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Abstract. In this paper we address the problem of planning in multi-
agent systems in which the interaction between the different agents is
sparse and mediated by communication. We include the process of com-
munication explicitly as part of the decision process and illustrate how
this single-agent model can be used to plan for communication. We also
use the single-agent model to plan in the multiagent scenario, exploit-
ing the sparse interaction between the agents. Our results show that our
approach can be used for efficient and effective planning: without incur-
ring the computational complexity of more elaborate multiagent models
(such as Dec-MDPs or Comm-MTDPs), we are able to attain good per-
formance in several test domains while planning for communication.

1 Introduction

Decentralized partially observable Markov decision processes (Dec-POMDPs)
provide powerful modeling tools for multiagent decision-making in face of un-
certainty. However, the prohibitive computational cost required to compute an
optimal decision-rule for this class of models renders them impractical except
for the smallest of problems.3 This has motivated simplifications of general Dec-
POMDP models that aim at capturing some of the fundamental features of this
class of problems (such as partial observability) while alleviating its associated
computational cost.

In this paper we are interested in a recent line of work that exploits simplified
models of interaction among the agents in a Dec-POMDP. In many real-world
multiagent scenarios, one observes that the tasks of the different agents are not
coupled at every decision-step but only in relatively infrequent situations. In
the Dec-POMDP literature, early approaches introduced the idea of transition
and reward independence [3] as forms of simplified interactions. Independence
as well as communication have been shown to greatly reduce the computational
complexity of solving decentralized decision models such as Dec-MDPs and Dec-
POMDPs [4,1].

3 Dec-MDPs are known to be NEXP-complete even in 2-agent scenarios.



However, while many multiagent scenarios are not coupled at every decision
step, it is also seldom the case that transitions (or even rewards) are completely
independent. Several models have been proposed that, while leveraging transition
and reward independence between agents, still allow for some “local” dependence
in both transitions and rewards. Examples include interaction-driven Markov
games [13], distributed POMDPs with coordination locales [14], influence-based
policy abstractions in weakly-coupled Dec-POMDPs [15], and models relying on
event-driven interactions [2].

As in the aforementioned works, in this paper we are also interested in sce-
narios where the interactions among agents are sparse and localized. However,
our focus in this paper is not so much on how to exploit sparse interactions,
but rather on how sparse interactions may impact the communication needs in
multiagent planning.

Multi-robot systems constitute the primary motivation for our work and pro-
vide a natural example of the class of problems considered herein. In multi-robot
systems, interaction among robots is naturally limited by the robot’s physical
boundaries (workspace, communication range, etc.) and limited perception ca-
pabilities. It is therefore natural to subdivide the overall task into smaller tasks
that each robot can execute either autonomously or as part of a small group.
Moreover, besides being embedded in a physical environment, robots typically
have a way of communicating among themselves. Communication capabilities
can mitigate issues of partial observability, as they allow agents to share useful
information such as sensor readings.

Explicit communication in multiagent planning was already addressed in [9],
where the proposed Com-MTDP model allows to explicitly reason about com-
munication in Dec-POMDP-like scenarios. However, being a generalization of
Dec-POMDPs, it shares the discouraging computational complexity of the lat-
ter model. The actual process of communication has been investigated in [5].
Roth et al. [10] propose to exploit a factored Dec-MDP model and policy repre-
sentation, in which agents query other agents’ local states when this knowledge
is required for choosing their local actions. Another closely related work is that of
Wu et al. [16] where communication is used as a means to decrease the planning
complexity in Dec-POMDP models.

In this work, we consider a Dec-POMDP model in which agents need to
plan about when to query other agents’ local observations. Our approach is
distinct from those surveyed above in several ways. First of all, unlike [10,16], we
explicitly plan for communication, considering the associated cost-benefit trade-
off. Furthermore, unlike [10], we query observations and not states. Moreover,
we do not assume to have available an a-priori centralized policy, which is very
hard to obtain in the multiagent POMDP case. Instead, we optimize each agent’s
local policy in a round-robin fashion, which is much more scalable.

Our representation of interactions is closest to interaction-driven Markov
games (IDMGs) [13]. This model leverages the independence between the dif-
ferent agents in a Dec-POMDP to decouple the decision process in significant
portions of the joint state space. In those situations in which the agents interact,



IDMGs rely on communication to bring down the the computational complex-
ity of the joint decision process. The use of communication to overcome partial
observability differentiates this approach from other approaches that also ex-
ploit local interactions among the agents. However, Spaan & Melo [13] assume
communication to always take place and to be error-free. In our case, we add
explicit query actions to each agent’s action repertoire, enabling it to query an-
other agent’s observation, subject to certain constraints. For instance, two robots
may only be able to share information when they are physically close. Also, we
assume that communication is subject to errors and comes at a cost that must
be considered.

2 Background

We start by reviewing decentralized partially observable Markov decision pro-

cesses (Dec-POMDPs) and related decision theoretic models. An N -agent Dec-
POMDP M is specified as a tuple M = (N,X , (Ak), (Zk),P, (Ok), r, γ), where
X is the joint state-space; A = ×N

i=1
Ai is the set of joint actions, with each Ai

the individual action set for agent i, i = 1, . . . , N ; each Zi represents the set
of possible local observation for agent i, i = 1, . . . , N ; P(y | x, a) represents the
transition probabilities from joint state x to joint state y when the joint action a
is taken; each Oi(zi | x, a) represents the probability of agent i making the local
observation zi when the joint state is x and the last joint action taken was a,
and r(x, a) represents the expected reward received by all agents for taking the
joint action a in joint state x. The scalar γ is a discount factor.

AnN -agent Decentralized Markov decision process (Dec-MDP) is a particular
class of Dec-POMDP in which the state is jointly fully observable. Formally this
can be translated into the following condition: for every joint observation z ∈ Z,
with Z = ×N

i=1
Zi, there is a state x ∈ X such that P [X(t) = x | Z(t) = z] = 1,

where X(t) is the joint state of the process at time t and Z(t) the correspond-
ing joint observation. Similarly, a partially observable Markov decision process

(POMDP) is a 1-agent Dec-POMDP and a Markov decision process (MDP) is a
1-agent Dec-MDP. Finally, an N -agent multiagent MDP (MMDP) is an N -agent
Dec-MDP that is fully observable, i.e., for every individual observation zi ∈ Zi

there is a state x ∈ X such that P [X(t) = x | Zi(t) = zi] = 1.
In this partially observable multiagent setting, an individual (non-Markov)

policy for agent i is a mapping πi : Hi −→ ∆(Ai), where ∆(Ai) is the space of
probability distributions over Ai, and Hi is the set of all possible finite histories
for agent i. The purpose of all agents is to determine a joint policy π that
maximizes the total sum of discounted rewards. In other words, considering a
distinguished initial state x0 ∈ X that is assumed common knowledge among all
agents, the goal of the agents is to maximize

V π = Eπ

[

∞
∑

t=0

γtr
(

X(t), A(t)
)

| X(0) = x0

]

. (1)

For a more detailed introduction to Dec-POMDPs and related models see, e.g., [11].



3 A Model for Observation Querying

We depart from an N -agent Dec-POMDP model, and address the problem of
when communication can be beneficial to improve the performance in such a
model. Unlike other communication-based approaches to Dec-POMDPs (e.g.,
[10]), we adopt a relatively general communication model, in which the messages
exchanged between the agents are taken as part of the (noisy) observations
available and depend on explicit information- querying actions by them. For the
purposes of our study, we will ignore the decision process of all except one agent,
which we refer as agent k.

We represent the (finite) state-space of the Dec-POMDP as a set X and
assume that it can be factorized as X = Xk ×X−k, where the elements xk ∈ Xk

correspond to agent k’s local state. The state at time t, X(t), is thus a pair
〈Xk(t), X−k(t)〉.

We further assume that all remaining agents follow a Markov policy π−k

which depends only on the state of the system at time t, X(t), i.e.,

P [A−k(t) = a−k | H(t)]

= P [A−k(t) = a−k | X(t) = x] = π−k(x, a−k),
(2)

where A−k(t) denotes the action taken by all agents other than k at time t, H(t)
denotes the whole history of the process up to time t and a−k ∈ A−k.

We also assume that the observations of each agent do not depend on the
actions of the remaining agents, i.e.,

P [Zi(t) = zi | X(t), A(t)] = P [Zi(t) = zi | X(t), Ai(t)] ,

for all i = 1, . . . , N . Therefore, we can simply write the observation probabilities
as Oi(zi | x, ai), i = 1, . . . , N .

3.1 Query Actions and Resulting Observations

We assume that each agent has the ability to query the other agents for their
local state information. In order to make this explicit, we differentiate between
communication actions and the remaining actions—henceforth referred as prim-

itive actions, and write the set of individual actions for agent k as the cartesian
product of the set of communication actions, AC

k
, and the set of primitive ac-

tions, AP

k
, i.e., Ak = AC

k
×AP

k
. We also assume that transition probabilities are

independent of the communication actions, i.e.,

P(y | x, 〈a−k, (a
C

k , a
P

k )〉) = P(y | x, 〈a−k, (b
C

k , a
P

k )〉)

for any x, y ∈ X , a−k ∈ A−k, a
P

k
∈ AP

k
and aC

k
, bC

k
∈ AC

k
.

We also differentiate between communication observations—i.e., observa-
tions that result from communication actions—and primitive observations, that
do not depend on the communication actions. Formally, we write the set of indi-
vidual observations for agent k as the cartesian product of the set of communica-
tion observations, ZC

k
, and primitive observations, ZP

k
, i.e., Zk = ZC

k
×ZP

k
. We



further assume that the communication observations do not depend on primi-
tive actions, and that primitive observations do not depend on communication
actions. This means that we can decouple the observation probabilities as

Ok

(

(zCk , z
P

k ) | x, (aC

k , a
P

k )
)

= O
C

k (z
C

k | x, aC

k )O
P

k (z
P

k | x, aP

k ),

where

O
C

k (z
C

k | x, aC

k ) = P

[

Z
C

k (t) = z
C

k | X(t) = x,A
C

k (t) = a
C

k

]

O
P

k (z
P

k | x, aP

k ) = P

[

Z
P

k (t) = z
P

k | X(t) = x,A
P

k (t) = a
P

k

]

.

Finally, we assume that the reward function can be decomposed as the sum
of two components, one which is independent on the primitive actions of agent k
and on the actions of the other agents, and one other that does not depend on the
communication actions of agent k. Formally, if a = 〈a−k, ak〉 and ak = (aC

k
, aP

k
),

this means that the reward r can be written as

r(x, a) = rP (x, 〈a−k, a
P

k 〉) + rC(x, aCk ). (3)

From these assumptions, it follows that agent k can be modeled as a (single-
agent) POMDP that we describe in the continuation.

3.2 POMDP Model for a Single Agent

Let M = (N,X , (Ak), (Zk),P, (Ok), r, γ) be a Dec-POMDP verifying the as-
sumptions above. Let π−k denote the (state-dependent) reduced joint policy for
all agents other than k. The single-agent POMDP model for agent k is a tuple
Mk = (X ,Ak,Zk,Pk,Ok, rk, γ), where:
- X corresponds to the original Dec-POMDP state-space.
- Ak is the individual action-space for agent k.
- Zk is the individual observation-space for agent k.
- Pk are the transition probabilities obtained from the original transition prob-
abilities. In particular, given an action ak = (aC

k
, aP

k
), we have

Pk(y | x, ak) =
∑

a
−k∈A

−k

π−k(x, a−k)P(y | x, 〈a−k, a
P

k 〉)

- Ok are the observation probabilities for agent k, that match the original Dec-
POMDP observation probabilities. In particular, given an action ak = (aC

k
, aP

k
),

we have

Ok(zk | x, ak) = O
C

k (z
C

k | x, aCk )O
P

k (z
P

k | x, aPk ), (4)

where zk = (zC
k
, zP

k
).

- rk is the reward function obtained from the original Dec-POMDP reward func-
tion after averaging over the other agents’ policy, π−k. In particular, given an



action ak = (aC
k
, aP

k
), we have

rk(x, ak) =
∑

a
−k∈A

−k

π−k(x, a−k)r(x, 〈a−k , ak〉)

=
∑

a
−k∈A

−k

π−k(x, a−k)r
P (x, 〈a−k, a

P

k 〉) + rC(x, aCk ).

Given this POMDP model, we can use standard POMDP solution techniques
to explore the trade-off between the costs and benefits of communication for
agent k.

This POMDP, however, exhibits several appealing features, one of which is
the fact that the state X(t) can be decomposed in two components, Xk(t) and
X−k(t), the second of which does not depend on the actions of Agent k. This
fact can be leveraged to derive more efficient planning methods, much like in the
so-called mixed-observability Markov decision process described in [7].

3.3 An Illustrative Example

We now illustrate the application of our proposed model in a simple navigation
scenario, corresponding to the environment depicted in Fig. 1. In this variation of
the scenario two robots must navigate to their corresponding goal states (marked
with a boxed 1 and 2). At the same time, they must avoid colliding in the narrow
doorway (the central state), since it leads to a large penalty. Agent 2 starts with
equal probability in any of the shaded states on the right, and Agent 1 in the
lightly shaded states on the left.

The application of our model allows us to better understand under which
circumstances the benefits of using communication compensate for its costs. For
this purpose, we assume each agent can observe its location and fix the policy
of Agent 2 as shown in Fig. 1. As explained above, given such a policy we can
construct a POMDP from the point of view of Agent 1, in which it can query
Agent 2’s observations at any time step, at a particular communication cost.
Note that initially Agent 1 does not know exactly where Agent 2 is located,
but does so after querying its observation (which in this case reveals Agent 2’s
location). However, in the case of noisy transitions, without querying every time
step Agent 1’s belief regarding Agent 2’s location will flatten. We test several
experimental conditions, that include the presence or absence of transition noise
and different costs for the communication actions.

We note that, as the cost of the communication goes up, performance in
terms of value goes down (Fig. 2a). Also, when the cost is 0, agent 1 queries
very often, but with increasing communication cost the agent reduces its com-
munication (Fig. 2b). Interesting, however, is to compare the difference between
the deterministic and noisy transition cases. In the former case, the agent stops
communicating when the communication cost reaches 0.3, while in the latter
case the agent communicates up to and until the communication cost is 0.75.
Given the increased stochasticity in the domain, the value of querying the other
agent is higher, so even with a higher penalty the agent will communicate.



Fig. 1: H-environment: Arrows indi-
cate the fixed policy for Agent 2.

Besides how often Agent 1 queries Agent 2’s observation, it is also interesting
to examine in which states it does so. When communication is free (Figs. 2c and
d), Agent 1 queries in all the states it passes through.4 With a communication
cost of 0.3 (Figs. 2e and f), however, it only queries when near to and left of
the doorway. In these states it is crucial to know Agent 2’s location to avoid
potential collisions, an intuition that is exploited automatically by our model.

Note that, in the deterministic environment, agent 1 can always “out-wait”
the other agent, since the policy of the other is known and there is only so much
time that it can take to cross the doorway. Therefore, communication is only
worth it as long as the cost for communication is smaller than the cost paid for
waiting.

4 Computing Policies for Multiple Agents

In the previous section we proposed using a POMDP model to compute the
policy for one agent k, assuming that the policy for the other agents is fixed,
known and verifies (2). Given this POMDPmodel for agent k we can compute the
corresponding optimal policy using any preferred POMDP solution technique.
We used this approach to better understand the communication needs of one
agent in a simple multiagent navigation scenario, and to determine in which
situations the cost of communication outweighs its value.

We now want to extend these ideas and actually compute the policy for all
agents in the Dec-POMDP. One possibility for doing this is to fix the policies
of all agents except one, derive the POMDP model from the previous section
and compute the policy for that agent, and then move to the next agent, in
a round-robin fashion. The main difficulty with this approach is related with
the requirement in (2): since most POMDP solution techniques provide history-
dependent policies, it is seldom the case that (2) will hold.

The requirement (2) is due to the need for the POMDP model for agent k
to predict the dynamic behavior of the multiagent system without accessing the
individual observations made by the other agents. If the POMDP model is not
able to provide such accurate predictions, then using it to optimize the policy

4 We note that, due to the transition noise, an agent can remain in the same state
more than one consecutive time-step, and hence the values > 1.
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Fig. 2: Results for the H-environment. (a) Average total discounted reward for
agent 1; (b) Average number of query actions for agent 1; (c)-(f) States in which
agent 1 chooses to query the other’s state, varying in deterministic or noisy
transitions and communication cost.



for agent k may lead to poor performance. Clearly, if the policy of any of the
other agents depends on its individual observation history, it is not possible to
build a POMDP model for these agents without an exponential blow up in the
dimension of the POMDP, rendering the solution inviable. We note, however,
that in scenarios with sparse interaction, we expect the policy of one agent to be
mostly independent of the other agents. This means that, in a significant part of
the state-space, the information about the other agents will have little impact on
the action choice of our agent. Whenever this is not the case, the agent should
use communication to overcome its perceptual limitations.

In our results, we adopt a simplifying approach and compute a memoryless

policy for each individual POMDP. This ensures that (2) is trivially true and the
POMDP models that we use for each agent are actually accurate—at the cost
of restricting our agent behaviors to memoryless policies. We note that, while
memoryless policies may lead to poor performance in general POMDPs [12],
in environments with sparse interactions we expect that the consideration of
memoryless policies may have a manageable impact in the performance of our
agent. In particular, in problems where local observations provide rich informa-
tion about the local state (such as Dec-MDPs) we expect our model to actually
lead to very good results, since the sparse interactions allow the decisions of one
agent to be mostly independent of the other agents.

We conclude by noting that other possibilities exist to extend our ideas to
the other agents. For example, it is possible to actually compute (or approxi-
mate) the optimal POMDP policies at the cost of inaccurate individual POMDP
models. Other possibilities include using POMDP solutions based on fixed-length
memory [6] or finite-state controllers [8], at the cost of augmenting the individual
POMDP models, but we do not explore them in this paper.

5 Experiments

In this section we illustrate the application of the method described in the previ-
ous section to some simple navigation scenarios extracted from the POMDP and
Dec-POMDP literature. We use robot navigation scenarios to test our algorithms
(see Fig. 3), since our model is particularly suited for modeling multi-robot prob-
lems. Furthermore, results can be easily visualized and interpreted in this class
of problems.

In each of the test scenarios, two robots must each reach one specific state.
In the smaller environments (Maps 1 and 2), the goal state is marked with a
boxed number, corresponding to the number of the robot. The cells with a simple
number correspond to the initial states for that robot. In the larger environments,
the goal for each robot is marked with a cross,×, and the robots each depart from
the other’s goal state, in an attempt to increase the possibility of interaction.

Each robot has 4 actions that move the robot in one of the four possible
direction with probability 0.8 and fail with probability 0.2. It also has available
a fifth “NoOp” action. The shaded regions correspond to areas inside of which
the agents are able to communicate. The darker cells correspond to states where
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(b) Map 02.
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Fig. 3: Environments used in the experiments. The dark gray areas correspond
to states where coordination is required and the light gray areas to the states
where the agents can communicate. We refer to the main text for details.

the agents receive a penalty of −20 if they stand there simultaneously. Also, in
these interaction states, the rate of action failure is increased to 0.36.

All agents have full local state observability and when an agent queries an-
other agent, it incurs a cost of −0.05 and successfully observes the local state of
that agent with a probability of 0.8. With a probability of 0.2 it receives no ob-
servation about the state of the other. When an agent reaches its goal position,
it receives a reward of 10 and moves to a rewardless absorbing state. Throughout
the experiments, we used γ = 0.95.

For each of the different scenarios in Fig. 3 we ran our proposed algorithm and
then tested the computed policy for 1, 000 independent trials of 250 steps each.
The obtained performance in terms of total discounted reward can be found in
Table 1. For comparison purposes, we also provide the obtained total discounted
reward for:

1. A set of agents following individual MDP policies, disregarding the existence
of other agents in the environment (individual);

2. A set of agents following fully observable MMDP policies without incurring
any communication cost (Joint);

3. A set of agents similar to the one from our previous example, where one of
the agents follows the actual MMDP policy and the other a corresponding
single-agent POMDP policy (dubbed single-pomdp);

4. A set of agents communicating at every time-step and acting according to ei-
ther the MDP or the MMDP policies, depending on the observation (dubbed
always comm);

5. Three sets of agents similar to the previous one, but that communicates only
every k time-steps, with k = 2, 3, 4 (dubbed comm k = 2, 3 or 4).



Table 1: Total discounted reward for each set of agents in each of the test-
scenarios. The results are averaged over 1, 000 independent Monte-Carlo runs.
Entries in italic in the same column are not statistically different.

Environment Map 1 Map 2 cit pentagon

individual −1.362 1.709 5 .306 5.641
joint 5.763 6.616 5 .305 7.606

multi-pomdp 3 .651 3 .345 5.083 3.345
single-pomdp 3 .546 3 .411 5.203 6.853
always comm 3.186 4.501 4.308 6.000
comm k = 2 −0.137 3.837 4.806 6 .165

comm k = 3 0.189 2.097 4.980 5.142
comm k = 4 0.007 3 .323 4.816 6 .100

The results of our proposed method correspond to those dubbed multi-pomdp.
The results in Table 1 prompt several interesting observations. First of all,

out of all 4 environments, Map 1 is the one where coordination is more critical
and cit is the one where coordination is less critical. This can be observed by
noticing the difference in value between the single and the joint sets of agents.

Secondly, we note that in all but the cit environment, the fact that our
approach (multi-pomdp) uses memoryless policies causes the agents to behave
“cautiously”, leading one of the agents to avoid crossing the critical areas. This
is the reason why, in such scenarios, our method attains approximately 1/2 of
the reward received by the joint agents.

Another interesting aspect is that in all but the pentagon scenario our agent
is able to outperform the other communicating agents, indicating that even with
the limitations arising from the adopted POMDP solution technique, our agents
are still able to effectively balance the costs and benefits of communication. To
further explore this aspect, we analyzed the performance of all methods with
different communication costs in the range from 0 to 0.5. The results obtained
are depicted in Fig. 4. The plotted results are in accordance with those in Table 1.
It is worth noting, however, that as the communication cost increases, the agents
eventually cease to communicate and, since the penalty for failing to coordinate
is to high, they eventually opt by standing still.

Finally, we conclude by noting that, in the pentagon scenario, the perfor-
mance of our agents is significantly below that of all other agents. This is due to
the memoryless policy adopted, that greatly underestimates the value of the ob-
servations that the agents make, leading to an excessively “conservative” policy
that avoids collisions at all costs.

6 Conclusions

In this paper we proposed the use of a POMDP model to analyze the com-
munication needs of an agent in a Dec-POMDP scenario where the interaction
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Fig. 4: Total discounted reward for each set of agents in each of the test scenarios
as the communication cost varies from 0 to 0.5. The results are averaged over
1, 000 independent Monte-Carlo runs.

between the agents is sparse. We used this approach in a simple example, il-
lustrating how the communication needs of an agent can be computed so as to
optimize communication. For example, in the situation depicted in Fig. 1, our
approach was successfully able to capture the intuition that the fundamental
states for coordination are those around the doorway.

We also further explored the usefulness of this approach in computing poli-
cies for Dec-POMDPs where the agents must explicitly reason about communi-
cation. We used simple memoryless policies with which we can use the POMDP
approach for communication in a round-robin fashion and compute the policy
for each agent conditioned on the policies already derived for the other agents.
We noticed that the use of memoryless policies renders the agents “cautious”,
in that they prefer not to receive any reward rather than risking a large penalty.



In the future we will explore other POMDP solution methods at the cost of vi-
olating requirement (2), exploring bounds on the loss of value to be potentially
incurred.
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