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ABSTRACT
Planning under uncertainty is an important and challenging
problem in multiagent systems. Multiagent Partially Ob-
servable Markov Decision Processes (MPOMDPs) provide
a powerful framework for optimal decision making under
the assumption of instantaneous communication. We focus
on a delayed communication setting (MPOMDP-DC), in
which broadcasted information is delayed by at most one
time step. This model allows agents to act on their most
recent (private) observation. Such an assumption is a strict
generalization over having agents wait until the global infor-
mation is available and is more appropriate for applications
in which response time is critical. From a technical point of
view, MPOMDP-DCs are quite similar to MPOMDPs. How-
ever, value function backups are significantly more costly,
and naive application of incremental pruning, the core of
many state-of-the-art optimal POMDP techniques, is in-
tractable. In this paper, we show how to overcome this prob-
lem by demonstrating that computation of the MPOMDP-
DC backup can be structured as a tree and introducing two
novel tree-based pruning techniques that exploit this struc-
ture in an effective way. We experimentally show that these
methods have the potential to outperform naive incremental
pruning by orders of magnitude, allowing for the solution of
larger problems.

1. INTRODUCTION
This paper focuses on computing policies for multiagent

systems (MAS) that operate in stochastic environments and
that share their individual observations with a one step de-
lay. While dynamic programming algorithms date back to
the seventies [29, 3, 10, 12], computational difficulties have
limited the model’s applicability. In particular, the backup
operator under delayed communication has an additional
source of complexity when compared to settings with in-
stantaneous communication. In this paper, we take an im-
portant step in overcoming these challenges by showing how
this additional complexity can be mitigated effectively.
Our efforts are part of the greater agenda of multiagent

planning under uncertainty. The task faced by a team of
agents is complicated by partial or uncertain information
about the world, as well as stochastic actions and noisy sen-
sors. Especially settings in which agents have to act based on
their local information only have received a large amount of
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attention in the last decade [22, 4, 25, 30]. The Dec-POMDP
framework [5] can be used to formulate such problems, but
decentralization comes at a high computational cost: opti-
mally solving a Dec-POMDP is NEXP-complete.

Communication can be used to mitigate the problem of
decentralized information: when agents can share their lo-
cal observations, each agent can reason about the optimal
joint action given this global information state, called joint
belief, and perform its individual component of this joint
action. That is, when instantaneous communication is avail-
able, it allows one to reduce the problem to a special type
of POMDP [22], called a Multiagent POMDP (MPOMDP),
which has a lower computational complexity than a Dec-
POMDP (PSPACE-complete) and will generally lead to a
joint policy of a higher quality.

However, assuming instantaneous communication is often
unrealistic. In many settings communication channels are
noisy and synchronization of the information states takes
considerable time. Since the agents cannot select their ac-
tions without the global information state (called ‘joint be-
lief’), this can cause unacceptable delays in action selection.
One solution is to assume that synchronization will be com-
pleted within k time steps, selecting actions based on the last
known joint belief. Effectively, this reduces the problem to a
centralized POMDP with delayed observations [2]. However,
such formulations are unsuitable for tasks that require a high
responsiveness to certain local observations, such as applica-
tions for collission avoidance, ambient intelligence or other
more general forms of human-computer interaction and dis-
tributed surveillance. Another prime example is decentral-
ized protection control in electricity distribution networks
by so-called Intelligent Electronic Devices (IED). Such IEDs
not only decide based on locally available sensor readings,
but can receive information from other IEDs through a com-
munication network with deterministic delays [32]. When ex-
treme faults such as circuit or cable failures occur, however,
no time can be wasted waiting for information from other
IEDs to arrive.

We therefore consider an alternative execution model that
assumes that while communication is received with a delay
of one stage, the agents can act based on their private ob-
servation as well as the global information of the last stage.1

That is, all agents broadcast their individual observations,
but in contrast to a delayed observation POMDP they do not
wait with action selection until this communication phase
has ended. Instead, they go ahead taking an action based

1This is also referred to as a one step delayed sharing pattern
in the decentralized control literature.



on the global information of the previous stage and the in-
dividual observation of the current stage. This results in a
strict generalization of the delayed observation POMDP.
Thereby, this model uses communication to mitigate the

computational complexity and achieve higher performance
than Dec-POMDPs, while preventing delays in action selec-
tion. Moreover, the optimal solution of the MPOMDP-DC
is useful in settings with longer communication delays [27],
can be used as a heuristic in Dec-POMDPs [26], or to upper
bound the expected value of MASs without communication
(e.g., in the setting of communication channels) [10, 20].
From a technical perspective, the MPOMDP is equivalent

to a POMDP with a centralized controller, which means
that all POMDP solution methods apply. Many of these
exploit the fact that the value function is piecewise-linear
and convex (PWLC) over the joint belief space. Interest-
ingly, the value function of an MPOMDP-DC exhibits the
same property [12]. As such one would expect the same com-
putational methods to be applicable. However, incremental
pruning (IP) [6], that performs a key operation, the so-called
cross-sum, more efficiently, is not directly able to achieve
the same improvements for MPOMDP-DCs. A problem is
the need to loop over a number of decision rules that is
exponential both in the number of agents and in the num-
ber of observations. This means that the backup operator
for MPOMDP-DC model is burdened with an additional
source of complexity when compared to the regular POMDP
backup.
In this paper, we target this additional complexity by

proposing two novel methods that operate over a tree struc-
ture. The first method, called TBP-M for tree-based prun-
ing with memoization, avoids duplicate work by caching the
result of computations at internal nodes and thus accelerates
computation at the cost of memory. The second, branch and
bound (TBP-BB), is able to avoid unnecessary computation
by making use of upper and lower bounds to prune parts of
the tree. Therefore it provides a different space/time trade-
off. The empirical evaluation of our proposed methods on
a number of test problems shows a clear improvement of a
naive application of incremental pruning. TBP-M provides
speedups of up to 3 orders of magnitude. TBP-BB does
not consistently outperform the baseline, but is still able to
provide large speedups on a number of test problems, while
using little memory.

2. BACKGROUND
Here we present background on the relevant formal models

and their solutions methods.

2.1 Models
In this section we formally introduce the multiagent POMDP

(MPOMDP) model and describe the planning problem.

Definition 1. Amultiagent partially observable Markov de-
cision process M = 〈n,S,A,P,R,O,O,h,OC〉 consists of

• a finite set of n agents;

• S is a finite set of states;

• A = ×iAi is the set {a1, . . . ,aJ} of J joint actions. Ai

is the set of actions available to agent i. Every time
step one a = 〈a1,...,an〉 is taken;

• P , the transition function. P a(s′|s) is the probability
of transferring from s to s′ under a;

• R is the reward function. We write Ra(s) for the re-
ward accumulated when taking a from s;

• O = ×iOi is the set {o1 . . . oK} of K joint observa-
tions. Every stage an o = 〈o1,...,on〉 is observed;

• O is the observation function. We write Oa(o|s) for the
probability of o after taking a and ending up in s;

• h is the horizon, the number of time steps or stages
that are considered when planning.

The special case with 1 agent is called a (regular) POMDP.
Execution in an MPOMDP is as follows. At every stage t,
each agent i:

1. observes its individual oi,
2. broadcasts its own observation oi,
3. receives observations o−i = 〈o1, . . . ,oi−1,oi+1, . . . ,on〉

from the other agents,
4. uses the joint observation ot = 〈oi,o−i〉 and previous

joint action at−1 to update the new joint belief bt =
BU(bt−1,at−1,ot),

5. looks up the joint action for this stage in the joint
policy at ← π(bt),

6. and executes its component at
i.

The belief update function BU updates the previous joint
belief using Bayes rule:

b
′(s′) = BU(b,a,o) =

1

P a(o|b)
O

a(o|s′)
∑

s

P
a(s′|s)b(s),

where P a(o|b) is a normalizing factor. We denote the set of
all joint beliefs by B. In the remainder of this paper, we will
refer to a joint belief simply as ‘belief’.

The joint policy π =
(

δ0,δ1, . . . ,δh−1
)

is a sequence of joint
decision rules mapping beliefs to joint actions. The goal of
the multiagent planning problem for an MPOMDP is to find
an optimal joint policy π∗ that maximizes the total expected
sum of rewards, defined an arbitrary π as

V (π) = E
[

h
∑

t=0

R(st,at) | π,b0
]

, (1)

where b0 is the initial state distribution. In this paper we will
consider planning over a finite horizon h. While (1) optimizes
for a given b0, we will be concerned with computation of all
the optimal π for all possible b0, which is beneficial for tasks
in which b0 is not known in advance.

The value can be expressed recursively as a function of
the joint belief space. In particular, the h − t steps-to-go
action-value of b is

Q
t(b,a) = R

a
B(b) +

∑

o

P
a(o|b)max

a′
Q

t+1(b′,a′), (2)

where Ra
B(b) =

∑

s
Ra(s)b(s) and b′ = BU(b,a,o). An opti-

mal joint decision rule for stage t, δt∗, selects the maximizing
a for each b and thereby defines the value function:

V
t(b) = max

a
Q

t(b,a) = Q
t(b,δt∗(b)).

When no communication is available, the multiagent plan-
ning problem can be formalized as a Dec-POMDP. This
problem is significantly different as agents must base their
decisions solely on local observations and have no means to
compute the joint belief resulting in NEXP-complete com-
plexity.

In the remainder of this paper we focus on settings with
delayed communication.



Definition 2. An MPOMDP with delayed communication
(MPOMDP-DC) is an MPOMDP where communication is
received with a one-step delay.

Execution in an MPOMDP-DC is as follows. At decision
point t, each agent i:

1. has received the previous-stage observations ot−1
−i and

actions at−1
−i of the other agents,

2. observes its individual oti,

3. computes bt−1 = BU(bt−2,at−2,ot−1), using the pre-
vious joint observation ot−1 = 〈ot−1

i ,ot−1
−i 〉 and joint

action at−2 (remembered from stage t− 2 when it re-
ceived at−2

−i ),

4. looks up the individual action for this stage in the in-
dividual policy at

i ← πi(b
t−1,at−1,oti),

5. broadcasts its own observations oti and action at
i,
2

6. and executes at
i.

From this it is clear that there are quite a few differences
with the MPOMDP formulation. Most notably, the form of
the joint policy is different. In an MPOMDP-DC a joint
decision rule specifies an individual decision rule for each
agent δt =

〈

δt1, . . . ,δ
t
n

〉

, where each δti : B
t−1×A×Oi → Ai

is a mapping from a
〈

bt−1,at−1,oti
〉

-tuple to an individual

action at
i.

As such, it may come as a surprise that we can still define
the optimal value of an MPOMDP-DC as a function of joint
beliefs:

Q
t(b,a) = R

a
B(b) + max

β∈B

∑

o

P
a(o|b)Qt+1(b′,β(o)), (3)

whereB is the set of decentralized control laws β = 〈β1, . . . ,βn〉
which the agents use to map their individual observations
to actions: β(o) = 〈β1(o1), . . . ,βn(on)〉. Essentially we have
decomposed a joint decision rule δt into a collection of β,
one for each 〈b,a〉-pair. In fact, the maximization that (3)
performs for each such 〈b,a〉-pair corresponds to solving a
collaborative Bayesian game [17] or, equivalently, a Team
Decision Problem and is NP-complete [28]. We also note
that the set of possible β is a strict super set of the set of
joint actions; control laws that ignore the private observa-
tion and just map from the previous joint belief (and joint
action) to a joint action are included. As such, this approach
gives a strict improvement over assuming delayed joint ob-
servations [2].

2.2 Solution Methods
For both instantaneous and delayed communication, we

can define a value function over joint beliefs. The problem
with computing them, however, is that these spaces are con-
tinuous. Here we discuss methods that overcome this prob-
lem. We focus on the case of MPOMDPs and defer the nec-
essary extensions for MPOMDP-DC to the next section.
Many methods for solving a (multiagent) POMDP make

use of the fact that (2) is piecewise-linear and convex (PWLC)
over the belief space. That is, the value at stage t can be ex-
pressed as a maximum inner product with a set of vectors:

Q
t(b,a) = max

va∈Vt
a

b · va = max
va∈Vt

a

∑

s

b(s)va(s). (4)

2Strictly speaking each agent can compute a−i given the
common information, and broadcasting ai is not essential.

We will also write Vt =
⋃

a∈A V
t
a for the complete set of

vectors that represent the value function. Each of these vec-
tors va represents a conditional plan (i.e., policy) starting at
stage t with joint action a and has the following form:

v
t
a = R

a +
∑

o

g
i
ao, (5)

with giao the back-projection of vi, the i-th vector in Vt+1:

g
i
ao =

∑

s′

O
a(o|s′)P a(s′|s)vi(s′). (6)

The set of such gamma vectors is denoted Gao.
Monahan’s algorithm [16] simply generates all possible

vectors by, for each joint action a, for each possible observa-
tion selecting each possible next-stage vector:

Vt
a = {Ra} ⊕ Gao1 ⊕ · · · ⊕ GaoK , (7)

where the cross-sum A⊕B = {a+ b | a ∈ A,b ∈ B}.
A problem in this approach is that the number of vec-

tors generated by it grows exponentially; at every backup,

the algorithm generates
∣

∣Vt+1
∣

∣ = J
∣

∣Vt
∣

∣

K
vectors. However,

many of these vectors are dominated, which mean that they
do not maximize any point in the belief space. Formally, a
vector v ∈ Vt is dominated if

6 ∃b s.t. b · v > b · v′, ∀v′ ∈ Vt
.

The operation Prune removes all dominated vectors by
solving a set of linear programs [6, 8]. That way, the parsi-
monious representation of Vt can be computed via

Vt = Prune(Vt
a1 ∪ · · · ∪ V

t
aJ ), (8)

Vt
a = Prune

(

{Ra} ⊕ Vt
ao1 ⊕ · · · ⊕ V

t
aoK

)

(9)

Vt
ao = Prune(Gao). (10)

The technique called incremental pruning (IP) [6] speeds
up the computation of the value function tremendously by
realizing that (9), the bottleneck in this computation, can
be re-written to interleave pruning and cross-sums:

Prune(Vt
ao1 ⊕ · · · ⊕ V

t
aoK ) =

Prune((....Prune(Vt
ao1 ⊕ V

t
ao2) . . . )⊕ V

t
aoK ). (11)

That is, we can first prune parts of the larger cross sum to
yield the same result.

3. COMPUTING DC VALUE FUNCTIONS
In this section, we show how the methods mentioned in

the previous section can be extended to the MPOMDP-DC.

3.1 Vector Representations
As for an MPOMDP, we can represent the value function

under delayed communication using vectors [12]. However,
in the MPOMDP-DC case, not all combinations of next-
stage vectors are possible; the actions they specify should
be consistent with an admissible decentralized control law β.
That is, we define vectors gaoa′ ∈ Gaoa′ analogously to (6),
but now restricting vi to be chosen from Vt+1

a′ . From these
we construct

Vt
a =

{

R
a + gao1β(o1) + gao2β(o2) + · · ·+ gaokβ(ok)

| ∀β,∀gaoβ(o) ∈ Gaoβ(o)
}

= {Ra} ⊕ Gao1β(o1) ⊕ · · · ⊕ GaoKβ(oK) (12)



Note that it is no longer possible to collect all the vectors in
one set Vt, since we will always need to discriminate which
joint action a vector specifies.
In the following, we will also represent a β as a vector

of joint actions 〈a(1) . . . a(K)〉, where a(k) denotes the joint
action selected for the k-th joint observation.

Proposition 1. The (not pruned) set Vt
a,DC of vectors

under delayed communication is a strict subset of the set
Vt
a,P of MPOMDP vectors: ∀a Vt

a,DC ⊂ V
t
a,P .

Proof. To see this, realize that

Gao =
⋃

a′

Gaoa′ (13)

and that therefore (7) can be rewritten as

V
t
a,P =

⋃

a

(Ra
⊕

[

⋃

a′

Gao1a′

]

⊕ · · · ⊕

[

⋃

a′

GaoKa′

]

)

=
⋃

a

⋃

〈a(1),...a(K)〉∈AK

(Ra
⊕ Gao1a(1)

⊕ · · · ⊕ Gaoka(k)
).

The observation follows from the fact that the set of admis-
sible β ∈ B is a subset of AK : each β can be represented as
a vector of joint actions 〈a(1) . . . a(K)〉, but not every such
vector is a valid β.

This means that the number of vectors grows less fast
when performing exhaustive generation. However, an effec-
tive method for doing the backup, such as incremental prun-
ing for POMDPs, has not been developed.

3.2 Naive Incremental Pruning
An obvious approach to incremental pruning in MPOMDP-

DCs is given by the following equations, which we will refer
to as Naive IP:

Vt
a = Prune(

⋃

β∈B

Vt
aβ), (14)

Vt
aβ = Prune

(

{Ra} ⊕ Gtao1β(o1) ⊕ · · · ⊕ G
t
aoKβ(oK)

)

, (15)

Gtaoa′ = Prune(Gaoa′), (16)

where (15) uses incremental pruning.
Note that it is not possible to prune the union over joint

actions as in (8), because this would correspond to a max-
imization over joint actions in (3). This is not possible, be-
cause under delayed communication, the joint action is that
joint action that was taken in the previous time step. In par-
ticular, the sets of vectors Vt

a are used as follows. At a stage t,
an agent knows bt−1 and at−1. It uses this information to
determine the vector v ∈ Vt−1

at−1 that maximizes v · bt−1. It

retrieves the maximizing β for v, and executes βi(o
t
i).

There are two problems with the computation outlined
above. First, it iterates over all possible β ∈ B, which is
exponential both in the number of agents and in the num-
ber of observations. Performing the iteration in this way
in practice this means that performing one backup takes
nearly a factor |B| as much as a POMDP backup. Second,
it performs a lot of duplicate work. E.g., there are many β

that specify β(o1) = ak,β(o2) = al, but for each of them
Prune(Gao1ak ⊕ Gao2al) is recomputed.
It is tempting to side step the problem by generating

the POMDP value function using incremental pruning and
then throw away the vectors that do not correspond to a
valid β, i.e., throw away the vectors that are not admissible.
This, however, is not correct: many vectors corresponding
to valid β may have been pruned away because they were

dominated by (a combination of) other vectors that are not
admissible, which clearly is not desirable.

4. TREE-BASED PRUNING
In order to overcome the drawbacks of the naive approach

outline above, we propose a different approach. Rather than
creating sets Vt

aβ for each β ∈ B, we directly construct

Vt
a = Prune(

⋃

β∈B

(

{Ra}⊕Gtao1β(o1)⊕· · ·⊕G
t
aoKβ(oK)

)

). (18)

As mentioned, we can interpret β as a vector of joint actions.
This allows us to decompose the union over β into dependent
unions over joint actions, as illustrated in Fig. 1(a).

The resulting equation (17) defines a computation tree,
as illustrated in Fig. 1(b) in the context of a fictitious 2-
action (x and y) 2-observation (1 and 2) MPOMDP-DC.
The root of the tree, Vt

a, is the result of the computation.
There are two types of internal, or operator, nodes: cross-
sum and union. All the leaf nodes are sets of vectors. An
operator node n takes as input the sets from its children,
computes Vn, the set resulting from application of its oper-
ator, and propagates this result up to its parent. When a
union node is the j-th union node on a path from root to
leaf, we say it has depth j. A depth-j union node performs
the union over a(j) and thus has children corresponding to

different assignments of a joint action to oj (indicated by the
gray bands). It is important to realize that the options avail-
able for a(j) depend on the action choices (a(1), . . . ,a(j−1))
made higher up in the tree; given those earlier choices, some
a(j) may lead to conflicting individual actions for the same
individual observation. Therefore, while there are 4 children
for ∪a(1)

, union nodes deeper in the tree have only 2 or even
just 1.

Now, to compute (18) we propose tree-based (incremen-
tal) pruning (TBP): it expands the computation tree and,
when the results are being propagated to the top of the tree,
prunes dominated vectors at each internal node. However,
Fig. 1(b) shows another important issue: there are identi-
cal sub-trees in this computation tree, as indicated by the
dashed green ovals, which means that we would be doing
unnecessary work. We address this problem by memoiza-
tion, i.e., caching of intermediate results, and refer to the
resulting method as TBP-M. Note that the sub-tree under
a node is completely characterized by a specification of which
joint action assignments are still possible for the unspecified
joint observations. For instance, the nodes inside the ovals
we can characterize as 〈−,− , 〈∗,x〉 , 〈∗,y〉〉, where ‘−’ means
that the joint action for that joint observation is specified,
〈∗,x〉 denotes the set {〈x,x〉 , 〈y,x〉} (‘*’ acts as a wildcard)
and similar for 〈∗,y〉. We call such a characterization the ID
string and it can be used as the key into a lookup table. This
way we only have to perform the computation just once for
each ID string.

5. BRANCH & BOUND
Here we introduce tree-based pruning using branch and

bound (TBP-BB), which is a different method to overcome
the problems of naive incremental pruning as described in
Section 3.2. The motivation of introducing another method
is twofold. First, while TBP-M effectively addresses the is-
sue of performing duplicate work (i.e., it addresses the sec-
ond problem in Section 3.2), it does not fully address the



V
t
a =

⋃

〈

a(1)...a(k)

〉

∈B

(

{R
a
} ⊕ Gao1a(1)

⊕ · · · ⊕ G
aoka(k)

)

={R
a
} ⊕

⋃

a(1)∈A

⋃

〈

a(2)...a(k)

〉

∈B|a(1)

(

Gao1a(1)
⊕ · · · ⊕ G

aoka(k)

)

={R
a
} ⊕

⋃

a(1)∈A

[

Gao1a(1)
⊕

⋃

〈

a(2)...a(k)

〉

∈B|a(1)

(

Gao2a(2)
⊕ · · · ⊕ G

aoka(k)

)

]

={R
a
} ⊕

⋃

a(1)∈A

[

Gao1a(1)
⊕

⋃

a(2)∈A|a(1)

⋃

〈

a(3)...a(k)

〉

∈B|a(1)a(2)

(

Gao2a(2)
⊕ Gao3a(3)

⊕ · · · ⊕ G
aoka(k)

)

]

={R
a
} ⊕

⋃

a(1)∈A

[

Gao1a(1)
⊕

⋃

a(2)∈A|a(1)

[

Gao2a(2)
⊕

⋃

a(3)∈A|a(1)a(2)

· · · ⊕

[

⋃

a(k)∈A|a(1)...a(k−1)

G
aoka(k)

]]]

(17)

(a) Rewriting (18). B|a(1)a(2)
denotes the set of β consistent with a(1),a(2), A|a(1)...a(k−1)

denotes the set of joint actions

(for the k-th joint observation) that result in a valid β.
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Figure 1: (a) By decomposing the joint union and moving it inwards, we create a tree-formed computation
structure. (b) The computation tree of Vt

a. See text for description.

other problem. Every leaf of a depth-K union node corre-
sponds to exactly one β. Even though we hope to avoid
visiting many leafs due to memoization, the number of β

and thus number of sub-trees that will need to be computed
at least once may still be prohibitive. TBP-BB can over-
come this problem by pruning complete parts of the search
tree, even if they have not been computed before. Second, as
mentioned above, TBP-M needs to cache results in order to
avoid duplicate work which may lead to memory problems.
TBP-BB does not perform caching, but still can avoid ex-
panding the entire tree, creating an attractive alternative to
trade off space and time complexity.
Branch and bound (BB) is a well-known method to prune

parts of search trees. It computes an f -value, for each visited
node n in the tree via f(n) = g(n)+h(n), where g(n) is the
actual reward achieved up to the node, and h(n) is a heuris-

tic estimate of the reward to be found in the remainder of
the tree. When h is admissible (a guaranteed overestima-
tion), so is f . This means that if the f -value of a node n is
less than the value of the maximum lower bound l (i.e., the
best full solution found so far), we can prune the sub-tree
under n. Since we are not concerned with a search-tree, but
rather a computation tree, this technique can not be applied
directly. Still, we can generalize the idea of BB to be appli-
cable to our setting, which requires specifying f, g and h as
PWLC functions and comparing them to l, the lower bound
function: the PWLC function over belief space induced by
the set L of already found non-dominated vectors vta.

This idea is illustrated in Fig. 2. The first insight that this
figure illustrates is that, while the computation tree works
bottom-up, we can also interpret it as top-down: by associ-
ating the null-vector ~0 with the root node, we can now pass



· · ·

· · ·

· · ·

⊕⊕

⊕

⊕

⊕⊕

⊕⊕

∪

∪

∪

∪∪

~0

{Ra}

x,x

x,x

x,x

x,y

x,y

x,y

y,x

y,x

y,y

G

G G

G G

G G

l

g

h

V

b(s)

Figure 2: A part of the search tree from Fig. 1(b)
illustrating the heuristics for a search node. Gamma
sets are abbreviated by simply G. If f = g + h does
not exceed the lower bound l (induced by already
found full vectors) at any point in the belief space,
the node does not have to be expanded further.

the result of ~0 ⊕ {Ra} = {Ra} down the tree. The union
node now acts as a simple ‘splitter’ duplicating its input set
down to all children. This way we can define with each node
the cross-sum of sets encountered from the root to that node
(indicated in thick blue lines in the figure). This cross-sum
itself is a set G and thus defines a PWLC function over the
belief space, namely g.
In a similar way, the PWLC heuristic function h is rep-

resented by a set of vectors H. The function should give a
guaranteed overestimation of Vn (as formalized below) and
we propose to use the POMDP vectors. That is, for a node
at depth j (for which the first j joint observations’ gamma
vector sets are used in the cross-sum to compute G), we
specify:

Hj = Prune(Vt
aoj+1 ⊕ · · · ⊕ V

t
aoK ). (19)

This can be pre-computed using incremental pruning.
With a slight abuse of notation, we will write fn and Fn for

the f -function at node n and the set of vectors representing
it. We will say that fn and Fn are admissible if they are a
guaranteed over-estimation of the actual complete (alpha)
vectors produced by this node. That is if

∀b ∃v∈Fn∀v′∈(Gn⊕Vn) b · v ≥ b · v′. (20)

Or, if we use h⋆
n to denote the function induced by Vn, the

actual set of vectors computed by n, we can more simply
state this requirement as

∀b fn(b) ≥ gn(b) + h
⋆
n(b). (21)

Theorem 1. Let n be a search node at depth j, then Fn =
Gn⊕Hj , where Hj is defined as the POMDP heuristic (19),
is admissible.

Proof. By Fn = Gn ⊕ Hj we have that the induced
function fn(b) = gn(b) + hj(b). Therefore we only need to
show that ∀b hj(b) ≥ h⋆

n(b). This clearly is the case because
hj is induced by a cross-sum of POMDP back projections

(19), while the latter is induced by cross-sums of DC back
projections ( ∪β∈B′(Vt

aoj+1,β(oj+1) ⊕ · · · ⊕ V
t
aoK ,β(oK)), for a

subset B′ of β) and the former are supersets of the latter
(Vt

aoi
⊃ Vt

aoi,a′ ,∀a
′) as indicated by (13).

Given g, h we want to see if we need to further expand the
current node. Clearly, f = g+h is represented by the upper
surface implied by the set F = Prune(G⊕H). Therefore, to
see if the current node could generate one or more vectors
that are not dominated by the set L of full vectors found
so far, we need to check if there is a v ∈ F , such that ∃b
such that v · b > w · b, ∀w ∈ L. That is, we simply need to
check for each v ∈ F if it is dominated by the set of vectors
L representing l. This can be done using the standard LP
for checking for dominance [6, 8]. At the bottom of the tree,
we add any non-dominated vectors to L.

A final note on the TBP-BB method here is that, while
it may be able to avoid computation of complete branches
when the heuristics are tight enough, it does not perform
memoizationand therefore may need to perform some dupli-
cate work in different parts of the tree. However, this does
give this method the advantage of limited memory require-
ments.

6. EXPERIMENTS
We tested our methods on a set of six problems: Dec-Tiger,

OneDoor, GridSmall, Cooperative Box Pushing, Dec-Tiger
with Creaks [9], and MeetingGrid2x23. The main character-
istics of these problems can be found in Table 1(a).4 Of par-
ticular interest is the right-most column showing the number
of β (denoted |B|) for each problem, which is a key indica-
tor of its complexity. As all methods compute optimal value
functions, we only compare computation times.

Table 2 shows timing results for all six problems, for a set
of planning horizons (depending on the problem). We can see
that for all domains TBP-M outperforms Naive IP, often
by an order of magnitude and up to 3 orders of magnitude.
TBP-BB performs somewhat worse, but as noted before,
requires much less memory.

We also compared against TBP-noM: a strawman ver-
sion of TBP-M that does not perform any memoization and
re-computes duplicate parts of the tree. It allows us to see
the effect of tree-based pruning, without the extra speedups
provided by memoization: except for a very small problem
(Dec-Tiger(5)), memoization significantly speeds up compu-
tations. The results also show that TBP-noM still is faster
than Naive IP on almost all problems.

Table 1(b) provides some statistics forTBP-M. The“Mem-
oization” columns show how often the memoization proce-
dure can retrieve a solution (“# hits”), both the absolute
number as well as as a percentage of the total number of
calls to the cache. The “Nodes” columns show how many
nodes in the search tree are actually being visited (“# vis-
ited”), as well compared to the total number of nodes in the
tree. We can see that as the problem domains grow larger
in terms of |B|, the percentage of successful cache hits goes
down somewhat. More importantly, however, the percentage
of visited nodes decreases more rapidly, as larger subtrees
have been cached, leading to larger computational savings.
Indeed, when comparing TBP-M vs. TBP-noM in Table 2,

3Courtesy of Jilles Dibangoye.
4Problems without citation are available from http://www.
isr.ist.utl.pt/~mtjspaan/decpomdp/.



Table 1: (a) Overview of several characteristics of the problem domains. All problems have 2 agents. (b)
Statistics for TBP-M (independent of h). (c) Statistics for TBP-BB (for a particular h).

(a) Problem domains.

Problem |S| |A| |O| |B|
Dec-Tiger 2 9 4 81
OneDoor 65 16 4 256
GridSmall 16 25 4 625
MG2x2 16 25 16 390625
D-T Creaks 2 9 36 531441
Box Push. 100 16 25 1048576

(b) TBP-M statistics.

Memoization Nodes
Problem # hits % total # visited % total
Dec-Tiger 324 28.35 1143 54.04
OneDoor 1536 33.22 4624 42.94
GridSmall 5000 36.30 13775 35.53
MG2x2 265000 16.17 1638775 2.11
D-T Creaks 85212 8.02 1062567 1.39
Box Push. 261888 11.31 2314768 1.22

(c) TBP-BB statistics.

Nodes
Problem(h) # visited % total
Dec-Tiger(2) 2108 74.12
OneDoor(3) 14845 99.87
GridSmall(2) 38589 70.93
MG2x2(2) 26174987 29.98
D-T Creaks(2) 14074281 17.37
Box Push.(2) 206207504 99.99

Problem(h) TBP-M TBP-BB Naive IP TBP-noM

Dec-Tiger(5) 0.13 0.09 0.23 0.09
Dec-Tiger(10) 0.31 0.43 0.73 0.33
Dec-Tiger(15) 0.98 1.44 2.54 1.19
OneDoor(3) 53.64 1546.73 304.72 56.53
GridSmall(2) 3.93 125.45 64.03 3.80
MG2x2(2) 171.07 2689.35 382093.00 516.03
MG2x2(3) 640.70 11370.40 1499.43
MG2x2(4) 1115.06 24125.30 2813.10
D-T Creaks(2) 63.14 93.16 109.27 121.99
D-T Creaks(3) 149.06 172.79 1595.17 471.57
D-T Creaks(4) 203.44 292.67 4030.47 1150.69
D-T Creaks(5) 286.53 619.25 8277.32 2046.73
Box Push.(2) 132.13 6663.04 1832.98 1961.38

Table 2: Timing results (in s), comparing TBP-M
and TBP-BB to Naive IP and TBP-noM. The miss-
ing entries for Naive IP on MG2x2(3)/(4) are due
to time limits.

we can see that the gap between them grows as |B| increases
(c.f. Table 1(a)).
Table 1(c) shows the amount of nodes visited by TBP-BB

during the search for a particular horizon. There is a clear
correlation with the TBP-BB in Table 2: domains in which
TBP-BB can hardly prune any branches (OneDoor and
Box Push.), its performance is much worse than TBP-noM,
due to the overhead of maintaining bounds. However, a tighter
heuristic could change this picture dramatically. Addition-
ally, computing the heuristic Hj is relatively costly in some
domains: for GridSmall(2) it takes 83.95s, and 1280.23s for
OneDoor(3).
Finally, note that computing the heuristic (19) using in-

cremental pruning just corresponds to computing (11) and
therefore to doing a POMDP backup. However, we can see
that TBP-M solves the mentioned problem instances in
3.93s resp. 53.64s. That is, the DC backup is faster than
the POMDP backup in these instances. While this is not a
trend for all domains, this does suggest that the DC backup
no longer inherently suffers from an additional complexity.

7. DISCUSSION & RELATED WORK
Here we discuss our approach, providing pointers to re-

lated work and possible directions of future work where pos-
sible.
Our experimental evaluation show very favorable results

for TBP-M, but the results for TBP-BB are not that great
in comparison. While the latter improves over Naive IP,
it is only able to improve over TBP-noM (i.e., simple exe-
cution of the entire computation tree) for one domain. A
significant problem seems to be that the heuristic is not
tight enough in many cases. In future research we plan to

analyze what causes the big differences in effectiveness of
TBP-BB between domains, which may also lead to new in-
sights to improve the heuristics. Another interesting idea is
to apply TBP-BB in approximate settings by using tighter
(non-admissible) heuristics.

The suitability of the MPOMDP-DC model depends on
the ratio of expected duration to synchronize the joint belief
state and the duration of a joint action. It is certainly the
case that there may be many situations where synchroniza-
tion is expected to take multiple stages and in such settings
our model will also lead to agents deferring their actions,
leading to delays. However, even for such cases the tech-
niques developed here may be useful: the one-step delayed
can be used as a part of a solution with longer commu-
nication delays [27], or to provide upper bounds for such
situations [19].

The MPOMDP-DC model is particularly useful for ap-
plications that require a low response time. In such applica-
tions it is also difficult to perform planning online [23], which
motivates the need for offline planning as presented in this
paper. We point out, however, that even in cases where on-
line planning is feasible, having a value function to use as a
heuristic for the leafs of the search tree is a valuable asset.

While IP entails a choice for the regular (vector-based)
backup, an interesting other direction is the exploration of
point-based backups. While we do not expect that this can
directly lead to further improvements to the exact backup—
IP is empirically faster than the (point-based) witness algo-
rithm [13]—point based methods have led to state-of-the-art
results for approximate POMDP methods [21, 15]. While a
point-based value iteration for MPOMDP-DC has been pro-
posed [18, 27], many questions remain open. For instance, in
order to get any kind of quality guarantees for such methods,
future research should investigate how to efficiently compute
upper bounds for the DC setting. Moreover, it is still unclear
how to efficiently perform the point-based backup itself, al-
though there have been recent advances [17]. We expect that
it will be possible to draw on work performed on point-based
backups for the Dec-POMDP [1, 7, 14, 31].

In fact, this connection with Dec-POMDPs also works the
other way around. An important direction of future work
is to investigate whether it is possible to transfer TBP to
Dec-POMDPs. As mentioned earlier, MPOMDP-DC value
functions have also been used as upper bounds for the so-
lution of Dec-POMDPs thereby significantly increasing the
size of problems that can be addressed [19, 26]. However,
there may be more direct ways in which our methods can
advance Dec-POMDP algorithms. For instance, the most
influential approximate solution method, MBDP [24], sam-



ples joint beliefs to admit point-based one-step backups. Our
methods allow us to perform the one-step backup over the
entire joint belief space and thus can find the complete set
of useful sub-tree policies obviating the need to pre-specify a
‘max-trees’ parameter. We also plan to investigate whether
our techniques may be useful for exact DP methods [11].

8. CONCLUSIONS
In this article we considered multiagent planning under

uncertainty formalized as a multiagent POMDP with de-
layed communication (MPOMDP-DC). A key feature of this
model is that it allows a fast response to certain local ob-
servations, relevant in time-critical applications such as in-
telligent power grid control. We showed that the set of legal
vectors (corresponding to admissible joint policies) is a sub-
set of the set of vectors for the MPOMDP. Still, because of
the way this restriction is specified (as a union over decen-
tralized control laws β), a naive application of incremental
pruning (IP) suffers from a significant additional complexity
when compared to the MPOMDP case.
In order to address this problem we presented an analysis

that shows that the DC backup operator can be represented
as a computation tree and presented two methods to exploit
this tree structure. The first, TBP-M, is based on the origi-
nal bottom-up semantics of the computation tree, and gains
efficiency via memoization. The second, TBP-BB, broad-
ens regular branch-and-bound methods by reinterpreting the
computation tree in a top-down fashion and generalizing the
concepts of f, g and h-values to PWLC functions.
We performed an empirical evaluation on a number of

benchmark problems that indicates that TBP-M can real-
ize speedups of 3 orders of magnitude over the Naive IP

baseline. TBP-BB is not competitive with TBP-M on all
but one domain (it can not prune enough nodes using its
heuristic) but still shows the potential to significantly im-
prove over Naive IP in three of six problems. These results
show that we have successfully mitigated the additional com-
plexity that the DC backup exhibits over the MPOMDP,
allowing for the solution of larger problems.
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