
Multi-robot planning under uncertainty with
communication: a case study

João V. Messias
Institute for Systems and

Robotics
Instituto Superior Técnico

Lisbon, Portugal
jmessias@isr.ist.utl.pt

Matthijs T.J. Spaan
Institute for Systems and

Robotics
Instituto Superior Técnico

Lisbon, Portugal
mtjspaan@isr.ist.utl.pt

Pedro U. Lima
Institute for Systems and

Robotics
Instituto Superior Técnico

Lisbon, Portugal
pal@isr.ist.utl.pt

ABSTRACT
Although Dec-POMDP techniques can be useful to mod-
eling a wide range of problems, their practical application
is limited by the inherent computational complexity of the
algorithms currently available to solve such models. The ap-
plication of these techniques is typically restricted to theo-
retical examples. This work studies the application of a par-
ticular type of Dec-POMDP (a multiagent POMDP) model
to solve a simple task in a realistically simulated robotic
soccer environment. The multiagent POMDP exploits the
availability of a communication channel, as is often the case
in multi-robot systems. The necessary constraints on the
problem are identified, and the steps taken to accomplish
efficient cooperative behavior within real robot middleware
are explained. Finally, results are presented for the proposed
task that highlight further possible improvements.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—Multiagent systems

General Terms
Algorithms, Performance, Experimentation

Keywords
Multiagent Decision Processes. Planning Under Uncertainty.
Cooperative Robotics.

1. INTRODUCTION
Planning and decision-making is one of the central topics

of robotics and operations research. In most realistic envi-
ronments, it is necessary to take into account uncertainty in
the agent’s actions and/or observations. A Markov Decision
Process (MDP) is a widely known and well-studied math-
ematical framework to model problems where the outcome
of an agent’s actions is probabilistic, but knowledge of the
agent’s state is assumed [6]. For this type of problems, sev-
eral algorithms exist that provide optimal and approximate
solutions to MDPs in reasonable time.

When the agent’s knowledge is insufficient to directly de-
termine its state, for example a mobile robot with noisy sen-

AAMAS 2010 Workshop on Multi-agent Sequential Decision-Making in
Uncertain Domains, May 11, 2010, Toronto, Canada.

sors, then the uncertainty of its observations must also be
considered. Such problems are where the Partially Observ-
able Markov Decision Process (POMDP) framework finds
its domain of application. Planning under uncertainty for a
single agent using POMDPs has been the object of active
research for the last decade [7, 8]. While solving a POMDP
optimally in its general case is an difficult problem, vari-
ous algorithms exist to compute approximate solutions to
moderately-sized POMDPs [2, 8, 11] that may find some
application in real-world scenarios.

In certain applications, however, a single agent is not
enough to model the full scale of the problem. Such is the
case, for example, in cooperative robotics, where multiple
agents must work together to achieve a common goal. The
Decentralized POMDP framework is a natural extension of
the POMDP paradigm for multiple agents. In this type of
model, not only do the agents need to consider the uncer-
tainty of their own actions and observations, but also that of
their partners, which may (or may not) be aided by the use
of communication [12, 13]. Naturally, being more general,
this type of models is also harder to solve than their POMDP
and MDP counterparts. In fact, optimally solving a general
Dec-POMDP is provably intractable [5, 1]. However, ap-
proximate solutions can be found [4], even if the computa-
tional complexity of the current existing algorithms restricts
their application to small-scale problems. This same prob-
lem limits their usability in real world scenarios, and so far
their application has been restricted to theorical experiments
and small simulated examples [1]. Special classes of this
model include Multiagent MDPs and POMDPs (MMDPs)
and decentralized MDPs (Dec-MDPs) [1].

This work is means as an example of the application of
POMDP-related techniques in a small-scale realistic sce-
nario. By doing so, the necessary constraints and possible
simplifications to the general model can be identified, and
the underlying implementation problems become apparent.
Specifically, the problem under study is identified as a mul-
tiagent POMDP, a particular form of Dec-POMDPs. The
case-study for this work is robotic soccer, a widely known
environment for cooperative robotics. Before applying these
techniques directly to a real team of soccer robots, which
would be impractical, a reasonable approach is to first test
the behavior of such robots in realistic simulated environ-
ments. This work describes the steps taken from the de-
sign of a cooperative robotic task to its implementation in
a real robotic middleware using techniques within the Dec-
POMDP framework. We establish that, with some reason-

able abstractions and simplifications, (Dec-)POMDP tech-
niques can be applied in real problems, and that, within the
context of this particular case-study, the obtained results
are comparable, and in some aspects advantageous, to other
established decision-making frameworks.

2. THE DEC-POMDP MODEL
A Dec-POMDP is a tuple < n, S, A, Ω, T, O, R, h > where:

• n is the number of agents;

• S is the discrete set of states for the system. The initial
state, s0 ∈ S, is assumed to be unknown to the agents;

• A is the discrete set of joint actions. A = ×iAi, with
Ai the set of actions available to agent i. At each step
a joint action a =< a1, ..an >∈ A is selected, where
ai ∈ Ai is the action selected by agent i;

• Ω is the set of joint observations. As with the joint
actions, Ω = ×iΩi, and at each step a joint observation
< o1, ..., on >∈ Ω is taken;

• T is the transition function, i.e. for states s, s′ ∈ S,
and joint action a ∈ A, T (s′, s, a) = P (s′|s, a), the
probability of making a transition from state s to s′

by applying action a;

• O is the observation function. O(o, a, s′) = P (o|a, s′)
specifies the probability of observing o after applying
action a and ending up in state s′;

• R is the reward structure. R : S×A → < specifies the
immediate reward granted to the agents as a whole,
for taking joint action a in state s;

• h is the horizon of the problem, which represents the
number of steps (decisions) that the agents can take.

The framework also allows models for communication be-
tween the agents [9]. In this particular context, commu-
nication is assumed free (although not instantaneous, re-
fer to section 5). For a more thorough description of Dec-
POMDPs and their mathematical properties, see [5].

In the most general case, in order to choose a specific ac-
tion at each time step, each agent needs to take into account
all the possible actions taken by every other agent up un-
til that time step, and all the observations that they might
have received. However, in scenarios where the agents are
able to communicate freely with each other, the problem be-
comes simpler, since it is then possible to compute a proba-
bility distribution over the set of joint states (a joint belief)
given only the latest information gathered by the agents.
This Markovian signal eliminates the need to consider the
complete history of the agents’ histories. In this sense, the
problem then reduces to a Multiagent POMDP problem. In
each step, a joint action for all agents is selected based on
this joint belief, which is then updated given the joint ob-
servation gathered by the agents.

3. MODELING A ROBOTIC SOCCER TASK
The task proposed in this work is based on a simple sit-

uation where two robotic soccer players must cooperate in
order to take the ball towards their opponent’s goal. During
the course of their task, the robots may encounter obsta-
cles that they should be able to avoid, although the position

Figure 1: The different sections into which the field
of play is divided according to an agent’s localization
information: 1-Its own half; 2-The opponent’s half;
3-Near the goal; 4-In a shooting opportunity. Note
that 3 and 4 are coincident with respect to position
but vary in their orientation requirements.

of these obstacles is not known beforehand. One of these
players should carry the ball forward, and the other should
position itself so that it may receive a pass from its partner,
if necessary. The robots may choose to pass the ball in or-
der to avoid imminent obstacles, since it is difficult to avoid
obstacles while carrying the ball. The robot that carries the
ball at any given time will be referred to in this case study
as the “Attacker”, and its partner the “Supporter”. When-
ever a pass occurs, the roles of the robots should switch,
meaning that an Attacker becomes a Supporter and vice-
versa. The Attacker should then kick the ball to the goal
as soon as it detects an opportunity to score. The initial
position of the robots and of the ball in their field of play is
unknown, and so is their role. They should then determine
which robot should carry the ball. The robots possess sen-
sors to detect their own location, the position of the ball,
and any surrounding obstacles.

3.1 Identifying states, observations, and actions
The first step in the modeling process of this task as a

Multiagent POMDP is identifying the states of the overall
system. It is assumed that the robot’s field of play only
contains the agents themselves, the ball, and an unknown
number of opponents, and except for these obstacles, their
navigation is free inside the field. The state of the robots
can then be encoded through their localization information,
the position of the ball, and the presence of obstacles. Re-
garding localization, the field of play is discretized into four
different sections, as represented in Figure 1. The agent may
be located in its own half-field, in its opponent’s half, near
the opponent’s goal, or in a shooting opportunity, which re-
quires not only for the robot to be near the goal while carry-
ing the ball, but also turned towards it. The robot may also
use localization information to sense if its ready to receive a
pass from its partner. The information regarding obstacles
can be encoded in a binary form, in the sense that the robot
is either blocked by obstacles or free to move in its current
direction. Finally, the robot is also able to detect whether or
not it is in possession of the ball. Note that the robots share
their localization information —they require this informa-
tion in order to be able to follow each other and to be able

to sample their own observations (see Section 5). This is ac-
complished through explicit communication, as described in
the following sections. None of the remaining state variables
(information about the ball and obstacles) is shared, since
they are not required by each robot’s partner. This means
that, given this information, the robot is able to estimate
(with uncertainty) its own state, but not his partner’s.

According to this description, each agent may then be in
one of the 13 local states si ∈ Si described in the diagram
in Figure 2. However, these local states are not indepen-
dent, i.e., the problem specification mandates that one of
the robots is an Attacker and the other a Supporter. There-
fore, the total number of states is 60, which results from the
admissible combinations of local states. It is important to
note that this does not affect the partial observability of the
agents. They may still receive conflicting observations (for
example, that they are both Attackers or Supporters).

Since the complexity of most POMDP algorithms is heav-
ily dependent on the number of observations, it follows that
this set should be as reduced as possible. Since the robots
must be able to switch roles, this set is necessarily the same
for each agent. The set of possible observations is described,
for each agent, as follows:

• Own Half —Having the ball in the half-field belonging
to the agent’s team;

• Opponent’s Half —Having the ball in the opposing
team’s half-field;

• Near Goal —Having the ball near the goal;

• Ready —for an Attacker, this signals that the robot
is in a shooting opportunity. For a Supporter, this
implies that the robot is able to receive a pass;

• Not Ready —signal received by an Attacker without
the ball, or a Supporter which isn’t ready to receive a
pass.

• Blocked —if the agent is blocked by obstacles.

The preceding signals encapsulate all necessary informa-
tion about the environment, and result in 36 possible joint
observations. The construction of the associated observation
model, O = 〈oi, oj〉, i = 1, ..., 6, j = 1, ..., 6, may be further
simplified by exploiting observation independence between
agents (Section 3.2).

Note that the observation set for each agent does not de-
pend on its specific role as either an Attacker or a Supporter.
In some instances (the Ready and Not Ready signals), it is
possible to use the same representations implicitly for both
cases, since each agent will take its own observation into
context through the observation function.

These observations are, in themselves, quite abstract, and
each of them depends on possibly more than one source of in-
formation. To achieve this level of abstraction in real robots,
it is necessary to implement high-level “virtual sensors” that
classify the information collected by the robots’ physical sen-
sors (and, in the case of localization, information shared
by the partner robot) into one of the observations defined
above. The observation function can then be constructed
in practice by collecting the output of these classifiers while
setting the robot in a specific, a priori known state. The
observation function is then estimated through the collected
data.

Figure 2: Diagram showing the different possible
local states the agent may be in. Note that they
are not independent, since for one agent to be the
Attacker the other must be the Supporter and vice-
versa.

The remaining component of this model that must be de-
scribed is the set of joint actions, A. As with the observation
set, this set is identical for both agents. For this particular
task, the following actions are sufficient:

• Dribbling the ball towards the goal;

• Shooting (or kicking) the ball;

• Passing the ball towards the other robot;

• Recovering the ball if it becomes lost by the attacker;

• Following the attacker;

• Finding a position where a pass can be received (find-
ing clearance for the pass).

Logically, the first four actions described in this manner
should be performed by the Attacker robot, while the re-
maining actions should be taken by the Supporter. There-
fore, A = 〈ai, aj〉, i = 1, ..., 6, j = 1, ..., 6.

Notice that these actions are defined as high-level behav-
iors that each robot can assume. Each of these high-level ac-
tions is then interpreted by the robot’s middleware, and trig-
gers a series of more basic behaviors, that may possess their
own local decision-making loops. When the robot decides
to dribble towards the goal, for example, these lower-level
behaviors ensure that the robot is always turned towards
the goal, and supplies the robot with the necessary controls
so that it may drive the ball and try to avoid any imminent
obstacles. The specific mechanisms through which this is
accomplished lie outside of the scope of this work. However,
it is important to note that the actions taken at this level
impact the transition function of the Multiagent POMDP
model. To define such functions rigorously, it is necessary
to collect experimental data to such an extent that the tran-
sition probabilities estimated through this data approximate
the correct values of the transition function (although this
may be aided by the use of simulators).

3.2 Exploiting Local Independence
Given the set of joint observations and the set of joint ac-

tions, it is then necessary to describe the uncertainty in each
of these elements, which is to say that the transition func-
tion T and observation function O must be defined. How-
ever, in constructing these models, it is advantageous to re-
duce as much as possible the required information about

the environment. Ideally, if the local state of an agent was
not influenced by the actions of the other agent, the model
would be completely conditional independent, i.e.:

P (s′|s, a1, a2) = P (s′|s, a1)P (s′|s, a2) (1)

This would mean that there is an independent transition
function for each agent, Ti, such that

T (s′, s, a) = T1(s
′, s, a1)T2(s

′, s, a2) (2)

for every s, s′ ∈ S, a = 〈a1, a2〉 ∈ A. From the above de-
scription of the action set, it is evident that for some of the
actions (namely, passing and shooting), this assumption is
not valid, since the application of one of these actions by an
agent may induce its partner to switch its role. However, it is
valid for all of the remaining actions. The problem may still
be further simplified by noting its symmetry. Since there is
no characteristic feature to distinguish one agent from the
other, their transition functions are identical, T1 = T2. This
means that its only necessary to consider the effects of the 4
possible independent actions for each agent (which is a con-
siderable reduction from the 36 possible joint actions). Also,
since only half of the states correspond to a specific agent be-
ing Attacker or Supporter, this means that, in matrix form,
the transition function for each of the independent actions is
block-diagonal (i.e. it is impossible to transition from being
an Attacker to a Supporter by applying these actions). For
the joint actions that are not conditional independent, their
distribution over the possible 60 states must be obtained.

For the observation model, a similar rationale can be taken,
but in this case the problem is further simplified by noting
the full observation independence in this particular Multia-
gent POMDP model. At first sight, the passing and kicking
actions could be understood to also influence the observa-
tions of the respective partner robot, but this is indeed not
the case, since the observations have been defined indepen-
dently for each state, and the actions taken by the partner
robot do not influence the ability of each agent to perceive
its respective information. The joint actions in this task can
then be said to be non-informative, in that they may in-
fluence the state of the system, but not the sensors of the
agents. In practice, this means that:

P (o|a, s′) = P (o1|a, s′)P (o2|a, s′) (3)

= O1(o1, a, s′)O2(o2, a, s′), o1,2 ∈ Ω1,2 (4)

It should also be noted that O1 = O2.
So far nothing has been said about the reward structure

for this particular robotic task. The agents will choose a
course of action (a policy) according to the expected reward
obtained in future steps (see Section 4). Although the be-
havior of the agents can be indirectly influenced by manip-
ulating the reward structure in such a way that the desired
actions are promoted, this is undesirable since it would in
fact encode the optimal policy in the model itself, and would
remove any merit from its solution. The definition of the re-
ward model is simply to assign a high reward for kicking
the ball in a shooting opportunity, and to penalize (lightly)
every other step taken.

3.3 Comments on the Functionality of the Mul-
tiagent POMDP model

Although the transition and observation models for this
particular Multiagent POMDP have been found to be rela-

tively simple to define in theory, in order to rigorously ob-
tain these models in practice, it is necessary to estimate
the respective probability distributions by collecting large
amounts of experimental data. However, due to restrictions
in time, this was overlooked in favor of using empirically es-
timated values. The effect of this decision on the optimality
of the resulting joint policy will be noted. The manner in
which the environment was discretized into states may also
prove some difficulties with respect to the definition of these
models. Since the states were defined in a loose topologi-
cal manner, they are coarse relative to the dimension of the
agents, and so the probability of transitioning to a neigh-
bour state depends heavily on the particular configuration
of the agent inside a given state. Although this effect can be
modelled, to some extent, in a given action’s transition dis-
tribution, the resulting distribution will be necessarily flat,
and little information can be taken from it. A possible way
to overcome this problem is to take advantage of the spe-
cific sensor information (for localization) of the agent, which
contains much more information than what is used by the
Multiagent POMDP.

4. OBTAINING AN APPROXIMATELY OP-
TIMAL POLICY

Although various algorithms allow for the approximate
solution of Dec-POMDPs in its most general form, such as
JESP [3], Bayesian Game based approaches [4], and Mem-
ory Bounded Dynamic Programming [14], these algorithms
typically take into account the history of each of the agents,
i.e. all the past actions taken, as well as the perceived ob-
servations. This greatly increases the computational com-
plexity of the problem. For the simpler case of Multiagent
POMDPs, more efficient algorithms exist. The Perseus al-
gorithm [2] was chosen to solve the Multiagent POMDP in
this work, due to its efficiency in handling moderately-sized
POMDPs. Perseus belongs to the family of point-based
POMDP solvers, but it is by no means the only one [11,
15]. While it is true that often the algorithm to solve a given
POMDP model should be chosen according to the problem’s
structure, this does not create, in this case, a dependancy on
any particular algorithm. In fact, if communications were
assumed instantaneous, the model could simply be reduced
to a single-agent POMDP and dealt with accordingly by any
appropriate solver.

The main objective of any MDP-based model is to maxi-
mize the expected reward of the agent(s) obtained for a given
number of steps, the problem’s horizon. This is described
by the optimal value function associated with a particular
MDP. The optimal action to take at each step is then sim-
ply the action that maximizes the value function. In the
POMDP case, this function has the useful property of being
piecewise-linear convex, i.e. the value of a given belief is a
linear combination of a set of vectors:

V ∗(b) = max
k

∑
i

biα
k
i , (5)

where b represents the belief (in this case the joint belief), t
is the number of remaining decisions to make, and αk are the
vectors that define the linear segments of the value function.
Although the value function itself can be efficiently described
in this manner, the number of vectors that define the value
function k, increases, in the worst case, exponentially in

Figure 3: Synchronization timeline with instanta-
neous communication.

the number of observations as the horizon of the problem
increases, which is problematic when attempting to calculate
infinite-horizon solutions. Instead of taking the whole belief
space into account, the Perseus algorithm [2] considers only
a set of reachable belief points, obtained through“simulated”
exploration using the POMDP’s transition and observation
models. The algorithm then samples belief points from this
reachable set at each step and calculates its corresponding
α-vector (a reasonably inexpensive step) until the value for
all points in the belief set has been improved. The algorithm
then continues to iterate until a convergence criteria is met.

5. COMMUNICATION
In order for the problem to be modeled as a multiagent

POMDP, it was assumed that the robots could communi-
cate their observations freely to each other. However, the
agents’ optimal actions are dependent on the joint belief,
which depends on each of their partners’ observations (their
actions are already known since the joint policy is common
knowledge). For this information to be coherent, the robots
must keep synchronized when carrying out their policies,
i.e. they both must execute an action at (approximately)
the same time. This way, the agents will calculate the same
joint belief at each step.

The synchronization process and necessary explicit com-
munication is performed according to the diagram in Fig-
ure 3. Each agent is assumed to perform its own compo-
nent of the maximizing joint action for a fixed time step T .
The agents’ observations are only available after the out-
come of this action is known. Therefore, after T has passed,
the agents sample their own observations and exchange it
with their partners’. If one of the agents is delayed, then
its partner will wait for this information before proceeding.
This step is where synchronization is enforced between both
robots. This information is then used to locally calculate
the joint belief. After the joint belief is obtained, each agent

Figure 4: Synchronization timeline with delayed
communication of observations.

computes a new maximizing joint action and proceeds to the
next step.

In a realistic scenario, it might not be feasible to assume
instantaneous communication between the agents. This is
often the case in robotic soccer, since the high number of
agents quickly saturate the communication medium. In such
a setting, it can be advantageous not to wait for synchro-
nization between all involved agents. In this sense, the agent
would select an optimal action based on its own local obser-
vation, and receive its partners’ data throughout the decision
step (Figure 4). It is then necessary to investigate the effect
of receiving delayed information. Spaan et al. determined
that the solution of a Dec-POMDP in such a setting, with
up to one step of delay in the communication process, can
be acheived through a series of Bayesian games [10]. Using
a slightly modified version of the Perseus algorithm, results
were obtained for this case.

6. RESULTS
Since the planning and execution phases must be carried

out separately in the proposed task, here too they should be
made distinct. With respect to planning, the Perseus algo-
rithm performed favorably, and converged in as few as 100
iterations, as can be seen in Figure 5. Such a value function
is a good approximation of a stationary solution, i.e., a solu-
tion that assumes an infinite horizon. Such a result demon-
strates the tractability of the proposed Multiagent POMDP
model.

The execution of the task itself was tested in the Webots
simulation environment, which allows for realistic physics
and control of the robotic agents. Furthermore, the real
soccer robots upon which these agents were modeled may
be controlled by directly using the same code as in the sim-
ulator, increasing its overall realism. The two agents were
placed in arbitrary initial positions in the field of play, and
the ball was initially placed in the center of the field (which is

Figure 5: Convergence of the Perseus algorithm for
the proposed Multiagent POMDP.

the origin of the world frame for the robots). The time step
with which these agents should select an action was set to 3
seconds. The robots possessed an estimated 0.4 probability
of performing a transition to a neighbour state when drib-
bling the ball (again, this was done empirically). The obser-
vation model for these robots considered both the possibility
of having false positive and false negative detections of ob-
stacles (0.1 probability of failing to detect an obstacle and
0.05 probability of detecting an inexistent obstacle). The lo-
calization uncertainty was deliberatily made small (around
0.05) since the information it provides is coarse and may
heavily affect the agents’ joint belief in the case of an erro-
neous observation.

Generally, the robots succeeded in their task in an effi-
cient manner. In the instantaneous communication case,
the expected reward was approximately ∼ 360, with 150 the
immediate reward for scoring a goal, −1 for all other actions
and a discount factor of 0.95. The discrepancy between the
expected reward through simulation and the final expected
value as obtained by Perseus is caused by the automatic ter-
mination of each episode by the solver after scoring a goal,
whereas in the simulator the ball was automaticaly reset to
the center of the field and rewards continued to be accumu-
lated.

When introducing a one-step delay in the communica-
tions, the robots performed less favorably with ∼ 30 ex-
pected reward. The comparative results shown in in Figure 6
were obtained by simulating both policies for 500 runs. The
fact that this reward is positive, however, demonstrates that
even in such a case, the robots are still able to cooperate in
order to score goals, albeit notably less efficiently.

Although it is difficult to demonstrate the behaviors car-
ried out by the robots in practice, two different situations
are here presented that highlight the correct performance of
the desired robotic task. These refer to the policy obtained
assuming instantaneous communication.

In Figure 7, the positions of the robots and of the ball that
were recorded from the simulator in a typical situation are
shown. The supporter robot (here shown initially through a
dashed line) maintains a fixed distance to the attacker, until
at t2 the attacker scores a goal. The ball is reset by the
simulator back to the center of the field. Since the initial
supporter is now the closest robot to the ball, it assumes the
role of attacker, and at t3 their roles have been exchanged

−400 −200 0 200 400 600
0

50

100

150

Expected Reward

N
um

be
r

of
 O

cc
ur

re
nc

es

100 200 300 400 500 600
0

20

40

60

80

100

Expected Reward

N
um

be
r

of
 O

cc
ur

re
nc

es
Figure 6: Expected reward collected from simulat-
ing the proposed task with instantaneous communi-
cation (top) and one-step delay (bottom).

from their initial configurations. The process then repeats
itself. Note that in this case, there are no obstacles in the
field other than the agents themselves.

A second situation occurs in the presence of obstacles, and
is depicted in Figure 8. A barrier of obstacles is placed in
front of the initial attacker agent (shown in a dashed line)
and at t2 it selects a pass action since its partner has better
clearance to the goal. Their roles then switch, and the agent
shown by a filled line then carries the ball until it scores a
goal at t3. Note that the initial attacker still decided to carry
the ball for a short amount of time before passing. This is
due to the fact that the agent is commited to performing the
latest selected joint action until the predefined time-step ex-
pires. This presents a problem in dynamic environments,
since the robot may not have enough time to select the op-
timal action when presented with a sudden change in its
state. However, the time-step for these decisions cannot be
reduced too much, since otherwise the robots do not have
enough time to experience the effects of their own actions,
i.e., they would most likely remain in the same state when
using such coarse topological state definitions as the one
proposed in this robotic task.

It is apparent that the resulting policy in both of these
cases provides results that are comparable to those obtained
with decision-making frameworks that are more common in
this context (for example, manually defined policies through
finite-state automata), despite the simplifications that were
made while modeling the problem. These policies were ob-
tained naturally as the solution of the associated Multiagent
POMDP, and, once the observation and transition functions
are obtained, only the reward model needs to be adjusted if a
different task must be performed (provided that the possible

Figure 7: Behavior of the robots after scoring a goal.
The positions of the initially attacking and support-
ing robots are shown by a filled and dashed line,
respectively. The position of the ball is marked in
gray. The goal is located at (9,0) and is 2m wide.

actions and observations remain the same). This may prove
advantageous in environments where the possible tasks are
repetitive and predictable.

7. CONCLUSIONS AND FUTURE WORK
This work described the implementation of a robotic task

based on a Multiagent POMDP model in a realistic simu-
lated scenario. The steps taken to model, solve and imple-
ment the task itself were presented, and results were taken
from various simulations. These simulations show that the
robots are able to efficiently complete the proposed task
with the given model, even if their transition and obser-
vation functions are not rigorously defined. In this man-
ner, it was established that it is possible to perform effec-
tive decision-making in realistic scenarios by using the Dec-
POMDP framework.

The advantage of this approach over most current policy-
definition methods in the robotic soccer environment is that
it deals with uncertainty in the local information of the
robots (regarding the position of obstacles or the ball, for
example) in a natural way, without having to manually de-
scribe the desired policy for each of the agents. The model
itself proved to be solvable in reasonable time. The effect
of losing immediate synchronization between the agents was
studied. It was shown that the control quality of the agents
suffers, although the resulting policy still permits the agents
to complete its task.

One problem with this type of approach is related to the
time that must elapse between two successive decision steps.
If this time value is too large, then the robot loses its ability
to react to sudden changes in its state, as when it encounters
obstacles along its course, for example. Even if the robot is
able to receive an observation consistent with these changes,
it may not be enough to alter the belief of the agent suffi-
ciently for it to perform the desired action (the observation
model has to be narrow in this sense). If the elapsed time
between iterations is too small, then there is not enough
time for the robots to transition to another state, and so
the transition function would become flat and uninforma-
tive.

Figure 8: Behavior of the robots when passing to
avoid obstacles. The initial attacker, in this case, is
shown by the dashed line. At t2 a pass occurs.

As future work, it would be advantageous to develop a
mechanism to condition the observation model on each agent’s
local information, which is typically much more accurate
than the information contained in the coarse topological def-
inition of the system’s state.

8. REFERENCES
[1] Claudia V. Goldman, Shlomo Zilberstein,

Decentralized Control of Cooperative Systems:
Categorization and Complexity Analysis , Journal of
Articial Intelligence Research, 22: 143-174, 2004.

[2] Matthijs T. J. Spaan and Nikos Vlassis, Perseus:
Randomized Point-based Value Iteration for POMDPs.
Journal of Articial Intelligence Research, 24: 195-220,
2005.

[3] Ranjit Nair, David Pynadath, Makoto Yokoo, Milind
Tambe, and Stacy Marsella, Taming Decentralized
POMDPs: Towards Efficient Policy Computation for
Multiagent Settings. In Proceedings of the Eighteenth
International Joint Conference on Artificial
Intelligence (IJCAI), pages 705-711, 2003.

[4] Frans A. Oliehoek, Matthijs T.J. Spaan, Nikos Vlassis,
Optimal and Approximate Q-value Functions for
Decentralized POMDPs. Journal of Artificial
Intelligence Research, 32: 289-353, 2008.

[5] D. Bernstein, R. Givan, N. Immerman, S. Zilberstein,
The complexity of decentralized control of Markov
decision processes. Mathematics of Operations
Research, 27(4): 819-840, 2002.

[6] R. Bellman, Dynamic programming. Princeton
University Press, 1957.

[7] H. T. Cheng, Algorithms for partially observable
Markov decision processes. Ph.D. thesis, University of
British Columbia, 1988.

[8] M. L. Littman, A. R. Cassandra, L. P. Kaelbling,
Learning policies for partially observable
environments: Scaling up. In International Conference
on Machine Learning, San Francisco, CA, 1995.

[9] P. Xuan, V. Lesser, S. Zilberstein, Communication
decisions in multi-agent cooperation: Model and
experiments. In Proc. of the International Conference
on Autonomous Agents, 2001.

[10] Matthijs T. J. Spaan, Frans A. Oliehoek, and Nikos
Vlassis, Multiagent Planning under Uncertainty with
Stochastic Communication Delays. In Proc. of Int.
Conf. on Automated Planning and Scheduling, pp.
338-345, 2008.

[11] H. Kurniawati, D. Hsu, and W. Lee, SARSOP:
Efficient point-based POMDP planning by
approximating optimally reachable belief spaces. In
Proc. Robotics: Science and Systems, 2008..

[12] M. Roth, R. Simmons and M. Veloso, Reasoning about
joint beliefs for execution-time communication
decisions. In Proc. of the International Joint
Conference on Autonomous Agents and Multi Agent
Systems, pp. 786-793, 2005.

[13] D. V. Pynadath and M. Tambe, The communicative
multiagent team decision problem: Analyzing
teamwork theories and models. Journal of Artificial
Intelligence Research, 16, 389-423, 2002.

[14] S. Seuken and S. Zilberstein, Memory-bounded
dynamic programming for DECPOMDPs. In Proc. of
the International Joint Conference on Artificial
Intelligence, pp. 2009-2015, 2007

[15] J. Pineau, G. Gordon and S. Thrun, Point-based value
iteration: An anytime algorithm for POMDPs In
Proc. Int. Joint Conf. on Artificial Intelligence,
Acapulco, Mexico, 2003

