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Abstract

We address the problem of how to play op-
timally against a fixed opponent in a two-
player card game with partial information
like poker. A game theoretic approach to this
problem would specify a pair of stochastic
policies that are best-responses to each other,
i.e., a Nash equilibrium. Although such
a Nash-optimal policy guarantees a lower
bound to the attainable payoff against any
opponent, it may not necessarily be optimal
against a fixed opponent. We show here that
if the opponent’s policy is fixed (either known
or estimated by repeated play), then we can
model the problem as a partially observable
Markov decision process (POMDP) from the
perspective of one agent, and solve it by dy-
namic programming. In particular, for a
large class of card games including poker, the
derived POMDP consists of a finite number
of belief states and it can be solved exactly.
The resulting policy is guaranteed to be opti-
mal even against a Nash-optimal policy. We
provide experimental results to support our
claims, using a simplified 8-card poker game
in which Nash-policies can be computed effi-
ciently.

1. Introduction

A partially observable stochastic game (POSG) is gen-
eral model that captures the sequential interaction of
two or more agents under conditions of uncertainty.
This model can be regarded as an extension of a
stochastic game (Shapley, 1953), with parts of the
state being hidden to at least one agent. It can also
be viewed as an extension of a partially observable
Markov decision process (POMDP) (Sondik, 1971),
with state transitions being influenced by the com-
bined actions of two or more agents. A POSG is also

very closely related to the model of an extensive game
with imperfect information (Kuhn, 1953).

The literature on POSGs is still relatively sparse. Hes-
panha and Prandini (2001) showed that a two-player
finite-horizon POSG always has a Nash equilibrium in
stochastic policies. Koller et al. (1994) demonstrated
how to efficiently compute such a Nash equilibrium in
the special case of a two-player zero-sum POSG with a
tree-like structure, like the card games (e.g., poker) we
consider here. Becker et al. (2003), Nair et al. (2003)
and Emery-Montemerlo et al. (2004) have developed
similar algorithms for computing solutions in the spe-
cial case of common-interest POSGs. Only recently an
algorithm for solving general (albeit still small) POSGs
has been proposed (Hansen et al., 2004).

In this paper we consider the class of two-player zero-
sum finite-horizon POSGs with a tree-like state struc-
ture, that includes many card games like poker. We
depart from the game theoretic approach of comput-
ing Nash equilibria for these games, and instead deal
with the problem of how to compute optimal policies
(best-responses) against a fixed opponent. Our in-
terest is motivated by recent suggestions to adopt an
‘agent-centric’ agenda in multiagent decision making,
by which best-response learning algorithms (like Q-
learning) replace classical game theoretic approaches
to finding an optimal policy (Powers & Shoham, 2005).
There are two strong arguments in favor of this ap-
proach: first, computing a Nash equilibrium is a diffi-
cult problem in general, and efficient algorithms exist
only in special cases. Second, a Nash-policy is too con-
servative in the sense that it will not exploit possible
weaknesses of opponents.

As we show below, in order to compute a best-response
policy against a fixed opponent in a game like poker,
we can model the game as a partially observable
Markov decision process (POMDP) by defining a belief
state for our protagonist agent. This reduction only re-
quires knowing (e.g., estimating by repeated play) the



stochastic policy of the opponent. The POMDP can be
subsequently solved, for instance by dynamic program-
ming, deriving a best-response (deterministic) policy
for the agent. In general, an approximate POMDP
algorithm may be needed to deal with the continuous
belief space (Spaan & Vlassis, 2004). For many card
games however, including poker, the particular struc-
ture of the problem allows the POMDP to be solved
exactly: there are a finite set of reachable beliefs in the
POMDP, which allows mapping the POMDP model
into a discrete-state MDP and then solve it with an
exact dynamic programming method (e.g., value iter-
ation). The resulting policy is optimal (gives the high-
est possible payoff) against the particular opponent.
Moreover we can easily prove that it is no worse than
the optimal Nash-policy when playing against a Nash-
agent (an opponent that uses a Nash-optimal policy).

To illustrate the method, we have implemented a sim-
plified 8-card poker game for which Nash equilibria
can be computed (Koller & Pfeffer, 1997). Then, us-
ing the POMDP approach, we have computed best-
response policies against Nash-agents. We have exper-
imentally verified that a POMDP best-response policy
can indeed reach the optimal Nash payoff when playing
against a Nash-optimal agent.

In the following, we first describe our simplified poker
game that we use as a running example throughout
the paper (Section 2). Then we briefly outline the
game-theoretic approach for solving such partially ob-
servable games (Section 3). In Section 4 we describe
our POMDP-based approach to playing poker against
a fixed opponent. We provide experimental results in
Section 5, and Section 6 concludes.

2. A simplified poker game

Poker is an example of a stochastic game with par-
tial (imperfect or incomplete) information. In poker
a player cannot tell the exact state of the game (e.g.,
the card deal), and he does not know what policy his
opponent will follow. Still, his (sequential) decision
making must include comparing potential reward to
the risk involved, trying to deceive the opponent by
bluffing, dealing with unreliable information from the
opponents’ actions, and modeling the opponent. All
these aspects make poker a very complex game.

There are many poker variants, which all share these
properties (Billings et al., 2003). Most of these vari-
ants, however, are too large to analyze in an exact
fashion because of the number of card combinations
and possible betting sequences. Our goal in this pa-
per is not to compute the ultimate strategy for playing

Figure 1. The partial game-tree of 8-card poker for the
deals (4, 2) and (4, 6). Gambler’s decision nodes are black,
dealer’s are grey. The payoffs are given for the gambler.

general poker, but to address the problem how to play
optimally against a fixed opponent. As the opponent
strategy we consider can be an optimal Nash policy,
we need to be able to compute the Nash policies. To
this end, and as running example, we will use a small
8-card poker variant, described by Koller and Pfeffer
(1997), which we Nash-solved by using their Gala sys-
tem.

This 8-card poker is played by two players: a dealer
and a gambler, who both own two coins. Before the
game starts, each player puts one coin to the pot, the
ante. Then the dealer deals both players one card out
of a deck of eight cards (1 suit, ranks 1–8). After the
players have observed their card, they are allowed to
bet their remaining coin, starting with the gambler. If
the gambler bets his coin, the dealer has the option to
fold or call. If the dealer folds he loses the ante, and if
he calls showdown follows. If the gambler does not bet,
the dealer can choose to bet his coin. If the dealer does
so, the gambler will have to decide whether to fold or
call. If the game reaches the showdown (neither player
bets or the bet of the dealer is called), the player with
the highest card wins the pot.

3. Game-theoretic approach

In this section we will briefly outline the game theo-
retic approach for representing and solving such poker
games.

3.1. Poker as an extensive form game

We can model 8-card poker as an extensive form game
with partial (imperfect) information (Kuhn, 1953).
The extensive form of a game is given by a tree, in
which nodes represent game states and whose root is
the starting state. There are two types of nodes: de-



cision nodes that represent points at which agents can
make a move, and chance nodes which represent ran-
dom transitions by ‘nature’. In 8-card poker, the only
chance node is the starting state, in which two cards
are chosen uniformly at random from the 8-card deck
and are dealt to the agents.

In a partial information game, an agent may be uncer-
tain about the true state of the game. In particular, an
8-card poker agent may not be able to discriminate be-
tween two nodes in the tree. The nodes that an agent
cannot tell apart are grouped in information sets. In
Fig. 1 a part of the game-tree of 8-card poker is drawn.
At the root of tree (‘Start’ node) a card is dealt to each
agent. At each decision node the agents can choose be-
tween action 1 (bet), and action 0 (fold). Fig. 1 shows
the partial game tree for two deals: in the first the
dealer receives card 2, in the second he receives card
6. The gambler receives card 4 in both cases. There-
fore the gambler cannot discriminate between the two
deals. This is illustrated by the information sets in-
dicated by ovals. The leaves of the tree represent the
outcomes of the game and the corresponding payoffs.
In the figure we only show the payoff of the gambler;
the payoff of the dealer is exactly the opposite. Games
in which payoffs add up to zero, as is the case here,
are called zero-sum games.

3.2. Solving poker

Solving poker means computing the optimal policies
the agents should follow. In 8-card poker, a policy for
an agent is a mapping from his information sets to
actions. A pure policy specifies, for each information
set, an action that should be taken with probability
one. A stochastic policy is a probability distribution
over pure policies: it specifies, for each information
set, an action that should be taken with some specific
probability. For example, in the 8-card poker game
shown in Fig. 1, a stochastic policy for the gambler
could specify that he should bet with probability 0.4
after having received card 4.

The solution of a game specifies how each agent should
play given that the opponent also follows this advise.
As such, it provides an optimal policy for each agent.
The solution of a game is given by one or more of its
Nash equilibria. Let πi denote a policy for agent i.
A pair of policies π = (π1, π2) induce expected payoff
Hi(π) to agent i, where the expectation is over over
the chance nodes in the game; in a zero-sum game
H1(π) = −H2(π). When π is a Nash equilibrium,
H1(π) is the value of the game.

Definition 1. A tuple of policies π = (π1, π2) is a

Nash equilibrium if and only if it holds that:

∀π′

1
(H1(π1, π2) ≥ H1(π

′

1
, π2))∧

∀π′

2
(H2(π1, π2) ≥ H2(π1, π

′

2
))

(1)

That is, for each agent i, playing πi gives an equal
or higher expected payoff than playing π′

i. So both
policies are best responses to each other.

In two-player zero-sum games, a Nash policy is a se-
curity policy and the value of the game is the security
value for an agent. The latter means that the expected
payoff of an agent who plays a Nash policy cannot be
lower than the value of the game. In other words, a
Nash policy gives the payoff that an agent can maxi-
mally guarantee for himself, given that the opponent
will act in a best-response manner in order to minimize
this payoff.

Nash (1951) and Kuhn (1953) have shown that any
extensive-form game with perfect recall1 has at least
one Nash equilibrium in stochastic policies. Moreover,
in two-player zero-sum games, all Nash equilibria spec-
ify the same value for the game (Osborne & Rubin-
stein, 1994). Therefore, any Nash policy is optimal
against a best-response opponent, in the sense that it
guarantees the security value of the game.

3.3. Computing Nash equilibria

To find the Nash equilibria of an extensive form game,
the game can be first transformed into its normal form.
This is a matrix representation of all pure policies
available to the agents. Entry (i, j) of the matrix gives
the expected payoff of agent 1’s policy i versus agent
2’s policy j. Consequently, when converting from the
extensive to the normal form, the tree-like structure
of the game is discarded. Moreover, the normal form
representation of an extensive game can be very large.
Note that every pure policy is a mapping from infor-
mation sets to actions, therefore the number of pure
policies is exponential in the size of the game tree.

To compute the Nash equilibria from the normal form
we can use linear programming. The normal form of
a two-player zero-sum game defines a linear program
whose solutions are the Nash-equilibria of the game.
However, transforming an extensive form game to its
normal form results in very large games, making such
an approach for computing Nash equilibria impracti-
cal.

Koller and Pfeffer (1997) proposed the ‘Gala’ system,
which solves games in an alternative representation

1Perfect recall implies that an agent remembers all ac-
tions that he has taken in the past.



called the sequence form, whose size is polynomial with
the number of nodes in the game tree. This allows one
to solve larger games, but real-life games are typically
still too large to solve. For example consider Texas
Hold-em poker2, whose game-tree contains O(1018)
nodes (Billings et al., 2003) and therefore computing
Nash equilibria is computationally infeasible.

4. Playing against a fixed opponent

In this section we depart from the game-theoretic ap-
proach, and address the problem of how to play opti-
mally against a fixed opponent. It turns out that, if
the (stochastic) policy of the opponent agent j can be
summarized by a model in the form p(aj |s, ai), where
aj denotes his action at some state s and ai our action,
then we can model the poker game as a partially ob-
servable Markov decision process (POMDP) from the
perspective of our protagonist agent i, and compute an
optimal (deterministic) policy for it.

According to our POMDP model, at any time step the
game is in a state s ∈ S, where the state space S con-
tains all chance nodes in the game-tree, as well as all
nodes in which our protagonist agent i takes a decision
(the black nodes in Fig. 1 if agent i is the gambler).
The game starts at the ‘Start’ state (chance node).
At any other state (decision-node) s, our protagonist
agent i takes an action ai ∈ Ai = {bet, fold}, and the
opponent takes an action aj according to a stochastic
policy πj = p(aj |s, ai). Then the game switches to
a new state s′ as a result of the two actions (a1, a2)
and according to a stochastic joint transition model
p(s′|s, ai, aj). Using the policy of the opponent, we
can compute a single transition model for our agent i

as follows:

p(s′|s, ai) =
∑

aj

p(s′|s, ai, aj)p(aj |s, ai). (2)

This allows us to treat the game as a POMDP from
the perspective of our protagonist agent i. In our 8-
card poker, the joint transition model p(s′|s, ai, aj)
is stochastic only in the ‘Start’ state and determin-
istic elsewhere (given the actions of the two agents),
since there are no other chance nodes in the game-tree.
However, as we assume a stochastic policy for agent j,
from the viewpoint of agent i the game is stochastic in
every state.

In partial information games the agents cannot di-
rectly observe the true state of the game, but they
receive observations (clues) about the state. In our

2Texas Hold-em is a popular poker variant in which each
player gets two private cards and share 5 public cards.

POMDP model of the game, in each state s our pro-
tagonist agent i perceives an observation oi ∈ Oi that
is related to the current state s and his last action
ai through a stochastic observation model p(oi|s, ai).
The first observation oi agent i receives indicates the
hand that is dealt to it, consecutive observations sig-
nal the last action aj of the opponent. Moreover, the
observation model is deterministic: after the cards are
dealt an agent observes oi ∈ {1, . . . , 8} with probabil-
ity one, and in consecutive states he perceives oi = aj

with full certainty.

At every time step an agent k receives an individual
scalar reward signal rk(s, ai, aj , s

′) based on the previ-
ous game state s, current state s′ and the joint action
(ai, aj). Using the policy of the opponent agent j we
can compute the reward our agent i receives as follows:

ri(s, ai, s
′) =

∑

aj

ri(s, ai, aj , s
′)p(aj |s, ai). (3)

In poker the reward is 0 except for transitions into
one of the end-states, i.e., when one of the agents has
folded or the game reaches showdown (Section 2).

As all sets S, Oi, and Ai are discrete and finite in
a poker game, we can convert the discrete POMDP
model in a continuous belief-state Markov decision
process (MDP) (Sondik, 1971), in which the agent
summarizes all information about its past using a belief
vector b(s). The belief b is a probability distribution
over S, and grants the agent perfect recall. Our agent
i starts with an initial belief b0, which in our poker set-
ting is set to a Dirac distribution on the ‘Start’ state.
Every time agent i takes an action ai and observes oi,
it’s belief is updated by Bayes’ rule:

bai

oi
(s′) =

p(oi|s
′, ai)

p(oi|ai, b)

∑

s∈S

p(s′|s, ai)b(s), where (4)

p(oi|ai, b) =
∑

s′∈S

p(oi|s
′, ai)

∑

s∈S

p(s′|s, ai)b(s) (5)

is a normalizing constant. To solve the belief-state
MDP in general a large range of POMDP solution
techniques can be applied, including exact (Sondik,
1971) or approximate ones (Spaan & Vlassis, 2004).

It turns out, however, that in the class of two-player
card games that we are considering only a relatively
small finite set of beliefs B can ever be experienced by
the agent. The set is finite as the problem has a finite
horizon, and small because the horizon is low and the
sets Oi and Ai are small. Furthermore, after the card
dealing, in each state only one of two observations is
possible (the action of the opponent agent), reducing
the branching factor of the tree of beliefs. In partic-
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Figure 2. POMDP and Nash policies for 8-card poker. Dashed lines indicate a Nash policy computed by Gala and solid
lines the best-response POMDP policy against that Nash policy, computed by solving the belief-state MDP. The x-axis
denotes the card dealt to the gambler ((a),(b)) or the dealer ((c),(d)), and the y-axis indicates the probability of betting.

ular, each information set of agent i in the game-tree
will induce a single belief.

Given a finite set B we can compute a finite belief-
state MDP from the continuous belief-state MDP, by
taking each b ∈ B as a possible state. Computing a
transition model p(b′|b, ai) specifying how our agent i

switches from a particular belief b to another belief b′

when taking action ai is straightforward:

p(b′|b, ai) = p(oi|ai, b), (6)

where p(oi|ai, b) is giving by (5). The reward
ri(b, ai, b

′) is defined as:

ri(b, ai, b
′) =

∑

s,s′

ri(s, ai, s
′)b(s)b′(s′). (7)

This MDP can now be solved in an exact fashion us-
ing standard dynamic programming techniques, for in-
stance using value iteration (Sutton & Barto, 1998).
The result is a deterministic best-response policy πi for
our protagonist agent, that maps beliefs it encounters
to optimal actions. Value iteration allows us to com-
pute the value of the initial belief state, which equals
the expected reward of the game when agent i follows
πi and agent j behaves according to πj .

Note that the derived best-response policy for the pro-
tagonist agent is a deterministic one: we know that
the optimal policy of a POMDP is always determinis-
tic (Puterman, 1994). Although this may seem a lim-
iting factor, we can use the following result from game
theory: a stochastic policy is a best-response policy
against some opponent if and only if all the determin-
istic policies to which it assigns nonzero probability
are also best-response policies to this opponent. Our
POMDP derived policies are best-response policies be-
cause our agent maximizes his payoff exactly over the
space of his deterministic policies, and therefore they

must be in the support of a best-response stochastic
policy. In other words, a deterministic POMDP policy
is equally good to any best-response stochastic policy
in terms of achieved payoff.

5. Experiments

We will now present an experiment performed in the
8-card poker setting, in which we solved 8-card poker
as described in Section 2 using the Gala system. The
results from this were a pair of optimal Nash policies
and the value of the game, which is +0.0625 coins per
game in favor of the dealer. The next step was to cre-
ate a POMDP model for the gambler, using the found
optimal Nash policy for the dealer by incorporating
the dealer’s policy in the POMDP transition model,
as described in Section 4. This was also done with
the roles reversed. From this POMDP model a finite
belief-state MDP was extracted which we solved us-
ing value iteration. To construct the policy, the action
with the highest expected payoff for a belief was se-
lected. When for a certain belief the expected values
for both actions are equal, these actions are taken with
equal probability.

The resulting policies are shown in Fig. 2. The ex-
pected payoff for the POMDP policies is equal to the
value attained by the optimal policies (+0.0625 for
the dealer and −0.0625 for the gambler) and as these
are the best payoffs obtainable, the policies are clearly
best-response policies. Furthermore, we see that the
computed POMDP policies are quite similar to the
Nash policies. In particular, betting with probability
1 or 0 happens in exactly the same situations as in the
Nash policies. However there are situations in which
the two policies differ: the cases in which the POMDP
policy is indifferent between both actions and which
are assigned probability 0.5.



6. Conclusions

In this paper we addressed the problem of computing
a best-response policy for an agent playing against a
fixed opponent in a partially observable card game like
poker. In such a card game an agent only receives par-
tial information regarding the true state of the game,
i.e., the cards dealt to each agent. An agent can only
observe its own hand and the action the other agent
has executed. A second source of uncertainty is the
unknown policy of the other agent. A game-theoretic
approach to solving such games would be to compute
a pair of stochastic policies that are best-responses to
each other, i.e., a Nash equilibrium. Unfortunately,
computing Nash equilibria is a difficult problem in gen-
eral and such a Nash policy is secure but conservative:
it will not exploit possible weaknesses of an opponent.

However, when we assume the opponent agent has a
fixed policy (known or estimated by repeated play), we
can model the game as partially observable Markov de-
cision process (POMDP) from the perspective of our
protagonist agent. We have shown that by solving the
resulting POMDP model we can compute a determin-
istic best-response policy for our agent. We focused
on a simplified 8-card poker game in which Nash equi-
libria can be computed. We have argued and exper-
imentally verified that the computed POMDP best-
response policy can indeed reach the optimal Nash
payoff when playing against a Nash-optimal agent.
Avenues of future research include investigating more
compact state representations, tackling larger poker
variations and considering more general partially ob-
servable stochastic games.
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