, split the discrete data set intj subsets of
samples for each action. Remove the attributdrom owten Data Model Model
all of them. Shﬁf{;m I managementH management 7 base
5) Induce a transition model for each subset using the K2 \ /'
algorithm [17]. The result is a 2-stage dynamic Bayesian Sﬁt"‘;;:t’e‘lgn
net for each actiom € A. t
This approximate model can be solved using value iteration e
to obtain the optimal policy. This approach has been suecess interface
fully applied in other domains [18]. +
IV. RECOMMENDERSYSTEM FOR THESTEAM Operator

GENERATOROPERATION

AsistO is an intelligent assistant that provides usefubnec 9 3-  AsistO's general architecture. Given a currentestitie planning
. LS . . . subsystem queries a recommendation to the model base.sTpisegented to
mendations for training and on-line assistance in the POWRE yser interface for the decision making.
plant domain. The assistant is coupled to a power plant

simulator capable to partially reproduce the operation of a
combined cycle power plant, in particular, the steam gdi®ra  The decision model base stores the transition and reward
process described in section II. functions in a factored form. The transition model is im-
The simulator (Fig. 2) is provided with controls for Set'[ingplemented in Elvira [19] (which was extended to compute
power conditions in the gas and steam turbines (nomir@ynamic Bayesian Networks) and the reward function in
load, medium load, minimum load, hot standby, low speeweka [20]. The transition and reward functions are effetyiv
and start-up). It also provides an operation panel to set logarned using the K2 algorithm available in Elvira, and the
demands, unit trips, shutdowns, and other high-level djper® reward function using a Java implementation of the C4.5
in different subsystems. It includes a visualization toot f algorithm available in Weka (J4.8).
tracking the behavior of user-selected variables in tinmel @ |0 AsistO’s general architecture the planning subsystem
recording historical data. The simulator, that was impletee obtains the plant state from the simulation data base. Then
in MS Visual C++, can replicate data to MS SQL-Server ang queries the policy function for the current state in the

MySQL database formats. model base to obtain a recommendation. Both current state
The AsistO system is composed by a decision model bag@d recommendation, are shown graphically through the user
a simulation data base, and the following subsystems: interface to the operator who finally decides whether or aot t
1) Data management. execute the recommended command. Fig. 3 shows the basic
2) Model management. AsistO’s general architecture.
3) Planning subsystem. The data management subsystem is composed by a set
4) User interface. of tools for data administration and analysis software. The

The simulation data base comprises process signals gefi@mats supported by AsistO are Microsoft SQL Server and
ated in the simulator (outputs), and control signals (ieputMySQL. MySQL is open source and provides fast perfor-
sent from the user interface to set a specific electric load mance, high reliability and easy use. This format was setect
failure condition in the process. because it can run in more than 20 platforms such as Linux,
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Fig. 4. The user interface is the link between the recommesgistem and G000
the operator. It includes supervision, problem specificatind manual control
capabilities. Q
P
000 ¢ =
. ‘k o
Windows, OS/X and HP-UX. . =
The model management subsystem manipulates the struc-  apng ! (9
. ) . ]
tures stored in the model base. It is also based on the academi c
tools Elvira and Weka. . ay
The planning subsystem uses the decision models allocated 3000 "!“ T, o
in the model base and its inference algorithms to build ‘y- .
an optimal policy plant state-recommendation. The resgilti —
policy and utility functions are also stored in the modeléas EDDDD 5;] 100

The planning subsystem in AsistO is based on SPUDD [21],
that includes a very efficient version of the value iteratiorF1_ 5 p ol oroblem. T 4 functi Helgek dot
. 1g. o. rocess control problem. Iop: reward tunction whneide! ots

algorithm for_faCtored MDP_S' . . represent desired regions, discrete state partition {@d#se 10 states) and

The user interface provides the communication with th®licy found with value iteration. Bottom: exploration ¢es where black dots
environment. In this case, the power plant simulator is thack represent sampled states with positive reward, résl live no reward,

. . ] " gnd white regions unexplored zones.

environment, and the operator is the actor which provides
the goals and executes the recommendations that modify the

environment. The user interface is implemented in the Java

language and it is provided with controls for command execgones (indifferent regions). To learn the model and theainit
tion, load selection, failure simulation, and recommeieatat 2Pstraction, samples of the system dynamics were gathered

display. This module, that can also be used as a supeh‘/?-ing simulation..BIack .d_ots in figure 5 (bottom) represent
sion console, includes the controls for random exploratiGiiMPled states with positive reward, red dots have no reward
and system sampling for the learning purposes described@pd Whité zones were simply not explored. Figure 5 (top)
section IlI-A. It also provides a graphical interface to ehe ShOWs the state partition and policy found (green arrows) by

how fast the correct execution of recommendations impact ¢ |€arning system. For this simple example, although the
the plant operation. The main features of the user intedaee "€SUlting policy is not very detailed (discrete states ariteq
shown in Fig. 4. large), it follows the idea of going to the lower black region

When analyzed by an expert operator, this control strategy i
V. EXPERIMENTAL RESULTS near-optimal in most of the abstract states.

We used AsistO to run a series of experiments with different We solved the same problem but adding two extra variables,
complexities. In the first set of experiments, we specified a the position for valvesnsv and fwv, and using 9 actions (all
action hybrid problem with 5 variable$'(ns, F fw, Pd, g,d). the combinations of open-close valvesv and fwv). We also
We also defined a simple binary reward function based on thexlefined the reward function to maximize power generation,
safety parameters of the drutR{ and F'ms). The relationship ¢, under safe conditions in the drum. Although the problem
between their values and the reward received can be seeingreased significantly in complexity, the policy obtainied
Fig. 5 (top). Central black squares denote safe statesrédesi'smoother” than the 5-action simple version presented abov
operation regions), and white zones represent non-redard® give an idea about the computational effort, for a fine



discretization (15,200 discrete states) this problem whged belief can be updated (using Bayes’ rule) given observation
in 859.2350 seconds, while using a more abstract represemtfaithe other state variables, as they can give a clue about its
tion (40 discrete states) it took only 14.2970 seconds. tih bastate, for instance because actions do not have the intended
cases, the approximated models were found using the SPUBfect. In a POMDP formulation such clues can be directly
system. coupled to the state of the load-rejection variable. Addhngy
variable in a POMDP setting will allow the system to consider
the possibility of a load rejection, and to optimize the ppli
This paper introduced AsistO, an intelligent assistanedasin case it happens, even if it cannot be detected directly.
on factored MDPs that provides power plant operators with Finally, since AsistO is aimed at either operation asststan
useful recommendations. We explained the formalism of faor operator training, we are currently developing an extoam
tored Markov decision processes and a intutive algorithade that explains the recommended commands generated by
to approximate decision models based on training data. Tihe planning subsystem and, provides, after a bad decisien,
paper also describes the AsistO’s general architecturelwhieason why a recommendation should have been followed [24].
in general might be implemented using conventional sokwawe are also integrating capabilities of diagnosis [25] into
tools. The academic software for planning and learningde alAsistO.
a well known and robust platform for research in artificial
intelligence. The results demonstrate the factibility b t ACKNOWLEDGMENTS
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