
Enhancing SAT Based Planning
with Landmark Knowledge

Jan Elffers Dyan Konijnenberg Erwin Walraven Matthijs T.J.Spaan

Delft University of Technology, The Netherlands

Abstract

Several approaches exist to solve Artificial Intelligence planning problems, but little attention has been
given to the combination of using landmark knowledge and satisfiability (SAT). Landmark knowledge
has been exploited successfully in the heuristics of classical planning. Recently it was also shown that
landmark knowledge can improve the performance of SAT basedplanners, but it was unclear how and in
which domains they were effective. We investigate the relationship between landmarks and plan gener-
ation performance in SAT. We discuss a recently proposed heuristic for planning using SAT and suggest
improvements. We compare the effects of landmark knowledgein parallel and sequential planning, also
looking at previous research. It turns out that landmark knowledge can be beneficial, but performance
highly depends on the planning domain and the planning problem itself.

1 Introduction

In Artificial Intelligence (AI) planning, one tries to find anaction sequence from a given initial state to a
goal state. The planning task is usually described in the high level Planning Domain Definition Language
(PDDL) format [5]. This format consists of a description of the planning domain and the planning problem.
The domain defines the predicates and actions that can be performed and the problem defines the initial state
and the goal state. Multiple problems can be related to one domain. Several methods have been used to
find plans. Examples are state-space search based methods and logic-based methods such as satisfiability
(SAT). SAT encodings are a very powerful tool to express a wide range of combinatorial problems. Often,
these problems can be translated to a propositional formulaand subsequently be solved using a general
SAT solver. In 1992, Kautz and Selman proposed SAT based AI planning and in 1996 they showed that
satisfiability algorithms are a competitive alternative tothe classical plan search approaches [3, 4]. In this
paper we focus on factors that affect the efficiency of a planning task solver: landmark knowledge for
planning and possible improvements for SAT planning heuristics.

Control knowledge is additional information inferred fromthe problem specification, which can be used
to improve the efficiency of a solver, or to find a better plan. Specifically this control knowledge can be
integrated in the encoding of a planning task by means of additional clauses. These clauses can help the
SAT solver to find a solution more efficiently, in terms of running time. Recently, Cai et al. [1] proposed the
idea of integrating landmark knowledge in the encoding of a planning task. In order to verify their observed
increase in performance, we implemented their method usingMiniSAT [2], a general purpose open-source
SAT solver. Rintanen proposed several heuristics that can be used to make SAT solvers more planning
specific, such as his own SAT solver Madagascar [11, 12]. Our work includes components of his solver
Madagascar, MiniSAT and uses the LAMA planner to find landmarks. LAMA is a heuristic search planner
using landmarks and winner of the 2008 International Planning Competition, which showed that landmarks
can be succesfully used in planning [8, 10]. The paper also contains possible improvements for the heuristics
proposed by Rintanen [12].

Our paper is organized as follows. In section 2 we give a general introduction to classical AI planning.
Solving planning tasks with satisfiability solvers is the topic of section 3. Section 4 explains the concept of
landmarks and section 5 contains possible improvements forplanning heuristics. Next, the results of our
experiments can be found in section 6. The last section contains our conclusion.

2 Planning

In this section an introduction to AI planning is given. In short, a planning task consists of an initial state and
a goal state, which should be reached. A plan transitions from one state to another by executing actions. An
action has preconditions that should be fulfilled before theaction can be applied and there are postconditions
(also calledeffects) that are established after executing the action. There areseveral definitions of a planning
task, we use the definition presented in [12].

Definition 1 (Planning task [12]) A planning taskP is defined by a tuple〈X, I,A,G〉, whereX is a set of
state variables, I is theinitial state, A is a set ofactionsandG is thegoal state. A states : X → {0, 1}
is an assignment of truth values to the variables inX . The actions inA are defined by a pair(p, e), where
p ande are sets of literals representing thepreconditionsand theeffectsof the action. This means that the
precondition literals must hold in order to apply the actionand after applying the action the effect literals
are true. Formally, an action(p, e) can be executed in states if s |= p. This gives a states′ for whichs′ |= e

holds. Variables not affected by the effects remain unchanged.

Given a planning task, a valid solution consists of actions that can be executed to achieve the goal state
from the initial state. In this paper there are two variants of plans that are important. Sequential plans are
a sequence of actions with only one action per time step. A sequential plan containing actions0, 1, . . . , t is
feasible ifAt(. . . A1(A0(s)) . . .) |= G, whereAi(s) denotes the execution of actioni in states. Parallel
plans are a sequence of sets of actions where every time step contains one or more actions that are executed.
The actions defined at a time step can be executed in arbitraryorder. This means that the outcome of the
execution of the plan does not depend on the ordering in whichthe actions in parallel steps are applied.

In this paper the effects of landmark knowledge on sequential and parallel plans is compared. In order
to run experiments we use problems formulated in PDDL [5].

3 SAT based planning

The satisfiability problem (SAT) is the problem to find an assignment of truth values to variables such that
a propositional formula can be satisfied (i.e., evaluates toTRUE). The idea of translating a planning task to
SAT was proposed by Kautz et al. [3]. In this section the reduction is explained, based on the notational
conventions introduced by Rintanen [12].

The basic components are a parameterT ≥ 0 that represents the number of time steps involved (also
called the horizon). Each state variablex ∈ X is represented by a variablext for each time pointt ∈
{0, . . . , T }. It indicates whether variablex is true at timet or not and represents the value of the state
variable during the execution of a plan. IfX = {x1, . . . , xn}, then the state at timet is defined by the values
of xt

1, . . . , x
t
n. The actionsa ∈ A are represented by a variableat for the time pointst ∈ {0, . . . , T − 1}.

Setting this variable toTRUE indicates that the actiona is executed at timet.
Given a planning task and a horizon valueT , the planning task can be translated to a formula that is

satisfiable if and only if there exists a plan with horizon less than or equal toT . To include the preconditions
and effects of actiona = (p, e) at timet ∈ {0, . . . , T − 1}, (1) is used. The first formula ensures that the
preconditions have been fulfilled when executing the actionand the second formula implies the relationship
between executing the action and its effects for the next time step. Note that this assumes the precondition is
one conjunction of atoms; for an arbitrary propositional formula one must use the Tseitin transformation [14]

to map this to a clause set and then replace each atoml by lt in the resulting clause set.

at →
∧

l∈p

lt at →
∧

l∈e

lt+1 (1)

The next component of the encoding contains information about variables that change or do not change,
shown in (2). Suppose thata1,x, . . . , an,x are the actions havingx as one of the effects. Similarly, suppose
thata1,¬x, . . . , an,¬x are actions that have¬x as an effect.

xt+1 → (xt ∨ at1,x ∨ . . . ∨ atn,x) ¬xt+1 → (¬xt ∨ at1,¬x ∨ . . . ∨ atn,¬x) (2)

The first formula shows that ifx is true at timet+1, this is caused by one of the actions withx as an effect,
or it was already true at timet. The same reasoning can be used to explain the second formula.

The last part of the encoding contains information about theinitial state and goal state. For all variables
x ∈ X that are true in the initial state a unit clausex0 is added. Variablesx ∈ X that are false in the
initial state correspond to unit clauses¬x0. For all literals that are true in the goal state we can add a unit
clausexT . The formulas discussed can be easily converted to Conjunctive Normal Form.

Parallel planning requires a more sophisticated formalism, and for more details about parallel encodings
we refer to [13]. Our planning solver generates formulas forincreasing values of horizonT and tries to
find a satisfying assignment of truth values to variables. Once a satisfying assignment has been found, the
corresponding plan can be deduced from the values of the action variables. Since our solver uses parts of
the solver Madagascar, we use the included encodings for sequential plans and A-step plans [13]. The latter
uses Graphplan parallelism, which is also used by the solverfrom [1]. Therefore, we argue that the encoding
we use for parallel plans is similar.

4 Landmark knowledge

In this section we introduce the concept of landmarks and their SAT encoding. Landmarks were first de-
fined by Porteous et al. [7] as “facts that must be true at some point in every valid solution plan”. Later,
Richter [8] extended the definition by changing ‘facts’ to the more inclusive ‘propositional formula’ to in-
clude disjunctive and conjunctive landmarks as well. Now, landmarks consisting of a single atom are called
unit [1] or fact [8] landmarks. Of the previously mentioned types of landmarks, the unit (or fact) landmarks
are used in our solver. The following definition of a landmarkfor SAT based sequential planning has been
adhered to in this research:

Definition 2 (Landmark [9, 8, 1]) Let P = 〈X,A, I,G〉 be a planning task andπ = 〈a0, a1, ..., at〉 a
sequential plan ofP . A factp is true at timei in π iff p ∈ ai−1(..a0(I)...). A factp is added at timei in π

iff p is true at timei in π but not at timei− 1. Facts inI are added at time 0. A factp is first added at time
i in π iff p is true at timei in π but not at any timej < i. A factp is a landmarkof P iff in each valid plan
for P it is true at some time.

Note that the facts in the initial and goal state are landmarks by definition and thus they are trivial
landmarks. Cai et al. [1] proved that the definition of landmarks on sequential plans can be generalized to
parallel plans and introduced a propositional encoding of landmarks (and their orderings). The knowledge
of landmarks alone might not be sufficient to increase a solver’s performance, but the orderings between
them provide valuable information that can be used to form a plan. We have used the proposed encoding of
landmark orderings as clauses in our SAT solver, which is explained further on. For that purpose we first
define the considered landmark orderings.

Definition 3 (Orderings between landmarks [9, 1]) Let q and p be landmarks of a planning task. If in
each plan wherep is true at timei andq is true at some timej < i, there is anatural ordering betweenp
andq, written asqnat → p. If in each plan wherep is first added at timei andq is true at timei − 1, there
is a greedy-necessary orderingbetweenp andq, written asqgn → p. If in each plan wherep is added at
timei andq is true at timei− 1, there is anecessary orderingbetweenp andq, written asqnec → p.

Our solver uses the landmark extraction from the LAMA planner [10]. More details about how the
LAMA planner obtains landmarks and their orderings can be found in [8].

Landmark clauses Given the landmarks associated with a planning task and their orderings, these
can be added as control knowledge to the SAT encoding in the form of additional clauses. Cai et al. [1]
proposed the idea to encode landmarks orderings into clauses, which has been integrated in our solver and
is discussed here. LAMA outputs a landmark graph, showing the orderings between all children and parent
landsmarks. From this graph our solver generates additional clauses. A clausep0 ∨ . . .∨ pT is generated for
every landmark factp, where the horizon of the current plan has been denoted byT . This clause ensures that
the fact must be true at some point in any sequential plan, since it is a landmark. If we have two landmarksq

andp with a greedy necessary orderingqgn → p, then we add the clauseqi−1 ∨ ¬pi ∨
∨m=0

m=i−1 pm for
i = 1, . . . , T , whereT is the horizon value. The first and second part of the disjunction represent the fact
thatq must be true at timei− 1 if p is true at timei. However, it must only be the case ifp becomes true for
the first time at timei, so the last part of the clause represents the possibility thatp was already true before.

The LAMA landmark detection procedure also identifies landmarks that are not a single unit (e.g., a
landmark that is a disjunction of facts). These are not encoded in our planner. Cai et al. only considered
clauses for facts and greedy necessary orderings in their experiments, because they found them to give
superior results compared to other configurations [1]. In our experiments in section 6 we will do the same.

5 Variable selection heuristics for planning as SAT

In addition to the work done on landmark knowledge, we also present an idea for improving the variable
selection heuristic of Madagascar. Madagascar is a solver for classical planning consisting of a procedure
mapping PDDL instances to SAT instances, a built-in SAT solver for solving these, and a procedure schedul-
ing the solving processes for various horizons. The built-in SAT solver is based on the Conflict Driven Clause
Learning (CDCL) architecture [12]. One of the subroutines within this architecture is the variable selection
heuristic: for a given state, which unassigned variable should be assigned (and which polarity should be
chosen)? In this section, we first explain the scoring algorithm maintaining variable activities which forms
the basis of the variable selection heuristic. Then, we consider the planning specific heuristic from [12]
which Madagascar follows, and discuss possible improvements.

The scoring algorithm used by Madagascar is the Variable State Independent Decaying Sum (VSIDS)
algorithm, which was first developed in the Chaff SAT solver [6]. The score of a literal at iterationt equals
a geometric sum of the form

∑
t′ c[t

′] · 2−(t−t′), wheret′ ranges over the iterations during which a literal
wasactive. A literal is active when it occurs in the implication graph during conflict analysis. Scores are not
adjusted during unit propagation. These scores can be used directly for variable selection by choosing the
maximum score literal; alternatively, they can be used as a building block in a more complicated procedure.
Next, we discuss the planning specific heuristic of Madagascar, which uses these scores.

5.1 Madagascar’s variable selection heuristic

There are two strategies possible in a backtracking search procedure to search for a plan: forward chaining
(working from the initial state to the goal state; each path in the search tree is a planprefix), or backward
chaining (working from the goal state to the initial state; each path in the solving process is (the reverse of)
a plansuffix). The “planning as SAT” approach seems to be neither forwardnor backward chaining, because
a satisfiability solver can assign variables in any order, sothat the sequence of time points for which actions
are assigned is not necessarily contiguous. It is not clear whether the possibility to form multiple subplans of
actions “makes sense”, that is, whether it leads to better search procedures compared to extending the plan
from the front or the back. We verified experimentally that inthe Madagascar solver, the solver sometimes
is in a state where multiple subplans are formed.

Madagascar’s variable selection heuristic resembles the method of backward chaining. The pseudocode
for this procedure is given in [12] on page 9. Intuitively, the heuristic attempts to findsupportfor (sub)goals

recursively. The search starts at all goal literalsl at timeT . To find support for a literal at timet, lt, one
scans backwards in time, starting from timet, all t′ ≤ t at which the state variable corresponding tol is
assigned. There are two cases in which the scan terminates and the search for support continues recursively.
If an actiona is assigned at timet′ with l ∈ eff(a), the scan terminates and support is recursively calculated
for {l′t

′

| l′ ∈ prec(a)}. The other case, ifl is assignedFALSE at timet′, one possible actiona is chosen
which hasl as one of its effects. The (action, time) pairat is added to the set of candidate decision literals,
and support is calculated for all literals inprec(a). When a termination criterion is met, for example when
sufficient candidate literals are found, the search terminates and a candidate action is selected for branching.

5.2 Modification of the heuristic

In this section, we describe a modification to the above heuristic. Madagascar’s heuristic can be seen as a
search process in a graph: for each (subgoal)lt, an actionsupport(lt) = at

′

is found, it is reported as a can-
didate decision literal if it is not yet assignedTRUE, and preconditions ofa at timet′ become new subgoals.
The corresponding graph, with edges between state literalsand actions, is formed by drawing directed edges
from lt to support(lt) = at

′

and directed edges fromsupport(lt) = at
′

to all its preconditions at timet′.
The idea is to use the VSIDS scores to calculate “maximum activity paths” in this graph. The intuition

is that activities of other nodes in the path should also be taken into account in the choice of the next action.
For this purpose, we define a functionval(p) which assigns values to pathsp based on the activity scores
score(l) for literalsl. We considered functions parameterized by a real number parameterP , 0 ≤ P ≤ 1:

val([p0]) = score(p0)

val([p0, . . . , pn−1]) = P · score(pn−1) + (1− P) · val([p0, . . . , pn−2])

These functions can be easily calculated recursively alongpaths, and they can be calculated recursively while
the algorithm traverses the graph. The path weights can be used to determine which action to branch on.
We implemented this modification, but unfortunately, we could not find benchmarks where settingP 6= 1
produced an improvement.

6 Experiments

In this section we present the results of our experiments with landmark clauses. Cai et al. [1] did an experi-
mental evaluation for parallel plans. The purpose of our results is giving a complementary overview to place
their results into perspective. In addition, we show that landmark knowledge can be useful for sequential
planning as well and we identify differences between searching parallel and sequential plans.

There are three configurations of our solver that we use. MiniSAT is the standard configuration without
control knowledge. MiniSAT-GN integrates clauses for greedy necessary orderings and MiniSAT-GN-F
includes clauses for both facts and greedy necessary orderings. These configurations are similar to the
configurations used in [1]. For each configuration we have a version for sequential and parallel plans. Our
experiments have been run on a3.2 GHz AMD Phenom II processor with a time limit of 15 minutes anda
memory limit of3.5 GB. We use the benchmark sets from the fifth IPC and the Fast Downward repository1.

The SAT encoding used by [1] may be slightly different, but they also use an A-step encoding for parallel
plans [13]. Cai et al. also count landmarks and orderings that do not correspond to propositional facts2. Our
tables only include landmarks and orderings involving propositional facts.

6.1 Openstacks domains

Cai et al. observe that landmark clauses give a 50 percent increase in performance for the Openstacks do-
main [1]. We ran our solver on two sets of problems in this domain and observe different results. The

1Consulthttp://zeus.ing.unibs.it/ipc-5 andhttp://hg.fast-downward.org for more info.
2This is not mentioned in their paper, but it has been verified through personal communication with the authors.

http://zeus.ing.unibs.it/ipc-5
http://hg.fast-downward.org

results are shown in Table 1 and Figure 1. LM and GN denote the number of landmarks and greedy nec-
essary orderings, respectively. Running times are in seconds. We observe that adding landmark clauses
can be beneficial for both parallel and sequential planning in this domain, but we do not observe such a
large performance increase in Figure 1a. The last three problems in Figure 1b show again that landmark
clauses can be beneficial, also for sequential plans (e.g., p07, p08 and p09), and it takes less time to find a
parallel plan. Further investigation showed that MiniSAT made more restarts, conflicts and decisions when
searching parallel plans (397, 651 and 546 percent, respectively, for p07 and M-GN).

Problem LM GN MS-s MS-GN-s MS-GN-F-s MS-p MS-GN-p MS-GN-F-p

Openst p01 31 45 7.32 5.06 7.40 6.14 6.30 7.48
Openst p02 31 45 7.14 6.12 6.86 7.00 4.52 7.14
Openst p03 31 45 7.36 5.82 7.50 7.12 5.74 5.34
Openst p04 31 45 7.24 5.16 7.88 6.28 5.96 7.10
Openst p05 31 45 7.26 6.70 7.00 6.36 6.30 7.02

Openst-sat08 p01 25 29 3.22 2.38 2.92 0.46 0.48 0.50
Openst-sat08 p02 25 29 2.18 1.84 2.46 0.48 0.52 0.52
Openst-sat08 p03 25 27 2.98 3.46 3.40 0.44 0.42 0.42
Openst-sat08 p04 50 60 41.52 39.50 37.48 19.80 24.52 20.06
Openst-sat08 p05 50 58 44.98 43.50 42.44 21.50 26.72 21.90
Openst-sat08 p06 50 60 38.36 42.10 41.44 15.24 18.14 22.32
Openst-sat08 p07 75 93 220.62 198.98 190.70 127.78 135.32 141.58
Openst-sat08 p08 75 89 232.74 229.70 199.48 127.42 107.42 149.82
Openst-sat08 p09 75 89 248.06 209.84 176.02 146.76 123.70 139.26

Table 1: Results for Openstacks problems.

 0

 2

 4

 6

 8

 10

 12

 14

 16

p01 p02 p03 p04 p05

R
un

ni
ng

 ti
m

e
(s

)

Problem

MiniSAT-s
MiniSAT-GN-s

MiniSAT-GN-FACT-s
MiniSAT-p

MiniSAT-GN-p
MiniSAT-GN-FACT-p

(a) Openstacks

 0

 50

 100

 150

 200

 250

 300

 350

p01 p02 p03 p04 p05 p06 p07 p08 p09

R
un

ni
ng

 ti
m

e
(s

)

Problem

MiniSAT-s
MiniSAT-GN-s

MiniSAT-GN-FACT-s
MiniSAT-p

MiniSAT-GN-p
MiniSAT-GN-FACT-p

(b) Openstacks-sat08

Figure 1: Results for Openstacks problems.

6.2 Pipesworld domains

The pipesworld domains come in two versions: tankage and notankage. The results in [1] show that land-
mark knowledge can be useful for specific problems in the pipesworld domains. Our results are shown in
Table 2 and Figure 2 for some smaller problems. In essence, weobserve the same thing, but there is no real
trend that can be found. Consider, for example, p11 and p13 inFigure 2b. For sequential planning, GN
orderings give an increase in performance for p11, while it is worse for p13. In Figure 2a we can see that
fact clauses give a smaller running time for p06, but for p07 it performs badly. These examples show that

the usage of landmark clauses highly depends on the nature ofthe problem itself, even though it is in the
same domain.

Problem LM GN MS-s MS-GN-s MS-GN-F-s MS-p MS-GN-p MS-GN-F-p

Pipesworld-n p01 7 5 0.24 0.24 0.24 0.18 0.20 0.21
Pipesworld-n p02 12 8 0.94 0.86 0.88 0.26 0.24 0.24
Pipesworld-n p03 11 8 0.40 0.44 0.44 0.36 0.36 0.36
Pipesworld-n p04 15 10 2.16 2.12 2.06 0.38 0.40 0.38
Pipesworld-n p05 13 9 0.62 0.70 0.76 0.50 0.50 0.52
Pipesworld-n p06 18 12 0.66 1.04 0.68 0.52 0.56 0.54
Pipesworld-n p07 16 11 0.88 1.48 1.06 0.70 0.70 0.74
Pipesworld-n p08 22 15 2.18 1.46 1.68 0.72 0.76 0.80
Pipesworld-n p09 24 18 4.42 2.26 2.72 1.08 1.08 1.08
Pipesworld-n p10 32 24 36.74 18.34 28.72 1.28 1.20 1.26
Pipesworld-n p11 8 8 78.02 34.48 58.78 6.72 3.56 3.56
Pipesworld-n p12 12 13 505.94 108.68 87.10 28.42 63.28 36.06
Pipesworld-n p13 9 8 31.46 70.12 38.10 2.00 5.10 3.94

Pipesworld-t p01 13 12 0.44 0.44 0.44 0.42 0.42 0.42
Pipesworld-t p02 20 18 2.66 4.30 1.78 0.94 1.38 0.60
Pipesworld-t p03 17 14 2.20 1.92 1.94 2.24 2.24 2.24
Pipesworld-t p04 19 16 19.98 19.70 19.42 2.30 2.34 2.68
Pipesworld-t p05 19 16 2.26 2.02 2.40 2.74 2.68 2.72
Pipesworld-t p06 25 21 2.34 11.16 8.88 2.84 2.78 2.84
Pipesworld-t p07 17 11 9.04 8.30 26.52 14.10 14.44 14.32

Table 2: Results for Pipesworld problems.

 0

 5

 10

 15

 20

 25

 30

 35

 40

p01 p02 p03 p04 p05 p06 p07

R
un

ni
ng

 ti
m

e
(s

)

Problem

MiniSAT-s
MiniSAT-GN-s

MiniSAT-GN-FACT-s
MiniSAT-p

MiniSAT-GN-p
MiniSAT-GN-FACT-p

(a) Pipesworld-tankage

 1

 10

 100

 1000

p01 p02 p03 p04 p05 p06 p07 p08 p09 p10 p11 p12 p13

R
un

ni
ng

 ti
m

e
(s

)

Problem

MiniSAT-s
MiniSAT-GN-s

MiniSAT-GN-FACT-s
MiniSAT-p

MiniSAT-GN-p
MiniSAT-GN-FACT-p

(b) Pipesworld-notankage (log scale)

Figure 2: Results for Pipesworld problems.

7 Conclusion

The effects of using landmark knowledge cannot be easily explained, but landmarks do show to increase
performance on some types of problems and domains. At the moment it can be concluded that landmarks
generally are useful on a small number of problems, but it seems that in some cases landmarks do not provide
additional information. We were not able to reproduce the large increase in performance on the Openstacks

domain from [1], but we observe that there is a significant improvement in some other cases. It confirms
that their approach is promising, even with the Madagascar solver, but more research is required to make
it working for a large range of problems. With that vision in mind, we identified research directions for
improving planning specific heuristics in the SAT solver. Asfar as we know, there are currently no planning
heuristics for SAT solvers exploiting landmark knowledge,so this can be considered as future work.

Acknowledgements

We would like to thank Jussi Rintanen and Dunbo Cai for sharing parts of their source code and their helpful
correspondence.

References

[1] Dunbo Cai and Minghao Yin. On the utility of landmarks in SAT based planning.Knowledge-Based
Systems, 36:146–154, 2012.

[2] Niklas Eén and Niklas Sörensson. An extensible SAT-solver. In Theory and Applications of Satisfia-
bility Testing, 6th International Conference, SAT 2003, pages 502–518, 2003.

[3] Henry Kautz and Bart Selman. Planning as satisfiability.In Proceedings of the 10th European confer-
ence on Artificial intelligence, ECAI ’92, pages 359–363. John Wiley & Sons, Inc., 1992.

[4] Henry Kautz and Bart Selman. Pushing the envelope: planning, propositional logic, and stochastic
search. InProceedings of the thirteenth national conference on Artificial intelligence - Volume 2,
AAAI’96, pages 1194–1201, 1996.

[5] D. Mcdermott, M. Ghallab, A. Howe, C. Knoblock, A. Ram, M.Veloso, D. Weld, and D. Wilkins.
PDDL - The Planning Domain Definition Language. Technical Report TR-98-003, Yale Center for
Computational Vision and Control, 1998.

[6] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad Malik. Chaff:
Engineering an efficient SAT solver. InAnnual ACM IEEE Design Automation Conference, pages
530–535. ACM, 2001.

[7] Julie Porteous, Laura Sebastia, and Jorg Hoffmann. On the extraction, ordering, and usage of land-
marks in planning. InProceedings of the 6th European Conference on Planning (ECP01), 2001.

[8] Silvia Richter. Landmark-Based Heuristics and Search Control for Automated Planning. PhD thesis,
Griffith University, November 2010.

[9] Silvia Richter, Malte Helmert, and Matthias Westphal. Landmarks revisited. InProceedings of the
23rd national conference on Artificial intelligence - Volume 2, AAAI’08, pages 975–982, 2008.

[10] Silvia Richter and Matthias Westphal. The LAMA planner: Guiding cost-based anytime planning with
landmarks.Journal of Artificial Intelligence Research, 39:127–177, 2010.

[11] Jussi Rintanen. Heuristics for planning with SAT and expressive action definitions. InProceedings of
the 21st International Conference on Automated Planning and Scheduling, 2011.

[12] Jussi Rintanen. Planning as satisfiability: Heuristics. Artificial Intelligence, 193:45–86, 2012.

[13] Jussi Rintanen, Keijo Heljanko, and Ilkka Niemelä. Planning as satisfiability: parallel plans and algo-
rithms for plan search.Artificial Intelligence, 170(12):1031–1080, September 2006.

[14] G. S. Tseitin. On the complexity of derivation in propositional calculus. InAutomation of Reasoning
2: Classical Papers on Computational Logic 1967-1970, pages 466–483. Springer, 1983.

	Introduction
	Planning
	SAT based planning
	Landmark knowledge
	Variable selection heuristics for planning as SAT
	Madagascar's variable selection heuristic
	Modification of the heuristic

	Experiments
	Openstacks domains
	Pipesworld domains

	Conclusion

