

IAS technical report IAS-UVA-07-03

Properties of the $\mathbf{Q}_{\mathbf{B}\mathbf{G}}\text{-value}$ function

Frans A. Oliehoek¹, Nikos Vlassis², and Matthijs T.J. Spaan³

¹ISLA, University of Amsterdam, The Netherlands

In this technical report we treat some properties of the recently introduced Q_{BG} -value function. In particular we show that it is a piecewise linear and convex function over the space of joint beliefs. Furthermore, we show that there exists an optimal infinite-horizon Q_{BG} -value function, as the Q_{BG} backup operator is a contraction mapping. We conclude by noting that the optimal Dec-POMDP Q-value function cannot be defined over joint beliefs.

Keywords: Multiagent systems, Dec-POMDPs, planning, value functions.

²Dept. of Production Engineering and Management, Technical University of Crete, Greece

³Institute for Systems and Robotics, Instituto Superior Técnico, Lisbon, Portugal

Contents

1	Introduction	1
2	Model and definitions	1
3	Finite horizon 3.1 Q_{BG} is a function over the joint belief space	
4	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	9
5	The optimal Dec-POMDP value function Q^*	10
A	Sub-proof of PWLC property	11

Intelligent Autonomous Systems

Informatics Institute, Faculty of Science University of Amsterdam Kruislaan 403, 1098 SJ Amsterdam The Netherlands

 $Tel (fax): +31\ 20\ 525\ 7461\ (7490)$ http://www.science.uva.nl/research/ias/

Corresponding author:

F.A. Oliehoek
tel: +31 20 525 7524
faolieho@science.uva.nl
http://www.science.uva.nl/~faolieho/

Section 1 Introduction 1

1 Introduction

The decentralized partially observable Markov decision process (Dec-POMDP) [1] is a generic framework for multiagent planning in a partially observable environment. It considers settings where a team of agents have to cooperate as to maximize some performance measure, which describes the task. The agents, however, cannot fully observe the environment, i.e., there is state uncertainty: each agent receives its own observations which provide a clue regarding the true state of the environment.

Emery-Montemerlo et al. [3] proposed to use a series of Bayesian games (BG) [6] to find an approximate solution for Dec-POMDPs, by employing a heuristic payoff function for the BGs. In previous work [5], we extended this modeling to the exact setting by showing that there exist an optimal Q-value function Q^* that, when used as the payoff function for the BGs, yields the optimal policy. We also argued that computing Q^* is hard and introduce Q_{BG} as a new approximate Q-value function that is a tighter upper bound to Q^* than previous approximate Q-value functions. Apart from its use as an approximate Q-value function for (non-communicative) Dec-POMDPs [5], the Q_{BG} -value function can also be used in communicative Dec-POMDPs: when assuming the agents in a Dec-POMDP can communicate freely, but that this communication is delayed by one time step, the Q_{BG} -value function is optimal.

In this report we treat several properties of the Q_{BG} -value function. We show that for a finite horizon, the Q_{BG} Q-value function $Q_B(\vec{\theta}^t, \mathbf{a})$, corresponds with a value function over the joint belief space $Q_B(\vec{b}^{\vec{\theta}^t}, \mathbf{a})$ and that it is piecewise linear and convex (PWLC).

For the infinite-horizon case, we also show that we can define a Q_{BG} backup operator, and that the operator is a contraction mapping. As a result we can conclude the existence of an optimal Q_{BG}^* for the infinite horizon.

First, we further formalize Dec-POMDPs and relevant notions, then section 3 treats the finite horizon: 3.1 shows that Q_{BG} is a function over the belief space and section 3.2 we prove that this function is PWLC. In section 4 we treat the infinite-horizon case: section 4.1 shows that in this case joint beliefs are also a sufficient statistic. Section 4.2 shows how the Q_{BG} functions can be altered to form a backup operator for the infinite-horizon case and that this operator is a contraction mapping. Finally, in Section 5 we prove that the optimal Dec-POMDP Q-value function cannot be defined over joint beliefs.

2 Model and definitions

As mentioned, we adopt the Dec-POMDP framework [1].

Definition 2.1 A decentralized partially observable Markov decision process (Dec-POMDP) with m agents is defined as a tuple $\langle S, A, T, R, \mathcal{O}, O \rangle$ where:

- S is a finite set of states.
- The set $A = \times_i A_i$ is the set of *joint actions*, where A_i is the set of actions available to agent *i*. Every time step one joint action $\mathbf{a} = \langle a_1, ..., a_m \rangle$ is taken.¹
- T is the transition function, a mapping from states and joint actions to probability distributions over next states: $T: \mathcal{S} \times \mathcal{A} \to \mathcal{P}(\mathcal{S})$.
- R is the reward function, a mapping from states and joint actions to real numbers: R: $S \times A \to \mathbb{R}$.

¹Unless stated otherwise, subscripts denote agent indices.

²We use $\mathcal{P}(X)$ to denote the infinite set of probability distributions over the finite set X.

- $\mathcal{O} = \times_i \mathcal{O}_i$ is the set of joint observations, with \mathcal{O}_i the set of observations available to agent i. Every time step one joint observation $\mathbf{o} = \langle o_1, ..., o_m \rangle$ is received.
- O is the observation function, a mapping from joint actions and successor states to probability distributions over joint observations: $O: \mathcal{A} \times \mathcal{S} \to \mathcal{P}(\mathcal{O})$.

Additionally, we assume that $b^0 \in \mathcal{P}(\mathcal{S})$ is the initial state distribution at time t = 0.

The planning problem is to compute a plan, or policy, for each agent that is optimal for a particular number of time-steps h, also referred to as the horizon of the problem. A common optimality criterion is the expected cumulative (discounted) future reward:

$$E\left(\sum_{t=0}^{h-1} \gamma^t R(t)\right). \tag{2.1}$$

The horizon h can be assumed to be finite, in which case the discount factor γ is generally set to 1, or one can optimize over an infinite horizon, in which case $h = \infty$ and $0 < \gamma < 1$ to ensure that the above sum is bounded.

In a Dec-POMDP, policies are mappings from a particular history to actions. Here we introduce a very general form of history.

Definition 2.2 The action-observation history for agent i, $\vec{\theta}_i^t$, is the sequence of actions taken and observations received by agent i until time step t:

$$\vec{\theta}_i^t = (a_i^0, o_i^1, a_i^1, ..., a_i^{t-1}, o_i^t). \tag{2.2}$$

The joint action-observation history is a tuple with the action-observation history for all agents $\vec{\theta}^t = \left\langle \vec{\theta}_1^t, ..., \vec{\theta}_m^t \right\rangle$. The set of all action-observation histories for agent i at time t is denoted $\vec{\Theta}_i$.

In the Q_{BG} setting, at a time step t the previous joint action-observation history $\vec{\theta}^{t-1}$ is assumed common knowledge, as the one-step-delayed communication of \mathbf{o}^{t-1} has arrived. When planning is performed off-line, the agents know each others policies and \mathbf{a}^{t-1} can be deduced from $\vec{\theta}^{t-1}$. The remaining uncertainty is regarding the last joint observation \mathbf{o}^t . This situation can be modeled using a Bayesian game (BG) [6]. In this case the type of agent i corresponds to its last observation $\theta_i \equiv o_i^t$. $\Theta = \times_i \Theta_i$ is the set of joint types, here corresponding with the set of joint observations \mathcal{O} , over which a probability function $P(\Theta)$ is specified, in this case $P(\theta) \equiv P(\mathbf{o}^t | \vec{\theta}^{t-1}, \mathbf{a}^{t-1})$. Finally, the BG also specifies a payoff function $u(\theta, \mathbf{a})$ that maps joint types and actions to rewards.

A joint BG-policy is a tuple $\beta = \langle \beta_1, ..., \beta_m \rangle$, where the individual policies are mappings from types to actions: $\beta_i : \Theta_i \to \mathcal{A}_i$. The solution of a BG with identical payoffs for all agents is given by the optimal joint BG-policy β^* :

$$\beta^* = \arg\max_{\beta} \sum_{\theta \in \Theta} P(\theta) u(\theta, \beta(\theta)), \tag{2.3}$$

where $\beta(\theta) = \langle \beta_1(\theta_1), ..., \beta_m(\theta_m) \rangle$ is the joint action specified by β for joint type θ . In this case, for a particular joint action-observation history $\vec{\theta}^t$, the agents know $\vec{\theta}^{t-1}$ and \mathbf{a}^{t-1} and they solve the corresponding BG:

$$\beta_{\langle\vec{\theta}^{t-1},\mathbf{a}^{t-1}\rangle}^* = \underset{\beta_{\langle\vec{\theta}^{t-1},\mathbf{a}^{t-1}\rangle}}{\arg\max} \sum_{\mathbf{o}^t} P(\mathbf{o}^t | \vec{b}^{\vec{\theta}^{t-1}}, \mathbf{a}^{t-1}) u_{\langle\vec{\theta}^{t-1},\mathbf{a}^{t-1}\rangle}(\mathbf{o}^t, \beta_{\langle\vec{\theta}^{t-1},\mathbf{a}^{t-1}\rangle}(\mathbf{o}^t)), \tag{2.4}$$

When defining $u_{\langle \vec{\theta}^{t-1}, \mathbf{a}^{t-1} \rangle}(\mathbf{o}^t, \mathbf{a}^t) \equiv Q_{\mathrm{B}}^*(\vec{\theta}^t, \mathbf{a}^t)$, the Q_{BG}-value function is the optimal payoff function [5]. It is given by:

$$Q_{\mathrm{B}}^{*}(\vec{\theta}^{t}, \mathbf{a}) = R(\vec{\theta}^{t}, \mathbf{a}) + \max_{\beta_{\langle \vec{\theta}^{t}, \mathbf{a} \rangle}} \sum_{\mathbf{o}^{t+1}} P(\mathbf{o}^{t+1} | \vec{\theta}^{t}, \mathbf{a}) Q_{\mathrm{B}}^{*}(\vec{\theta}^{t+1}, \beta_{\langle \vec{\theta}^{t}, \mathbf{a} \rangle}(\mathbf{o}^{t+1})), \tag{2.5}$$

where $\beta_{\langle \vec{\theta}^t, \mathbf{a} \rangle} = \left\langle \beta_{\langle \vec{\theta}^t, \mathbf{a} \rangle, 1}(o_1^{t+1}), ..., \beta_{\langle \vec{\theta}^t, \mathbf{a} \rangle, m}(o_m^{t+1}) \right\rangle$ is a tuple of individual policies $\beta_{\langle \vec{\theta}^t, \mathbf{a} \rangle, i} : \mathcal{O}_i \to \mathcal{A}_i$ for the BG played for $\vec{\theta}^t$, \mathbf{a} , and where $R(\vec{\theta}^t, \mathbf{a}) = \sum_s R(s, \mathbf{a}) P(s|\vec{\theta}^t)$ is the expected immediate reward.

Note that the Q_{BG} -setting is quite different from the standard Dec-POMDP setting, as shown in [5]. In this latter case, rather than solving a BG for each $\vec{\theta}^{t-1}$ and \mathbf{a}^{t-1} (i.e., (2.4)) the agents solve a BG for each time step 0, 1, ..., h-1:

$$\beta^{t,*} = \arg\max_{\beta^t} \sum_{\vec{\theta}^t \in \vec{\Theta}_{\pi^*}^t} P(\vec{\theta}^t) Q^*(\vec{\theta}^t, \beta^t(\vec{\theta}^t)). \tag{2.6}$$

When the summation is over $\vec{\Theta}_{\pi^*}^t$: all joint action-observation histories that are consistent with the optimal joint policy π^{*3} , and when the BGs use the optimal Q-value function:

$$Q^*(\vec{\theta}^t, \mathbf{a}) = R(\vec{\theta}^t, \mathbf{a}) + \sum_{\mathbf{o}^{t+1}} P(\mathbf{o}^{t+1} | \vec{\theta}^t, \mathbf{a}) Q^*(\vec{\theta}^{t+1}, \pi^*(\vec{\theta}^{t+1})), \tag{2.7}$$

then, solving the BGs for time step 0, 1, ..., h-1 will yield the optimal policy π^* , i.e., $\pi^{t,*} \equiv \beta^{t,*}$.

3 Finite horizon

In this section we will consider several properties of the finite-horizon Q_{BG} -value function.

3.1 $\,\mathrm{Q}_{\mathrm{BG}}$ is a function over the joint belief space

In a single agent POMDP, a belief b is a probability distribution over states that forms a sufficient statistic for the decision process. In a Dec-POMDP we use the term joint belief and write $b^{\vec{\theta}^t} \in \mathcal{P}(\mathcal{S})$ for the probability distribution over states induced by joint action-observation history $\vec{\theta}^t$. Here we show that the Q_{BG} value function $Q_B(\vec{\theta}^t, \mathbf{a})$ corresponds with a Q-value function over the space of joint beliefs $b^{\vec{\theta}^t}$.

Lemma 3.1 The Q_{BG} -value function (2.5) is a function over the joint belief space, I.e., it is possible convert (2.5) to a Q-value function over this joint belief space by substituting the action-observation histories by their induced joint beliefs:

$$Q_B^*(b^{\vec{\theta}^t}, \mathbf{a}) = R(b^{\vec{\theta}^t}, \mathbf{a}) + \max_{\beta_{\langle \vec{\theta}^t, \mathbf{a} \rangle}} \sum_{\mathbf{o}^{t+1}} P(\mathbf{o}^{t+1} | b^{\vec{\theta}^t}, \mathbf{a}) Q_B^*(b^{\vec{\theta}^{t+1}}, \beta_{\langle \vec{\theta}^t, \mathbf{a} \rangle}(\mathbf{o}^{t+1})), \tag{3.1}$$

where $b^{\vec{\theta}^{\,t}}$ denotes the joint belief induced by $\vec{\theta}^{\,t}$.

Proof First we need to show that there exists exactly one joint belief over states $b^{\vec{\theta}^t} \in \mathcal{P}(\mathcal{S})$ for each joint-action observation history $\vec{\theta}^t$. This is almost trivial: using Bayes' rule we can calculate the joint belief $b^{\vec{\theta}^{t+1}}$ resulting from $b^{\vec{\theta}^t}$ by **a** and \mathbf{o}^{t+1} by:

$$\forall_{s^{t+1}} \qquad b^{\vec{\theta}^{t+1}}(s^{t+1}) = \frac{P(s^{t+1}, \mathbf{o}^{t+1} | b^{\vec{\theta}^t}, \mathbf{a})}{P(\mathbf{o}^{t+1} | b^{\vec{\theta}^t}, \mathbf{a})}.$$
(3.2)

Because we assume only one initial belief, there is exactly one joint belief $b^{\vec{\theta}^t}$ for each $\vec{\theta}^t$.

 $^{^{3}}$ I.e., the action-observation histories that specify the same actions for all observation histories as π^{*} .

Of course the converse is not necessarily true: a particular distribution over states can correspond to multiple joint action-observation histories. Therefore, to show that the conversion from $Q_{\rm B}(\vec{\theta}^{\,t},\mathbf{a})$ to $Q_{\rm B}(b^{\vec{\theta}^{\,t}},\mathbf{a})$ is possible we will need to show that it is impossible that two different joint action-observation histories $\vec{\theta}^{\,t,a}, \vec{\theta}^{\,t,b}$ corresponds to the same belief, but have different $Q_{\rm BG}$ values. I.e., we have to show that if $b^{\vec{\theta}^{\,t,a}} = b^{\vec{\theta}^{\,t,b}}$ then

$$\forall_{\mathbf{a}} \quad Q_{\mathbf{B}}^*(\vec{\theta}^{t,a}, \mathbf{a}) = Q_{\mathbf{B}}^*(\vec{\theta}^{t,b}, \mathbf{a}) \tag{3.3}$$

holds.

We give a proof by induction, the base case is given by the last time step t = h - 1. In this case (2.5) reduces to:

$$Q_{\mathrm{B}}^*(\vec{\theta}^t, \mathbf{a}) = R(\vec{\theta}^t, \mathbf{a}) = \sum_{s} R(s, \mathbf{a}) b^{\vec{\theta}^t}(s). \tag{3.4}$$

Clearly, if $b^{\vec{\theta}^{t,a}} = b^{\vec{\theta}^{t,b}}$ then (3.3) holds. Therefore the base case holds. Now we need to show that if $b^{\vec{\theta}^{t+1,a}} = b^{\vec{\theta}^{t+1,b}}$ implies $Q_{\rm B}^*(\vec{\theta}^{t+1,a},{\bf a}) = Q_{\rm B}^*(\vec{\theta}^{t+1,b},{\bf a})$, then it should also hold that $b^{\vec{\theta}^{t,a}} = b^{\vec{\theta}^{t,b}}$ implies $Q_{\rm B}^*(\vec{\theta}^{t,a},{\bf a}) = Q_{\rm B}^*(\vec{\theta}^{t,b},{\bf a})$.

In the base case, the immediate rewards $R(\vec{\theta}^{t,a}, \mathbf{a})$ and $R(\vec{\theta}^{t,b}, \mathbf{a})$ are equal when $b^{\vec{\theta}^{t,a}} = b^{\vec{\theta}^{t,b}}$. Therefore we only need to show that the future reward is also equal. I.e., we need to show that, if $b^{\vec{\theta}^{t,a}} = b^{\vec{\theta}^{t,b}}$, it holds that

$$\max_{\beta_{\langle \vec{\boldsymbol{\theta}}^{t,a}, \mathbf{a} \rangle}} \sum_{\mathbf{o}^{t+1}} P(\mathbf{o}^{t+1} | \vec{\boldsymbol{\theta}}^{t,a}, \mathbf{a}) Q_{\mathrm{B}}^{*}(\vec{\boldsymbol{\theta}}^{t+1,a}, \beta_{\langle \vec{\boldsymbol{\theta}}^{t,a}, \mathbf{a} \rangle}(\mathbf{o}^{t+1})) = \\ \max_{\beta_{\langle \vec{\boldsymbol{\theta}}^{t,b}, \mathbf{a} \rangle}} \sum_{\mathbf{o}^{t+1}} P(\mathbf{o}^{t+1} | \vec{\boldsymbol{\theta}}^{t,b}, \mathbf{a}) Q_{\mathrm{B}}^{*}(\vec{\boldsymbol{\theta}}^{t+1,b}, \beta_{\langle \vec{\boldsymbol{\theta}}^{t,b}, \mathbf{a} \rangle}(\mathbf{o}^{t+1})), \quad (3.5)$$

given that $b^{\vec{\theta}^{\,t+1,a}} = b^{\vec{\theta}^{\,t+1,b}}$ implies $Q_{\rm B}^*(\vec{\theta}^{\,t+1,a}, \mathbf{a}) = Q_{\rm B}^*(\vec{\theta}^{\,t+1,b}, \mathbf{a})$.

Because $b^{\vec{\theta}^{t,a}} = b^{\vec{\theta}^{t,b}}$, we know that for each $\mathbf{a}, \mathbf{o}^{t+1}$ the resulting beliefs will be the same $b^{\vec{\theta}^{t+1,a}} = b^{\vec{\theta}^{t+1,b}}$. The induction hypothesis says that the Q_{BG} -values of the resulting joint beliefs are also equal in that case, i.e., $\forall_{\mathbf{a}} \ Q_{\mathrm{B}}^*(\vec{\theta}^{t+1,a}, \mathbf{a}) = Q_{\mathrm{B}}^*(\vec{\theta}^{t+1,b}, \mathbf{a})$. Also it is clear that the probabilities of joint observations are equal $\forall_{\mathbf{o}^{t+1}} \ P(\mathbf{o}^{t+1}|\vec{\theta}^{t,a}, \mathbf{a}) = P(\mathbf{o}^{t+1}|\vec{\theta}^{t,b}, \mathbf{a})$.

Therefore, the future rewards for $\vec{\theta}^{t,a}$ and $\vec{\theta}^{t,b}$ as shown by (3.5) must be equal: they are defined as the value of the optimal solution to identical Bayesian games (meaning BGs with the same probabilities and payoff function).

3.2 Q_{BG} is PWLC over the joint belief space

Here we prove that the Q_{BG} -value function is PWLC. The proof is a variant of the proof that the value function for a POMDP is PWLC [7].

Theorem 3.1 The Q_{BG} -value function for a finite horizon Dec-POMDP with 1 time step delayed, free and noiseless communication, as defined in (3.1) is piecewise-linear and convex (PWLC) over the joint belief space.

Proof The proof is by induction. The base case is the last time step t = h - 1. For the last time step (3.1) reduces to:

$$Q_{\rm B}^*(b^{\vec{\theta}^{h-1}}, \mathbf{a}) = R(b^{\vec{\theta}^{h-1}}, \mathbf{a}) = \sum_{s} R(s, \mathbf{a}) b^{\vec{\theta}^{h-1}}(s) = R_{\mathbf{a}} \cdot b^{\vec{\theta}^{h-1}},$$
(3.6)

Section 3 Finite horizon 5

where $R_{\mathbf{a}}$ is the immediate reward vector for joint action \mathbf{a} , directly given by the immediate reward function R, and where (\cdot) denotes the inner product. $Q_{\mathrm{B}}^{*}(b^{\vec{\theta}^{t}}, \mathbf{a})$ is defined by a single vector $R_{\mathbf{a}}$ and therefore trivially PWLC.

The induction hypothesis is that for some time step t+1 we can represent the Q_{BG} value function as the maximum of the inner product of a belief and a set of vectors $\mathcal{V}_{\mathbf{a}}^{t+1}$ associated with joint action \mathbf{a} .

$$\forall_{\vec{b}^{\vec{\theta}\,t+1}} \quad Q_{\mathrm{B}}^{*}(\vec{b}^{\vec{\theta}\,t+1}, \mathbf{a}) = \max_{v_{\mathbf{a}}^{t+1} \in \mathcal{V}_{\mathbf{a}}^{t+1}} \vec{b}^{\vec{\theta}\,t+1} \cdot v_{\mathbf{a}}^{t+1}. \tag{3.7}$$

Now we have to prove that, given the induction hypothesis, Q_{BG} is also PWLC for t. I.e., we have to prove:

$$\forall_{\vec{b}^{\vec{\theta}^t}} \quad Q_{\mathrm{B}}^*(\vec{b}^{\vec{\theta}^t}, \mathbf{a}) = \max_{v_{\mathbf{a}}^t \in \mathcal{V}_{\mathbf{a}}^t} \vec{b}^{\vec{\theta}^t} \cdot v_{\mathbf{a}}^t. \tag{3.8}$$

This is shown by picking up an arbitrary $b^{\vec{\theta}^t}$, for which the value of joint action **a** is given by (3.1), which we can rewrite as follows:

$$Q_{\mathrm{B}}^{*}(b^{\vec{\theta}^{t}}, \mathbf{a}) = R(b^{\vec{\theta}^{t}}, \mathbf{a}) + \max_{\beta_{\langle \vec{\theta}^{t}, \mathbf{a} \rangle}} \sum_{\mathbf{o}^{t+1}} P(\mathbf{o}^{t+1} | b^{\vec{\theta}^{t}}, \mathbf{a}) Q_{\mathrm{B}}^{*}(b^{\vec{\theta}^{t+1}}, \beta_{\langle \vec{\theta}^{t}, \mathbf{a} \rangle}(\mathbf{o}^{t+1}))$$
(3.9)

$$=b^{\vec{\theta}^t} \cdot R_{\mathbf{a}} + \max_{\beta \langle \vec{\theta}^t, \mathbf{a} \rangle} \sum_{\mathbf{o}^{t+1}} P(\mathbf{o}^{t+1} | b^{\vec{\theta}^t}, \mathbf{a}) \max_{\substack{v_{\mathbf{a}'}^{t+1} \in \mathcal{V}_{\mathbf{a}'}^{t+1} \text{ s.t.} \\ \beta \langle \vec{\theta}^t, \mathbf{a} \rangle}} b^{\vec{\theta}^{t+1}} \cdot v_{\mathbf{a}'}^{t+1}$$

$$(3.10)$$

where $R_{\mathbf{a}}$ is the immediate reward vector for joint action \mathbf{a} . In the second part $b^{\vec{\theta}^{t+1}}$ is the belief resulting from $b^{\vec{\theta}^t}$ by \mathbf{a} and \mathbf{o}^{t+1} and is given by:

$$\forall_{s^{t+1}} \qquad b^{\vec{\theta}^{t+1}}(s^{t+1}) = \frac{P(s^{t+1}, \mathbf{o}^{t+1} | b^{\vec{\theta}^t}, \mathbf{a})}{P(\mathbf{o}^{t+1} | b^{\vec{\theta}^t}, \mathbf{a})}, \tag{3.11}$$

with

$$P(s^{t+1}, \mathbf{o}^{t+1} | b^{\vec{\theta}^t}, \mathbf{a}) = \sum_{s^t} P(\mathbf{o}^{t+1} | \mathbf{a}, s^{t+1}) P(s^{t+1} | s^t, \mathbf{a}) b^{\vec{\theta}^t}(s^t).$$
(3.12)

Therefore we can write the second part of (3.10) as

$$\max_{\substack{\beta \\ \langle \vec{\theta}^{\,t}, \mathbf{a} \rangle}} \sum_{\mathbf{o}^{t+1}} P(\mathbf{o}^{t+1} | b^{\vec{\theta}^{\,t}}, \mathbf{a}) \max_{\substack{v_{\mathbf{a}'}^{t+1} \in \mathcal{V}_{\mathbf{a}'}^{t+1} \text{ s.t. } \\ \beta \\ \langle \vec{\theta}^{\,t}, \mathbf{a} \rangle}} \sum_{\mathbf{s}^{t+1} \in \mathcal{S}} b^{\vec{\theta}^{\,t+1}}(s^{t+1}) v_{\mathbf{a}'}^{t+1}(s^{t+1}) =$$

$$\max_{\substack{\beta_{\left\langle \vec{\theta}^{\,t},\mathbf{a}\right\rangle }}} \sum_{\mathbf{o}^{t+1}} P(\mathbf{o}^{t+1}|b^{\vec{\theta}^{\,t}},\mathbf{a}) \max_{\substack{v_{\mathbf{a}^{\prime}}^{t+1} \in \mathcal{V}_{\mathbf{a}^{\prime}}^{t+1} \text{ s.t. } \\ \beta_{\left\langle \vec{\theta}^{\,t},\mathbf{a}\right\rangle }(\mathbf{o}^{t+1}) = \mathbf{a}^{\prime}}} \sum_{s^{t+1} \in \mathcal{S}} \left[\frac{P(s^{t+1},\mathbf{o}^{t+1}|b^{\vec{\theta}^{\,t}},\mathbf{a})}{P(\mathbf{o}^{t+1}|b^{\vec{\theta}^{\,t}},\mathbf{a})} \right] v_{\mathbf{a}^{\prime}}^{t+1}(s^{t+1}) = \mathbf{a}^{\prime}$$

$$\max_{\substack{\beta \in \vec{t}, \mathbf{a} \\ \beta \neq \vec{t}, \mathbf{a} \\ \beta \neq \vec{t}, \mathbf{a} \\ \beta \neq \vec{t}, \mathbf{a} \\ \lambda}} \max_{\substack{\mathbf{o}^{t+1} \in \mathcal{V}_{\mathbf{a}^t}^{t+1} \text{ s.t.} \\ \beta \neq \vec{t}, \mathbf{a} \\ \lambda}} \sum_{\substack{\mathbf{o}^{t+1} \in \mathcal{S} \\ \mathbf{o}^{t+1} \in \mathcal{S}}} P(s^{t+1}, \mathbf{o}^{t+1} | b^{\vec{\theta}^t}, \mathbf{a}) v_{\mathbf{a}^t}^{t+1}(s^{t+1}) = \mathbf{a}^t v_{\mathbf{a}^t}^{t+1}(s^{t+1})$$

$$\max_{\substack{\beta_{\left\langle\vec{\theta}^{\,t},\mathbf{a}\right\rangle}}} \sum_{\mathbf{o}^{t+1}} \max_{\substack{v_{\mathbf{a}^{\prime}=\mathbf{a}^{\prime}}\\\mathbf{a}^{\prime}=\mathbf{a},\mathbf{a}\right\rangle}} \sum_{\mathbf{o}^{t+1}} \sum_{\substack{v_{\mathbf{a}^{\prime}=\mathbf{a}^{\prime}}\\\mathbf{a}^{\prime}=\mathbf{a}^{\prime}}} \sum_{\mathbf{s}^{t+1}\in\mathcal{S}} \left[\sum_{s^{t}} P(\mathbf{o}^{t+1}|\mathbf{a},s^{t+1}) P(s^{t+1}|s^{t},\mathbf{a}) b^{\vec{\theta}^{\,t}}(s^{t}) \right] v_{\mathbf{a}^{\prime}}^{t+1}(s^{t+1}) = \mathbf{a}^{\prime}$$

$$\max_{\substack{\beta_{\langle \vec{\theta}^t, \mathbf{a} \rangle} \\ \beta_{\langle \vec{\theta}^t, \mathbf{a} \rangle}}} \sum_{\substack{\mathbf{o}^{t+1} \\ \mathbf{a}' \\ \beta_{\langle \vec{\theta}^t, \mathbf{a} \rangle}}} \max_{\substack{\mathbf{o}^{t+1} \\ \mathbf{a}' \\ \mathbf{a}' \\ \mathbf{a}' \\ \mathbf{a}' \\ \mathbf{a}' \\ \mathbf{o}^{t+1} | \mathbf{a}}'} \sum_{st} \left[\sum_{s^{t+1} \in \mathcal{S}} P(\mathbf{o}^{t+1} | \mathbf{a}, s^{t+1}) P(s^{t+1} | s^t, \mathbf{a}) v_{\mathbf{a}'}^{t+1}(s^{t+1}) \right] b^{\vec{\theta}^t}(s^t).$$
(3.13)

Note that for a particular $\mathbf{a}, \mathbf{o}^{t+1}$ and $v_{\mathbf{a}'}^{t+1} \in \mathcal{V}_{\mathbf{a}'}^{t+1}$ we can define a function:

$$g_{\mathbf{a},\mathbf{o}}^{v_{\mathbf{a}'}^{t+1}}(s^t) = \sum_{s^{t+1} \in \mathcal{S}} P(\mathbf{o}|\mathbf{a}, s^{t+1}) P(s^{t+1}|s^t, \mathbf{a}) v_{\mathbf{a}'}^{t+1}(s^{t+1}).$$
(3.14)

This function defines a gamma-vector $g_{\mathbf{a},\mathbf{o}}^{v^{t+1}}$. For a particular $\mathbf{a},\mathbf{o}^{t+1}$ we can define the set of gamma vectors that are consistent with a BG-policy $\beta_{\left\langle \vec{\theta}^{\,t},\mathbf{a}\right\rangle}$ for time step t+1 as

$$\mathcal{G}_{\mathbf{a},\mathbf{o},\beta_{\left\langle\vec{\theta}^{t},\mathbf{a}\right\rangle}} \equiv \left\{ g_{\mathbf{a},\mathbf{o}}^{v_{\mathbf{a}'}^{t+1}} \mid v_{\mathbf{a}'}^{t+1} \in \mathcal{V}_{\mathbf{a}'}^{t+1} \wedge \beta_{\left\langle\vec{\theta}^{t},\mathbf{a}\right\rangle}(\mathbf{o}^{t+1}) = \mathbf{a}' \right\}. \tag{3.15}$$

Combining the gamma vector definition with (3.10) and (3.13) yields

$$Q_{\mathrm{B}}^{*}(b^{\vec{\theta}^{t}}, \mathbf{a}) = b^{\vec{\theta}^{t}} \cdot R_{\mathbf{a}} + \max_{\beta \langle \vec{\theta}^{t}, \mathbf{a} \rangle} \sum_{\mathbf{o}^{t+1}} \max_{g_{\mathbf{a}, \mathbf{o}}^{v_{\mathbf{a}'}^{t+1}} \in \mathcal{G}_{\mathbf{a}, \mathbf{o}, \beta \langle \vec{\theta}^{t}, \mathbf{a} \rangle}} \sum_{s^{t}} g_{\mathbf{a}, \mathbf{o}}^{v_{\mathbf{a}'}^{t+1}}(s^{t}) b^{\vec{\theta}^{t}}(s^{t}).$$
(3.16)

Now let $g^*_{b^{\vec{\theta}\,t},\mathbf{a},\mathbf{o},\beta_{l\vec{\theta}\,t},\mathbf{a}}$ denote the maximizing gamma-vector, i.e.:

$$\forall_{\mathbf{o}} \quad g_{b\vec{\theta}^{t},\mathbf{a},\mathbf{o},\beta_{\langle\vec{\theta}^{t},\mathbf{a}\rangle}}^{*} \equiv \underset{\substack{v^{t+1}\\g_{\mathbf{a},\mathbf{o}}^{\mathbf{o}'} \in \mathcal{G}_{\mathbf{a},\mathbf{o},\beta_{\langle\vec{\theta}^{t},\mathbf{a}\rangle}}}{\operatorname{gr}_{\mathbf{a},\mathbf{o},\beta_{\langle\vec{\theta}^{t},\mathbf{a}\rangle}}} \sum_{s^{t}} g_{\mathbf{a},\mathbf{o}}^{v^{t+1}}(s^{t})b^{\vec{\theta}^{t}}(s^{t}). \tag{3.17}$$

This allows to rewrite (3.16) to:

$$Q_{\mathrm{B}}^{*}(b^{\vec{\theta}^{t}}, \mathbf{a}) = b^{\vec{\theta}^{t}} \cdot R_{\mathbf{a}} + \max_{\beta \langle \vec{\theta}^{t}, \mathbf{a} \rangle} \sum_{\mathbf{o}^{t+1}} \sum_{s^{t}} g_{b^{\vec{\theta}^{t}}, \mathbf{a}, \mathbf{o}, \beta \langle \vec{\theta}^{t}, \mathbf{a} \rangle}^{*}(s^{t}) b^{\vec{\theta}^{t}}(s^{t})$$

$$= b^{\vec{\theta}^{t}} \cdot R_{\mathbf{a}} + \max_{\beta \langle \vec{\theta}^{t}, \mathbf{a} \rangle} \sum_{s^{t}} \left[\sum_{\mathbf{o}^{t+1}} g_{b^{\vec{\theta}^{t}}, \mathbf{a}, \mathbf{o}, \beta \langle \vec{\theta}^{t}, \mathbf{a} \rangle}^{*}(s^{t}) \right] b^{\vec{\theta}^{t}}(s^{t}). \tag{3.18}$$

The vectors for the different possible joint observations are now combined:

$$g_{b\vec{\theta}^t, \mathbf{a}, \beta_{\langle \vec{\theta}^t, \mathbf{a} \rangle}}^*(s^t) \equiv \sum_{\mathbf{o}^{t+1}} g_{b\vec{\theta}^t, \mathbf{a}, \mathbf{o}, \beta_{\langle \vec{\theta}^t, \mathbf{a} \rangle}}^*(s^t), \tag{3.19}$$

which allows us to rewrite (3.18) as follows:

$$Q_{\mathrm{B}}^{*}(b^{\vec{\theta}^{t}}, \mathbf{a}) = b^{\vec{\theta}^{t}} \cdot R_{\mathbf{a}} + \max_{\beta_{\langle \vec{\theta}^{t}, \mathbf{a} \rangle}} \sum_{s^{t}} g_{b^{\vec{\theta}^{t}}, \mathbf{a}, \beta_{\langle \vec{\theta}^{t}, \mathbf{a} \rangle}}^{*}(s^{t}) b^{\vec{\theta}^{t}}(s^{t})$$

$$= \max_{\beta_{\langle \vec{\theta}^{t}, \mathbf{a} \rangle}} \left(R_{\mathbf{a}} + g_{b^{\vec{\theta}^{t}}, \mathbf{a}, \beta_{\langle \vec{\theta}^{t}, \mathbf{a} \rangle}}^{*} \right) \cdot b^{\vec{\theta}^{t}}$$

$$= \max_{\beta_{\langle \vec{\theta}^{t}, \mathbf{a} \rangle}} v_{b^{\vec{\theta}^{t}}, \mathbf{a}, \beta_{\langle \vec{\theta}^{t}, \mathbf{a} \rangle}}^{*, t} \cdot b^{\vec{\theta}^{t}}$$

$$(3.20)$$

with

$$v_{b\vec{\theta}^{t},\mathbf{a},\beta\langle\vec{\theta}^{t},\mathbf{a}\rangle}^{*,t} = R_{\mathbf{a}} + \sum_{\mathbf{o}^{t+1}} \left[\underset{g_{\mathbf{a},\mathbf{o}}^{t'} \in \mathcal{G}_{\mathbf{a},\mathbf{o},\beta\langle\vec{\theta}^{t},\mathbf{a}\rangle}}{\arg\max} \sum_{s^{t}} g_{\mathbf{a},\mathbf{o}}^{v_{\mathbf{a}'}^{t+1}}(s^{t}) b^{\vec{\theta}^{t}}(s^{t}) \right]$$
(3.22)

By defining

$$\mathcal{V}_{\mathbf{a},b^{\vec{\theta}^{t}}}^{t} \equiv \left\{ v_{b^{\vec{\theta}^{t}},\mathbf{a},\beta_{\langle\vec{\theta}^{t},\mathbf{a}\rangle}}^{*,t} \mid \forall_{\beta_{\langle\vec{\theta}^{t},\mathbf{a}\rangle}} \right\}, \tag{3.23}$$

we can write

$$Q_{\mathrm{B}}^{*}(b^{\vec{\theta}^{t}}, \mathbf{a}) = \max_{v_{\mathbf{a}}^{t} \in \mathcal{V}_{\mathbf{a}, b^{\vec{\theta}^{t}}}^{t}} v_{\mathbf{a}}^{t} \cdot b^{\vec{\theta}^{t}}, \tag{3.24}$$

which almost is what had to be proven. Although, for each $b^{\vec{\theta}^t}$, the set $\mathcal{V}^t_{\mathbf{a},b^{\vec{\theta}^t}}$ can contain different vectors. However, it is clear that

$$\forall_{\vec{b}^{\vec{\theta}^t}} \quad \max_{v_{\vec{\mathbf{a}}}^t \in \mathcal{V}_{\vec{\mathbf{a}}, \vec{b}^{\vec{\theta}^t}}^t} v_{\vec{\mathbf{a}}}^t \cdot \vec{b}^{\vec{\theta}^t} = \max_{v_{\vec{\mathbf{a}}}^t \in \mathcal{V}_{\vec{\mathbf{a}}}^t} v_{\vec{\mathbf{a}}}^t \cdot \vec{b}^{\vec{\theta}^t}$$

$$(3.25)$$

where

$$\mathcal{V}_{\mathbf{a}}^{t} \equiv \bigcup_{b^{\vec{\theta}^{t}} \in \mathcal{P}(\mathcal{S})} \mathcal{V}_{\mathbf{a}, b^{\vec{\theta}^{t}}}^{t}. \tag{3.26}$$

I.e., there is no vector in a different set $\mathcal{V}^t_{\mathbf{a},b^{\vec{\theta}^t}}$, that yields a higher value at $b^{\vec{\theta}^t}$ than the maximizing vector in $\mathcal{V}^t_{\mathbf{a},b^{\vec{\theta}^t}}$. This can be easily seen as $\mathcal{V}^t_{\mathbf{a},b^{\vec{\theta}^t}}$ is defined as the maximizing set of vectors at each belief point, and the different sets $\mathcal{V}^t_{\mathbf{a},b^{\vec{\theta}^t}}$ are all constructed using the same next time step policies and vectors, i.e., $v^{t+1}_{\mathbf{a}'} \in \mathcal{V}^{t+1}_{\mathbf{a}'}$ s.t. $\beta_{\langle \vec{\theta}^t, \mathbf{a} \rangle}(\mathbf{o}^{t+1}) = \mathbf{a}'$ are the same. For a more formal proof see appendix A.

As a result we can write

$$Q_{\mathrm{B}}^*(b^{\vec{\theta}^t}, \mathbf{a}) = \max_{v_{\mathbf{a}}^t \in \mathcal{V}_{\mathbf{a}}^t} v_{\mathbf{a}}^t \cdot b^{\vec{\theta}^t}, \tag{3.27}$$

which is what had to be proven for $b^{\vec{\theta}^t}$. Realizing that we took no special assumption on $b^{\vec{\theta}^t}$, we can conclude this holds for all joint beliefs.

4 Infinite horizon Q_{BG}

Here we discuss how Q_{BG} can be extended to the infinite horizon. A naive translation of (3.1) to the infinite horizon would be given by:

$$Q_{\rm B}(b^{\vec{\theta}}, \mathbf{a}) = R(b^{\vec{\theta}}, \mathbf{a}) + \gamma \max_{\beta \left\langle b^{\vec{\theta}}, \mathbf{a} \right\rangle} \sum_{\mathbf{o}} P(\mathbf{o}|b^{\vec{\theta}}, \mathbf{a}) Q_{\rm B}(b^{(\vec{\theta}, \mathbf{a}, \mathbf{o})}, \beta_{\left\langle b^{\vec{\theta}}, \mathbf{a} \right\rangle}(\mathbf{o})). \tag{4.1}$$

However, in the infinite-horizon case, the length of the joint action-observation histories is infinite, the set of all joint action-observation histories is infinite and there generally is an infinite number of corresponding joint beliefs. This means that it is not possible to convert a Q_{BG} function over joint action-observation histories to one over joint beliefs for the infinite horizon.

Rather, we define a backup operator $H_{\rm B}$ for the infinite horizon that is directly making use of joint beliefs:

$$H_{\mathrm{B}}Q_{\mathrm{B}}(b,\mathbf{a}) = R(b,\mathbf{a}) + \gamma \max_{\beta_{\langle b,\mathbf{a}\rangle}} \sum_{\mathbf{o}} P(\mathbf{o}|b,\mathbf{a}) Q_{\mathrm{B}}(b^{\mathbf{a}\mathbf{o}},\beta_{\langle b,\mathbf{a}\rangle}(\mathbf{o})). \tag{4.2}$$

This is possible, because joint beliefs are still a sufficient statistic in the infinite-horizon case, as we will show next. After that, in section 4.2, we show that this backup operator is a contraction mapping.

⁴Also observe that the inductive proof of 3.1 does not hold in the infinite horizon case.

4.1 Sufficient statistic

The fact that Q_{BG}^* is a function over the joint belief space in the finite horizon case implies that a joint belief is a *sufficient statistic* of the history of the process. I.e., a joint belief contains enough information to uniquely predict the maximal achievable cumulative reward from this point on.

We will show that, also in the infinite-horizon case, a joint belief is a sufficient statistic for a Dec-POMDP with 1-step delayed communication. Let I^t denote the total information at some time step. Then we can write

$$I^{t} = \left(I^{t-1}, o_{\neq i}^{t-1}, \mathbf{a}^{t-1}, o_{i}^{t}\right), \tag{4.3}$$

with $I^0 = (b^0)$. I.e., the agent doesn't forget what he knew, he receives the observations of the other agents of the previous time step $o_{\neq i}^{t-1}$, and using this the agent is able to deduce \mathbf{a}^{t-1} , moreover he receives its own current observation. Effectively this means that $I^t = (b^0, \vec{\theta}^{t-1}, \mathbf{a}^{t-1}, o_i^t)$.

Now we want to show that rather than using $I^t = \left(b^0, \vec{\theta}^{t-1}, \mathbf{a}^{t-1}, o_i^t\right)$ we can also use $I_b^t = \left(b^{t-1}, \mathbf{a}^{t-1}, o_i^t\right)$, without lowering the obtainable value. Following [7], we notice that the belief update 3.2 implies that b^{t-1} is a sufficient statistic for the next joint belief b^t . Therefore, the rest of this proof focuses on showing that joint beliefs are also a sufficient statistic for the obtainable value.

When using I^t , an individual policy has the form $\pi_i^t : \vec{\Theta}^{t-1} \times \mathcal{A}^{t-1} \times \mathcal{O}_i \to \mathcal{A}_i$. Alternatively, we write such a policy as a set of policies for BGs $\pi_i^t = \left\{\beta_{\left\langle \vec{\theta}^{t-1}, \mathbf{a} \right\rangle, i}\right\}_{\left\langle \vec{\theta}^{t-1}, \mathbf{a} \right\rangle}$ where $\beta_{\left\langle \vec{\theta}^{t-1}, \mathbf{a} \right\rangle, i} : \mathcal{O}_i \to \mathcal{A}_i$. When we write π^* for the optimal joint policy with such a form, the expected optimal payoff of a particular time step t is given by:

$$E_{\pi^*} \{R(t)\} = \sum_{\vec{\theta}^{t-1}} \underbrace{\left[\sum_{\mathbf{o}^t} \left[\sum_{s} R(s, \beta^*_{\langle \vec{\theta}^{t-1}, \mathbf{a}^{t-1} \rangle}(\mathbf{o}^t)) P(s|\vec{\theta}^t)\right] P(\mathbf{o}^t|\vec{\theta}^{t-1}, \mathbf{a}^{t-1})\right]}_{\text{Expectation of the BG for } \langle \vec{\theta}^{t-1}, \mathbf{a}^{t-1} \rangle} P(\vec{\theta}^{t-1}, \mathbf{a}^{t-1}). \tag{4.4}$$

When using $I_b^t = (b^{t-1}, \mathbf{a}^{t-1}, o_i^t)$ as a statistic, the form of policies becomes $\pi_{b,i}^t : \mathcal{B} \times \mathcal{A}^{t-1} \times \mathcal{O}_i \to \mathcal{A}_i$, where $\mathcal{B} = \mathcal{P}(\mathcal{S})$ is the set of possible joint beliefs. Again, we also write $\beta_{\langle b^{t-1}, \mathbf{a} \rangle, i}$. Now, we need to show that for all t':

$$v^{t'}(I^{t'}) = E_{\pi^*} \left\{ \sum_{t=t'}^{\infty} \gamma^{t-t'} R(t) \right\} = E_{\pi_b^*} \left\{ \sum_{t=t'}^{\infty} \gamma^{t-t'} R(t) \right\} = v^{t'}(I_b^{t'})$$
(4.5)

Note that

$$E_{\pi^*} \left\{ \sum_{t=t'}^{\infty} \gamma^{t-t'} R(t) \right\} = \sum_{t=t'}^{\infty} \gamma^{t-t'} E_{\pi^*} \left\{ R(t) \right\}$$
 (4.6)

and similar for π_b^* . Therefore we only need to show that

$$\forall_{t=0,1,2,\dots} \quad E_{\pi^*} \left\{ R(t) \right\} = E_{\pi_b^*} \left\{ R(t) \right\}. \tag{4.7}$$

If we assume that for an arbitrary time step t-1 the different possible joint beliefs b^{t-1} corresponding to all $\vec{\theta}^{t-1} \in \vec{\Theta}^{t-1}$ are a sufficient statistic for the expected reward for time steps 0, ..., t-1, we can write:

$$E_{\pi_b^*}\left\{R(t)\right\} = \sum_{b^{t-1}} \left[\sum_{\mathbf{o}^t} \left[\sum_{s} R(s, \beta_{\langle b^{t-1}, \mathbf{a}^{t-1} \rangle}^*(\mathbf{o}^t)) b_{\mathbf{a}\mathbf{o}}^t(s) \right] P(\mathbf{o}^t | b_{\mathbf{a}\mathbf{o}}^t(s), \mathbf{a}^{t-1}) \right] P(b^{t-1}). \tag{4.8}$$

Because $P(s|\vec{\theta}^t) \equiv P(s|\vec{b}^{\vec{\theta}^t}) = b_{\mathbf{ao}}^t(s)$, where $b_{\mathbf{ao}}^t(s)$ is the belief resulting from $b^{\vec{\theta}^{t-1}}$ via \mathbf{a}, \mathbf{o} , and $P(\mathbf{o}^t|\vec{\theta}^{t-1}, \mathbf{a}^{t-1}) \equiv P(\mathbf{o}^t|b^{\vec{\theta}^{t-1}}, \mathbf{a}^{t-1})$, we can conclude that also for this time step $E_{\pi^*}\{R(t)\} = E_{\pi_b^*}\{R(t)\}$, meaning that maintaining joint beliefs is a sufficient statistic for time step t as well. A base case is given at time step t, because $t^0 = t^0$. By induction it follows that joint beliefs are a sufficient statistic for all time steps.

4.2 Contraction mapping

To improve the readability of the formulas, in this section $Q_{\rm B}$ is written as simply Q.

Theorem 4.1 The infinite-horizon Q_{BG} -backup operator (4.2) is a contraction mapping under the following supreme norm:

$$\|Q - Q'\| = \sup_{b} \max_{\mathbf{a}} \left| \sum_{\mathbf{o}} P(\mathbf{o}|b, \mathbf{a}) \left[Q(b^{\mathbf{ao}}, \beta_{max}(Q)(\mathbf{o})) - Q'(b^{\mathbf{ao}}, \beta_{max}(Q')(\mathbf{o})) \right] \right|, \quad (4.9)$$

where

$$\beta_{max}(Q) = \underset{\beta_{\langle b, \mathbf{a} \rangle}}{\arg \max} \sum_{\mathbf{o}} P(\mathbf{o}|b, \mathbf{a}) Q(b^{\mathbf{ao}}, \beta_{\langle b, \mathbf{a} \rangle}(\mathbf{o}))$$
(4.10)

is the maximizing BG policy according to Q.

Proof We have to prove that

$$||H_{\rm B}Q - H_{\rm B}Q'|| \le \gamma ||Q - Q'||.$$
 (4.11)

When applying the backup we get:

$$||H_{B}Q - H_{B}Q'|| = \sup_{b} \max_{\mathbf{a}} \left| \sum_{\mathbf{o}} P(\mathbf{o}|b, \mathbf{a}) \left[H_{B}Q(b^{\mathbf{ao}}, \beta_{\max}(Q)(\mathbf{o})) - H_{B}Q'(b^{\mathbf{ao}}, \beta_{\max}(Q')(\mathbf{o})) \right] \right|$$

$$= \sup_{b} \max_{\mathbf{a}} \left| \left[\sum_{\mathbf{o}} P(\mathbf{o}|b, \mathbf{a}) H_{B}Q(b^{\mathbf{ao}}, \beta_{\max}(Q)(\mathbf{o})) \right] \right|$$

$$- \left[\sum_{\mathbf{o}} P(\mathbf{o}|b, \mathbf{a}) H_{B}Q'(b^{\mathbf{ao}}, \beta_{\max}(Q')(\mathbf{o})) \right]. \tag{4.12}$$

When, without loss of generality, we assume that b, \mathbf{a} are the maximizing arguments, and if we assume that the first part (the summation over HQ) is larger than the second part (that over HQ'), we can write

$$||H_{\mathrm{B}}Q - H_{\mathrm{B}}Q'|| = \sum_{\mathbf{o}} P(\mathbf{o}|b, \mathbf{a}) \left[H_{\mathrm{B}}Q(b^{\mathbf{ao}}, \beta_{\mathrm{max}}(Q)(\mathbf{o})) - H_{\mathrm{B}}Q'(b^{\mathbf{ao}}, \beta_{\mathrm{max}}(Q')(\mathbf{o})) \right]$$
(4.13)

If we use $\beta_{\max}(Q)$ instead of $\beta_{\max}(Q')$ in the last term, we are subtracting less, so we can write

$$||H_{\mathrm{B}}Q - H_{\mathrm{B}}Q'|| \leq \sum_{\mathbf{a}} P(\mathbf{o}|b, \mathbf{a}) \left[H_{\mathrm{B}}Q(b^{\mathbf{a}\mathbf{o}}, \beta_{\mathrm{max}}(Q)(\mathbf{o})) - H_{\mathrm{B}}Q'(b^{\mathbf{a}\mathbf{o}}, \beta_{\mathrm{max}}(Q)(\mathbf{o})) \right]$$
(4.14)

Now let $\beta_{\max}(Q)(\mathbf{o}) = \mathbf{a}'$, then we get

$$= \gamma \sum_{\mathbf{o}} P(\mathbf{o}|b, \mathbf{a}) \sum_{\mathbf{o}'} P(\mathbf{o}'|b^{\mathbf{ao}}, \mathbf{a}') \left[Q(b^{\mathbf{aoa}'\mathbf{o}'}, \beta_{\max}(Q)(\mathbf{o}')) - Q'(b^{\mathbf{aoa}'\mathbf{o}'}, \beta_{\max}(Q')(\mathbf{o}')) \right]$$

$$\leq \gamma \sum_{\mathbf{o}} P(\mathbf{o}|b, \mathbf{a}) \sup_{b'} \max_{\mathbf{a}'} \left| \sum_{\mathbf{o}'} P(\mathbf{o}'|b', \mathbf{a}') \left[Q(b'^{\mathbf{a}'\mathbf{o}'}, \beta_{\max}(Q)(\mathbf{o}')) - Q'(b'^{\mathbf{a}'\mathbf{o}'}, \beta_{\max}(Q')(\mathbf{o}')) \right] \right|$$

$$= \gamma \sup_{b'} \max_{\mathbf{a}'} \left| \sum_{\mathbf{o}'} P(\mathbf{o}'|b', \mathbf{a}') \left[Q(b'^{\mathbf{a}'\mathbf{o}'}, \beta_{\max}(Q)(\mathbf{o}')) - Q'(b'^{\mathbf{a}'\mathbf{o}'}, \beta_{\max}(Q')(\mathbf{o}')) \right] \right|$$

$$= \gamma \left\| Q - Q' \right\|$$

$$(4.15)$$

For $\gamma \in (0,1)$ this is a contraction mapping.

4.3 Infinite horizon Q_{RC}

The fact that (4.2) is a contraction mapping means that there is a fixed point, which is the optimal infinite horizon Q_{BG} -value function $Q_{B}^{*,\infty}(b,\mathbf{a})$ [2]. Together with the fact that Q_{B}^{*} for the finite horizon is PWLC, this means we can approximate $Q_{B}^{*,\infty}(b,\mathbf{a})$ with arbitrary accuracy using a PWLC value function.

5 The optimal Dec-POMDP value function Q^*

Here we show that it is not possible to convert the optimal Dec-POMDP Q-value function, $Q^*(\vec{\theta}^t, \mathbf{a})$, to $Q^*(\vec{b}^t, \mathbf{a})$ a similar function over joint beliefs.

Lemma 5.1 The optimal Q* value function for a Dec-POMDP, given by:

$$Q^*(\vec{\theta}^t, \mathbf{a}) = R(\vec{\theta}^t, \mathbf{a}) + \sum_{\mathbf{o}^{t+1}} P(\mathbf{o}^{t+1} | \vec{\theta}^t, \mathbf{a}) Q^*(\vec{\theta}^{t+1}, \pi^*(\vec{\theta}^{t+1})).$$
 (5.1)

generally is not a function over the belief space.

Proof If Q^* would be a function over the belief space, as in section 3.1, it should hold that it is not possible that different joint action-observation histories specify different values, while the underlying joint belief is the same. Following the same argumentation as in section 3.1, it should hold that if $b^{\vec{\theta}^{t,a}} = b^{\vec{\theta}^{t,b}}$, it holds that

$$\sum_{\mathbf{o}^{t+1}} P(\mathbf{o}^{t+1} | \vec{\theta}^{t,a}, \mathbf{a}) Q^*(\vec{\theta}^{t+1,a}, \pi^*(\vec{\theta}^{t+1,a})) = \sum_{\mathbf{o}^{t+1}} P(\mathbf{o}^{t+1} | \vec{\theta}^{t,b}, \mathbf{a}) Q^*(\vec{\theta}^{t+1,b}, \pi^*(\vec{\theta}^{t+1,b})), \quad (5.2)$$

given that $b^{\vec{\theta}^{t+1,a}} = b^{\vec{\theta}^{t+1,b}}$ implies $Q^*(\vec{\theta}^{t+1,a}, \mathbf{a}) = Q^*(\vec{\theta}^{t+1,b}, \mathbf{a})$. Again, the observation probabilities, resulting joint beliefs and thus $Q^*(\vec{\theta}^{t+1}, \mathbf{a})$ -values are equal. However now, it might be possible that the optimal policy π^* specifies different actions at the next time step which would lead to different future rewards. I.e., for Q^* to be convertible to a function over joint beliefs,

$$\forall_{\mathbf{o}^{t+1}} \quad \pi^*(\vec{\theta}^{t+1,a}) = \pi^*(\vec{\theta}^{t+1,b}) \tag{5.3}$$

should hold if $b^{\vec{\theta}^{t,a}} = b^{\vec{\theta}^{t,b}}$. This, however, is not provable and we will provide a counter example using the herizon 3 dec-tiger problem [4] here. The observations are denoted L=hear tiger left and R=hear tiger right, the actions are written Li=listen, OL=open left and OR=open right.

REFERENCES 11

Consider the following two joint action-observation histories for time step t=1: $\vec{\theta}^{1,a}=\langle (Li,L),(Li,R)\rangle$ and $\vec{\theta}^{1,b}=\langle (Li,R),(Li,L)\rangle$. For these histories we $b^{\vec{\theta}^{1,a}}=b^{\vec{\theta}^{1,b}}=\langle 0.5,0.5\rangle$. Now we consider the future reward for $\mathbf{a}=\langle Li,Li\rangle$ and $\mathbf{o}=\langle L,R\rangle$. For this case, the observation probabilities are equal $P(\langle L,R\rangle\,|\vec{\theta}^{1,a},Li)=P(\langle L,R\rangle\,|\vec{\theta}^{1,b},Li)$ and the successor joint action-observation histories $\vec{\theta}^{2,a}=\langle (Li,L,Li,L),(Li,R,Li,R)\rangle$ and $\vec{\theta}^{2,b}=\langle (Li,R,Li,L),(Li,Li,R)\rangle$ both specify the same joint belief: $b^{\vec{\theta}^{2,a}}=b^{\vec{\theta}^{2,b}}=\langle 0.5,0.5\rangle$. However,

$$\pi^*(\vec{\theta}^{2,a}) = \langle OL, OR \rangle \neq \langle Li, Li \rangle = \pi^*(\vec{\theta}^{2,b}). \tag{5.4}$$

So even though the induction hypothesis says that

$$\forall_{\mathbf{a}} \quad Q^*(\vec{\theta}^{t+1,a}, \mathbf{a}) = Q^*(\vec{\theta}^{t+1,b}, \mathbf{a}), \tag{5.5}$$

different actions may be selected by π^* for $\vec{\theta}^{t+1,a}$ and $\vec{\theta}^{t+2,a}$ and therefore (5.3) and thus (5.2) are not guaranteed to hold.

References

- [1] Daniel S. Bernstein, Robert Givan, Neil Immerman, and Shlomo Zilberstein. The complexity of decentralized control of Markov decision processes. *Math. Oper. Res.*, 27(4):819–840, 2002.
- [2] Dimitri P. Bertsekas. *Dynamic Programming and Optimal Control*, volume II. Athena Scientific, 2nd edition, 2001.
- [3] Rosemary Emery-Montemerlo, Geoff Gordon, Jeff Schneider, and Sebastian Thrun. Approximate solutions for partially observable stochastic games with common payoffs. In AAMAS '04: Proceedings of the Third International Joint Conference on Autonomous Agents and Multiagent Systems, pages 136–143, Washington, DC, USA, 2004. IEEE Computer Society.
- [4] Ranjit Nair, Milind Tambe, Makoto Yokoo, David V. Pynadath, and Stacy Marsella. Taming decentralized POMDPs: Towards efficient policy computation for multiagent settings. In *IJCAI-03*, *Proceedings of the Eighteenth International Joint Conference on Artificial Intelligence*, pages 705–711, 2003.
- [5] Frans A. Oliehoek and Nikos Vlassis. Q-value functions for decentralized POMDPs. In Proc. of Int. Joint Conference on Autonomous Agents and Multi Agent Systems, May 2007. to appear.
- [6] Martin J. Osborne and Ariel Rubinstein. A Course in Game Theory. The MIT Press, July 1994.
- [7] Richard D. Smallwood and Edward J. Sondik. The optimal control of partially observable markov processes over a finite horizon. *Operations Research*, 21(5):1071–1088, September 1973.

A Sub-proof of PWLC property

We have to show that the maximizing vector given b is the maximizing vector at b, i.e., that the following holds:

$$\forall_{b^{\vec{\theta}^{\,t}}} \quad \max_{v^t_{\mathbf{a}} \in \mathcal{V}^t_{\mathbf{a},b^{\vec{\theta}^{\,t}}}} v^t_{\mathbf{a}} \cdot b^{\vec{\theta}^{\,t}} = \max_{v^t_{\mathbf{a}} \in \bigcup_{b^{\vec{\theta}^{\,t}} \in \mathcal{P}(\mathcal{S})} \mathcal{V}^t_{\mathbf{a},b^{\vec{\theta}^{\,t}}}} v^t_{\mathbf{a}} \cdot b^{\vec{\theta}^{\,t}}.$$

Proof (By contradiction): For an arbitrary $b^{\vec{\theta}^t}$, suppose there is a different joint belief $b^{\vec{\theta}^{t'}}$ such that

$$\max_{v_{\mathbf{a}}^t \in \mathcal{V}_{\mathbf{a}, b^{\vec{\theta}^t}}^t} v_{\mathbf{a}}^t \cdot b^{\vec{\theta}^t} < \max_{v_{\mathbf{a}}^t \in \mathcal{V}_{\mathbf{a}, b^{\vec{\theta}^t}}^t} v_{\mathbf{a}}^t \cdot b^{\vec{\theta}^t}.$$

According to (3.23) and (3.21), this would mean that

$$\max_{\beta_{\left\langle \vec{\theta}^{\,t},\mathbf{a}\right\rangle }}v_{b^{\vec{\theta}^{\,t}},\mathbf{a},\beta\left\langle \vec{\theta}^{\,t},\mathbf{a}\right\rangle }^{\,*,t}\cdot b^{\vec{\theta}^{\,t}}<\max_{\beta_{\left\langle \vec{\theta}^{\,t'},\mathbf{a}\right\rangle }}v_{b^{\vec{\theta}^{\,t'}},\mathbf{a},\beta\left\langle \vec{\theta}^{\,t'},\mathbf{a}\right\rangle }^{\,*,t}\cdot b^{\vec{\theta}^{\,t}}$$

which implies that:

$$\max_{\beta_{\left\langle\vec{\theta}^{\,t},\mathbf{a}\right\rangle}} \left(R_{\mathbf{a}} + \sum_{\mathbf{o}^{t+1}} \left[\underset{g_{\mathbf{a},\mathbf{o}}^{v^{t+1}} \in \mathcal{G}_{\mathbf{a},\mathbf{o},\beta_{\left\langle\vec{\theta}^{\,t},\mathbf{a}\right\rangle}}}{\arg\max} \sum_{s^{t}} g_{\mathbf{a},\mathbf{o}}^{v^{t+1}}(s^{t}) b^{\vec{\theta}^{\,t}}(s^{t}) \right] \right) \cdot b^{\vec{\theta}^{\,t}}$$

$$< \max_{\beta_{\left\langle\vec{\theta}^{\,t'},\mathbf{a}\right\rangle}} \left(R_{\mathbf{a}} + \sum_{\mathbf{o}^{t+1}} \left[\underset{g_{\mathbf{a},\mathbf{o}}^{\,\mathbf{a}'} \in \mathcal{G}_{\mathbf{a},\mathbf{o},\beta_{\left\langle\vec{\theta}^{\,t'},\mathbf{a}\right\rangle}}}{\arg\max} \sum_{s^{t}} g_{\mathbf{a},\mathbf{o}}^{v^{t+1}}(s^{t}) b^{\vec{\theta}^{\,t'}}(s^{t}) \right] \right) \cdot b^{\vec{\theta}^{\,t}}$$

Because R_a is the same for both vectors, this means that

$$\max_{\beta \left\langle \vec{\theta}^{\,t}, \mathbf{a} \right\rangle} \left(\sum_{\mathbf{o}^{t+1}} \left[\underset{g_{\mathbf{a}, \mathbf{o}}^{\,t+1} \in \mathcal{G}_{\mathbf{a}, \mathbf{o}, \beta \left\langle \vec{\theta}^{\,t}, \mathbf{a} \right\rangle}}{\arg \max} g_{\mathbf{a}, \mathbf{o}}^{v_{\mathbf{a}'}^{t+1}} \cdot b^{\vec{\theta}^{\,t}} \right] \right) \cdot b^{\vec{\theta}^{\,t}} < \max_{\beta \left\langle \vec{\theta}^{\,t'}, \mathbf{a} \right\rangle} \left(\sum_{\mathbf{o}^{t+1}} \left[\underset{g_{\mathbf{a}, \mathbf{o}}^{\,t'} \in \mathcal{G}_{\mathbf{a}, \mathbf{o}, \beta \left\langle \vec{\theta}^{\,t'}, \mathbf{a} \right\rangle}}{\arg \max} g_{\mathbf{a}, \mathbf{o}}^{v_{\mathbf{a}'}^{t+1}} \cdot b^{\vec{\theta}^{\,t'}} \right] \right) \cdot b^{\vec{\theta}^{\,t}}$$

thus:

$$\max_{\beta \langle \vec{\theta}^{\,t}, \mathbf{a} \rangle} \sum_{\mathbf{o}^{t+1}} \left(\begin{bmatrix} \arg \max_{\substack{v^{t+1} \\ g_{\mathbf{a}, \mathbf{o}}^{\,t'} \in \mathcal{G}_{\mathbf{a}, \mathbf{o}, \beta \langle \vec{\theta}^{\,t}, \mathbf{a} \rangle}} g_{\mathbf{a}, \mathbf{o}}^{v^{t+1}} \cdot b^{\vec{\theta}^{\,t}} \end{bmatrix} \cdot b^{\vec{\theta}^{\,t}} \right) < \max_{\beta \langle \vec{\theta}^{\,t'}, \mathbf{a} \rangle} \sum_{\mathbf{o}^{t+1}} \left(\begin{bmatrix} \arg \max_{\substack{v^{t+1} \\ g_{\mathbf{a}, \mathbf{o}}^{\,t'} \in \mathcal{G}_{\mathbf{a}, \mathbf{o}, \beta \langle \vec{\theta}^{\,t'}, \mathbf{a} \rangle}} g_{\mathbf{a}, \mathbf{o}}^{v^{t+1}} \cdot b^{\vec{\theta}^{\,t'}} \end{bmatrix} \cdot b^{\vec{\theta}^{\,t}} \right),$$

$$(A.1)$$

would have to hold. However, because the possible choices for $\beta_{\langle \vec{\theta}^{t}, \mathbf{a} \rangle}$ and $\beta_{\langle \vec{\theta}^{t'}, \mathbf{a} \rangle}$ are identical, we know that $\mathcal{G}_{\mathbf{a}, \mathbf{o}, \beta_{\langle \vec{\theta}^{t'}, \mathbf{a} \rangle}} = \mathcal{G}_{\mathbf{a}, \mathbf{o}, \beta_{\langle \vec{\theta}^{t'}, \mathbf{a} \rangle}}$, and therefore that

$$\forall_{\mathbf{o}} \quad \left[\underset{g_{\mathbf{a},\mathbf{o}}^{t+1} \in \mathcal{G}_{\mathbf{a},\mathbf{o},\beta\langle\vec{\theta}^{t},\mathbf{a}\rangle}}{\arg\max} g_{\mathbf{a},\mathbf{o}}^{v_{\mathbf{a}'}^{t+1}} \cdot b^{\vec{\theta}^{t}} \right] \cdot b^{\vec{\theta}^{t}} \geq \left[\underset{g_{\mathbf{a},\mathbf{o}}^{t+1} \in \mathcal{G}_{\mathbf{a},\mathbf{o},\beta\langle\vec{\theta}^{t\prime},\mathbf{a}\rangle}}{\arg\max} g_{\mathbf{a},\mathbf{o}}^{v_{\mathbf{a}'}^{t+1}} \cdot b^{\vec{\theta}^{t\prime}} \right] \cdot b^{\vec{\theta}^{t}},$$

contradicting (A.1).

Acknowledgements

The research reported here is supported by the Interactive Collaborative Information Systems (ICIS) project, supported by the Dutch Ministry of Economic Affairs, grant nr: BSIK03024. This work was supported by Fundação para a Ciência e a Tecnologia (ISR/IST pluriannual funding) through the POS_Conhecimento Program that includes FEDER funds.

IAS reports

This report is in the series of IAS technical reports. The series editor is Stephan ten Hagen (stephanh@science.uva.nl). Within this series the following titles appeared:

- P.J. Withagen and F.C.A. Groen and K. Schutte *Shadow detection using a physical basis*. Technical Report IAS-UVA-07-02, Informatics Institute, University of Amsterdam, The Netherlands, January 2007.
- P.J. Withagen and K. Schutte and F.C.A. Groen *Global intensity correction in dynamic scenes*. Technical Report IAS-UVA-07-01, Informatics Institute, University of Amsterdam, The Netherlands, January 2007.
- A. Noulas and B. Kröse *Probabilistic audio visual sensor fusion for speaker detection*. Technical Report IAS-UVA-06-04, Informatics Institute, University of Amsterdam, The Netherlands, March 2006.

All IAS technical reports are available for download at the IAS website, http://www.science.uva.nl/research/ias/publications/reports/.