Enhancing SAT Based Planning
with Landmark Knowledge

Jan Elffers Dyan Konijnenberg Erwin Walraven Matthijs Bpaan

Delft University of Technology, The Netherlands

Abstract

Several approaches exist to solve Artificial Intelligentanping problems, but little attention has been
given to the combination of using landmark knowledge andsability (SAT). Landmark knowledge
has been exploited successfully in the heuristics of dakgilanning. Recently it was also shown that
landmark knowledge can improve the performance of SAT bpksthers, but it was unclear how and in
which domains they were effective. We investigate the i@bship between landmarks and plan gener-
ation performance in SAT. We discuss a recently proposedstieufor planning using SAT and suggest
improvements. We compare the effects of landmark knowlédgearallel and sequential planning, also
looking at previous research. It turns out that landmarkwkadge can be beneficial, but performance
highly depends on the planning domain and the planning proliiself.

1 Introduction

In Artificial Intelligence (Al) planning, one tries to find action sequence from a given initial state to a
goal state. The planning task is usually described in thik k@gel Planning Domain Definition Language
(PDDL) format [5]. This format consists of a description bétplanning domain and the planning problem.
The domain defines the predicates and actions that can lrped and the problem defines the initial state
and the goal state. Multiple problems can be related to omeailo Several methods have been used to
find plans. Examples are state-space search based mettibiigganbased methods such as satisfiability
(SAT). SAT encodings are a very powerful tool to express aewahge of combinatorial problems. Often,
these problems can be translated to a propositional foremdasubsequently be solved using a general
SAT solver. In 1992, Kautz and Selman proposed SAT based &irphg and in 1996 they showed that
satisfiability algorithms are a competitive alternativete classical plan search approachés |3, 4]. In this
paper we focus on factors that affect the efficiency of a glamtask solver: landmark knowledge for
planning and possible improvements for SAT planning héass

Control knowledge is additional information inferred frahe problem specification, which can be used
to improve the efficiency of a solver, or to find a better plape@fically this control knowledge can be
integrated in the encoding of a planning task by means oftiaddi clauses. These clauses can help the
SAT solver to find a solution more efficiently, in terms of rimmtime. Recently, Cai et al. [1] proposed the
idea of integrating landmark knowledge in the encoding dbamping task. In order to verify their observed
increase in performance, we implemented their method UdingSAT [2], a general purpose open-source
SAT solver. Rintanen proposed several heuristics that eansied to make SAT solvers more planning
specific, such as his own SAT solver Madagascar([11, 12]. Gurkwcludes components of his solver
Madagascar, MiniSAT and uses the LAMA planner to find landteat AMA is a heuristic search planner
using landmarks and winner of the 2008 International Plagn@ompetition, which showed that landmarks
can be succesfully used in planning([8] 10]. The paper alatagus possible improvements for the heuristics
proposed by Rintanen [12].

Our paper is organized as follows. In secfidn 2 we give a ganreroduction to classical Al planning.
Solving planning tasks with satisfiability solvers is thpitoof sectioi B. Sectidnl 4 explains the concept of
landmarks and sectidd 5 contains possible improvementslémning heuristics. Next, the results of our
experiments can be found in sectidn 6. The last section ir@ndar conclusion.

2 Planning

In this section an introduction to Al planning is given. lrosty a planning task consists of an initial state and
a goal state, which should be reached. A plan transitioms &roe state to another by executing actions. An
action has preconditions that should be fulfilled beforestttéon can be applied and there are postconditions
(also calleceffect$ that are established after executing the action. Thersea@ral definitions of a planning
task, we use the definition presented.in/[12].

Definition 1 (Planning task [12]) A planning taskP is defined by a tupléX, I, A, G), whereX is a set of
state variables! is theinitial state, A is a set ofactionsand G is thegoal state A states : X — {0,1}

is an assignment of truth values to the variables<inThe actions inA are defined by a paifp, ¢), where

p ande are sets of literals representing tipeeconditionsand theeffectsof the action. This means that the
precondition literals must hold in order to apply the actiand after applying the action the effect literals
are true. Formally, an actioffip, ¢) can be executed in statdf s |= p. This gives a state’ for whichs’ = e
holds. Variables not affected by the effects remain unchdng

Given a planning task, a valid solution consists of actitvas tan be executed to achieve the goal state
from the initial state. In this paper there are two variaritplans that are important. Sequential plans are
a sequence of actions with only one action per time step. Aesgtpl plan containing actiorts 1, ..., tis
feasible if A:(... A1(40())...) E G, whereA;(s) denotes the execution of actiénn states. Parallel
plans are a sequence of sets of actions where every timeatégirts one or more actions that are executed.
The actions defined at a time step can be executed in arbirder. This means that the outcome of the
execution of the plan does not depend on the ordering in wthielactions in parallel steps are applied.

In this paper the effects of landmark knowledge on sequiesntich parallel plans is compared. In order
to run experiments we use problems formulated in PDDL [5].

3 SAT based planning

The satisfiability problem (SAT) is the problem to find an gasient of truth values to variables such that
a propositional formula can be satisfied (i.e., evaluatexRtee). The idea of translating a planning task to
SAT was proposed by Kautz et &l/[3]. In this section the réidnds explained, based on the notational
conventions introduced by Rintanen [12].

The basic components are a paraméter 0 that represents the number of time steps involved (also
called the horizon). Each state variahlec X is represented by a variablé for each time point €

{0,...,T}. It indicates whether variable is true at timet or not and represents the value of the state
variable during the execution of a plan Xf = {z4, ..., z,, }, then the state at timeis defined by the values
of zt,...,z!. The actions: € A are represented by a variaklefor the time pointg € {0,...,7 — 1}.

Setting this variable toRUE indicates that the actiomis executed at time

Given a planning task and a horizon valliethe planning task can be translated to a formula that is
satisfiable if and only if there exists a plan with horizorslésan or equal t@'. To include the preconditions
and effects of action = (p, e) attimet € {0,...,7 — 1}, (@) is used. The first formula ensures that the
preconditions have been fulfilled when executing the adiwhthe second formula implies the relationship
between executing the action and its effects for the nex sitap. Note that this assumes the precondition is
one conjunction of atoms; for an arbitrary propositionahfala one must use the Tseitin transformation [14]

to map this to a clause set and then replace each abyrif in the resulting clause set.
at— N\ at— A\t (1)
lep lce

The next component of the encoding contains informatiorutkariables that change or do not change,

shown in[(2). Suppose that ., ..., a, are the actions having as one of the effects. Similarly, suppose
thata; -z, ..., an, 5 are actions that haver as an effect.
gt o (@' val V... val,) 't = (-2t val _,v.. vl _,) (2)

The first formula shows that if is true at time + 1, this is caused by one of the actions witlas an effect,
or it was already true at time The same reasoning can be used to explain the second formula

The last part of the encoding contains information aboutrthil state and goal state. For all variables
x € X that are true in the initial state a unit claustis added. Variables € X that are false in the
initial state correspond to unit clauses®. For all literals that are true in the goal state we can addita un
clausex”. The formulas discussed can be easily converted to Conjerfidbrmal Form.

Parallel planning requires a more sophisticated formalesmd for more details about parallel encodings
we refer to [13]. Our planning solver generates formulasifioreasing values of horizofi and tries to
find a satisfying assignment of truth values to variablesceOm satisfying assignment has been found, the
corresponding plan can be deduced from the values of thenaediriables. Since our solver uses parts of
the solver Madagascar, we use the included encodings faeségl plans and A-step plaris [13]. The latter
uses Graphplan parallelism, which is also used by the sbiwer[1]. Therefore, we argue that the encoding
we use for parallel plans is similar.

4 Landmark knowledge

In this section we introduce the concept of landmarks anul 8&T encoding. Landmarks were first de-
fined by Porteous et all |[7] agdtts that must be true at some point in every valid solutiam’p Later,
Richter [8] extended the definition by changirigcts to the more inclusive propositional formulato in-
clude disjunctive and conjunctive landmarks as well. Nandmarks consisting of a single atom are called
unit [1] or fact[8] landmarks. Of the previously mentioned types of landmathe unit (or fact) landmarks
are used in our solver. The following definition of a landmBmkSAT based sequential planning has been
adhered to in this research:

Definition 2 (Landmark [9] BI[1]) Let P = (X, A, I,G) be a planning task and = (a°,a!,...,a") a
sequential plan of?. A factp is true at timei in 7 iff p € a’~1(..a°(I)...). A factp is added at time in
iff p is true at timei in 7 but not at time; — 1. Facts inl are added at time 0. A fagtis first added at time
i in 7 iff p is true at timei in 7 but not at any timg < 4. A factp is alandmark of P iff in each valid plan
for P itis true at some time.

Note that the facts in the initial and goal state are landsénk definition and thus they are trivial
landmarks. Cai et al_[1] proved that the definition of landksaon sequential plans can be generalized to
parallel plans and introduced a propositional encoding@oéiimarks (and their orderings). The knowledge
of landmarks alone might not be sufficient to increase a sslyerformance, but the orderings between
them provide valuable information that can be used to fordaa.pVe have used the proposed encoding of
landmark orderings as clauses in our SAT solver, which idaéxed further on. For that purpose we first
define the considered landmark orderings.

Definition 3 (Orderings between landmarks [9] 1]) Let ¢ and p be landmarks of a planning task. If in
each plan where is true at timei andq is true at some timg < i, there is anatural ordering betweerp
andgq, written asq,.; — p- If in each plan where is first added at time andg is true at time; — 1, there
is a greedy-necessary orderirfgetweerp andg, written asgg, — p. If in each plan wherg is added at
time: andgq is true at time; — 1, there is anecessary orderingpetweerp andgq, written asq,,.. — p.

Our solver uses the landmark extraction from the LAMA planid®]. More details about how the
LAMA planner obtains landmarks and their orderings can hmtbin [E].

Landmark clauses Given the landmarks associated with a planning task and ¢hderings, these
can be added as control knowledge to the SAT encoding in time &6 additional clauses. Cai et al.l[1]
proposed the idea to encode landmarks orderings into cdawgeéch has been integrated in our solver and
is discussed here. LAMA outputs a landmark graph, showiegtiderings between all children and parent
landsmarks. From this graph our solver generates addititensses. A clausgy V . ..V pr is generated for
every landmark fagt, where the horizon of the current plan has been denotdd fyis clause ensures that
the fact must be true at some point in any sequential placesirs a landmark. If we have two landmariks
andp with a greedy necessary ordering, — p, then we add the clausg_, vV —p; V \/ﬁj?_lpm for
i1 =1,...,T, whereT is the horizon value. The first and second part of the disjanaepresent the fact
thatg must be true at timé— 1 if p is true at timei. However, it must only be the casepibecomes true for
the first time at time, so the last part of the clause represents the possibilitytivas already true before.

The LAMA landmark detection procedure also identifies laadks that are not a single unit (e.g., a
landmark that is a disjunction of facts). These are not eadad our planner. Cai et al. only considered
clauses for facts and greedy necessary orderings in thparements, because they found them to give
superior results compared to other configuratiohs [1]. Inexyperiments in sectidd 6 we will do the same.

5 Variable selection heuristics for planning as SAT

In addition to the work done on landmark knowledge, we alss@nt an idea for improving the variable
selection heuristic of Madagascar. Madagascar is a savaldssical planning consisting of a procedure
mapping PDDL instances to SAT instances, a built-in SAT eolgr solving these, and a procedure schedul-
ing the solving processes for various horizons. The boifAT solver is based on the Conflict Driven Clause
Learning (CDCL) architectur€ [12]. One of the subroutindéin this architecture is the variable selection
heuristic: for a given state, which unassigned variablaikhbe assigned (and which polarity should be
chosen)? In this section, we first explain the scoring atgorimaintaining variable activities which forms
the basis of the variable selection heuristic. Then, we idenghe planning specific heuristic from_[12]
which Madagascar follows, and discuss possible improvésnen

The scoring algorithm used by Madagascar is the Variable Staependent Decaying Sum (VSIDS)
algorithm, which was first developed in the Chaff SAT solV&]r [The score of a literal at iteratianequals
a geometric sum of the forf,, c[t’] - 2~(*~*), wheret’ ranges over the iterations during which a literal
wasactive A literal is active when it occurs in the implication graplirshg conflict analysis. Scores are not
adjusted during unit propagation. These scores can be usadlylfor variable selection by choosing the
maximum score literal; alternatively, they can be used asldibg block in a more complicated procedure.
Next, we discuss the planning specific heuristic of Madagasdhich uses these scores.

5.1 Madagascar’s variable selection heuristic

There are two strategies possible in a backtracking seaosfegure to search for a plan: forward chaining
(working from the initial state to the goal state; each patkthie search tree is a plamefix), or backward
chaining (working from the goal state to the initial statacle path in the solving process is (the reverse of)
a plansuffiy. The “planning as SAT” approach seems to be neither forwardackward chaining, because
a satisfiability solver can assign variables in any ordethabthe sequence of time points for which actions
are assigned is not necessarily contiguous. It is not cleather the possibility to form multiple subplans of
actions “makes sense”, that is, whether it leads to betsecheprocedures compared to extending the plan
from the front or the back. We verified experimentally thattie Madagascar solver, the solver sometimes
is in a state where multiple subplans are formed.

Madagascar’s variable selection heuristic resembles t#thad of backward chaining. The pseudocode
for this procedure is given in [12] on page 9. Intuitivelye theuristic attempts to firglpportfor (sub)goals

recursively. The search starts at all goal litedad timeT'. To find support for a literal at time [, one
scans backwards in time, starting from timeall ¢ < ¢ at which the state variable corresponding i
assigned. There are two cases in which the scan terminatéb@search for support continues recursively.
If an actiona is assigned at tim& with [€ eff (a), the scan terminates and support is recursively calculated
for {I'" | I € prec(a)}. The other case, ifis assignedALSE at timet’, one possible action is chosen
which hasl as one of its effects. The (action, time) pairis added to the set of candidate decision literals,
and support is calculated for all literalsimec(a). When a termination criterion is met, for example when
sufficient candidate literals are found, the search tertagiand a candidate action is selected for branching.

5.2 Moadification of the heuristic

In this section, we describe a modification to the above k&ariMadagascar’s heuristic can be seen as a
search process in a graph: for each (subgbadin actionsupport(it) = ot is found, it is reported as a can-
didate decision literal if it is not yet assigngg&uUE, and preconditions af at timet’ become new subgoals.
The corresponding graph, with edges between state lit@nalactions, is formed by drawing directed edges
from I* to support(I*) = o and directed edges frosmpport(i’) = o' to all its preconditions at timé.

The idea is to use the VSIDS scores to calculate “maximumigcpaths” in this graph. The intuition
is that activities of other nodes in the path should also kerténto account in the choice of the next action.
For this purpose, we define a functieal(p) which assigns values to pathased on the activity scores
score(l) for literalsi. We considered functions parameterized by a real numbeanpserP, 0 < P < 1:

val([po]) = score(po)
Val([po, e apn—l]) =P- SCOI'e(pn—l) + (1 - P) : Val([po’ e ,pn—Q])

These functions can be easily calculated recursively ghaitiys, and they can be calculated recursively while
the algorithm traverses the graph. The path weights can dx tosdetermine which action to branch on.
We implemented this modification, but unfortunately, weldawt find benchmarks where settidty~ 1
produced an improvement.

6 Experiments

In this section we present the results of our experiments laitdmark clauses. Cai et dll [1] did an experi-
mental evaluation for parallel plans. The purpose of ourlte$s giving a complementary overview to place
their results into perspective. In addition, we show thatilaark knowledge can be useful for sequential
planning as well and we identify differences between saagoparallel and sequential plans.

There are three configurations of our solver that we use. 3Aifiis the standard configuration without
control knowledge. MiniSAT-GN integrates clauses for gie@ecessary orderings and MiniSAT-GN-F
includes clauses for both facts and greedy necessary ngderiThese configurations are similar to the
configurations used in[1]. For each configuration we haversime for sequential and parallel plans. Our
experiments have been run 0.2 GHz AMD Phenom Il processor with a time limit of 15 minutes and
memory limit of3.5 GB. We use the benchmark sets from the fifth IPC and the Fashivavwd repositoﬂﬁ

The SAT encoding used byl[1] may be slightly different, beythlso use an A-step encoding for parallel
plans[13]. Cai et al. also count landmarks and orderingsth&ot correspond to propositional faCtOur
tables only include landmarks and orderings involving pfional facts.

6.1 Openstacks domains

Cai et al. observe that landmark clauses give a 50 percemgase in performance for the Openstacks do-
main [1]. We ran our solver on two sets of problems in this dionzend observe different results. The

1Consulihtt p: /7 zeus.ing. uni bs.it/ipc-5andhttp://hg.fast- downwar d. or g for more info.
2This is not mentioned in their paper, but it has been verifiedugh personal communication with the authors.

http://zeus.ing.unibs.it/ipc-5
http://hg.fast-downward.org

results are shown in Tab[é 1 and Figlie 1. LM and GN denote tingber of landmarks and greedy nec-
essary orderings, respectively. Running times are in skcoklVe observe that adding landmark clauses
can be beneficial for both parallel and sequential planninthis domain, but we do not observe such a
large performance increase in Figlré 1a. The last thredgrsbin Figurd_Ib show again that landmark
clauses can be beneficial, also for sequential plans (€d,,q®8 and p09), and it takes less time to find a
parallel plan. Further investigation showed that MiniSA&ide more restarts, conflicts and decisions when
searching parallel plans (397, 651 and 546 percent, ragplycfor p07 and M-GN).

[Problem [LM [GN [MS-s | MS-GN-s | MS-GN-F-s [MS-p_| MS-GN-p | MS-GN-Fp |
Openst p01 31 [45 [[7.32 | 506 7.40 6.14 | 6.30 7.48
Openst p02 31 [45 |[714 |612 6.86 7.00 | 452 7.14
Openst p03 31 |45 [[7.36 | 582 7.50 712 | 5.74 5.34
Openst p04 31 [45 |[7.24 | 516 7.88 628 | 5.96 7.10
Openst p05 3L [45 [726 | 6.70 7.00 6.36 | 6.30 7.02
Openst-sat08 p0f] 25 | 29 || 3.22_ | 2.38 2.92 0.46 | 0.48 0.50
Openst-sat08 p04] 25 | 29 || 2.18 | 1.84 2.46 048 | 052 052
Openst-sat08 p03] 25 | 27 | 2.98 | 3.46 3.40 044 | 0.42 0.42
Openst-sat08 p04 50 | 60 || 41.52 | 39.50 37.48 19.80 | 24.52 20.06
Openst-sat08 p0§ 50 | 58 || 44.98 | 43.50 42.44 2150 | 26.72 21.90
Openst-sat08 p0g 50 | 60 || 38.36 | 42.10 41.44 1524 | 18.14 22.32
Openst-sat08 p0f| 75 | 93 || 220.62| 198.98 | 190.70 127.78| 135.32 | 14158
Openst-sat08 p0§ 75 | 89 || 232.74| 229.70 | 199.48 127.42| 107.42 | 149.82
Openst-sat08 p04 75 | 89 || 248.06 | 209.84 | 176.02 146.76 123.70 | 139.26

Table 1: Results for Openstacks problems.

16 350

MiniSAT-s MiniSAT-s
MiniSAT-GN-s MiniSAT-GN-s
MiniSAT-GN-FACT-s mmm—" MiniSAT-GN-FACT-s mmm—"
14 - MiniSAT-p 300 MiniSAT-p
MiniSAT-GN-p MiniSAT-GN-p
MiniSAT-GN-FACT-p MiniSAT-GN-FACT-p
12
250
— 10 =
@ @
Py o 200
E E
> 8 1 o
= =
g g
é é 150
ol]
100
ak]
oL i 50
poL po2 po3 po4 pos poL po2 po3 po4 pos po6 po7 pos po9
Problem Problem
(a) Openstacks (b) Openstacks-sat08

Figure 1: Results for Openstacks problems.

6.2 Pipesworld domains

The pipesworld domains come in two versions: tankage anahikage. The results inl[1] show that land-
mark knowledge can be useful for specific problems in theguijpeld domains. Our results are shown in
Table[2 and Figurgl 2 for some smaller problems. In essencebsarve the same thing, but there is no real
trend that can be found. Consider, for example, p11 and pEgiare[2b. For sequential planning, GN

orderings give an increase in performance for p11, while warse for p13. In Figue2a we can see that
fact clauses give a smaller running time for p06, but for gQ¥erforms badly. These examples show that

the usage of landmark clauses highly depends on the natuhe giroblem itself, even though it is in the
same domain.

| Problem | LM [GN]| MS-s | MS-GN-s [MS-GN-F-s | MS-p [MS-GN-p | MS-GN-F-p]
Pipesworld-n p01|| 7 5 0.24 0.24 0.24 0.18 0.20 0.21
Pipesworld-n p02|| 12 | 8 0.94 0.86 0.88 0.26 | 0.24 0.24
Pipesworld-n p03|| 11 8 0.40 0.44 0.44 0.36 0.36 0.36
Pipesworld-n p04|| 15 10 2.16 2.12 2.06 0.38 0.40 0.38
Pipesworld-n p05|| 13 9 0.62 0.70 0.76 0.50 | 0.50 0.52
Pipesworld-n p06|| 18 12 0.66 1.04 0.68 0.52 0.56 0.54
Pipesworld-n p07|| 16 11 0.88 1.48 1.06 0.70 0.70 0.74
Pipesworld-n p08|| 22 15 2.18 1.46 1.68 0.72 | 0.76 0.80
Pipesworld-n p09|| 24 18 4.42 2.26 2.72 1.08 1.08 1.08
Pipesworld-n p10|| 32 24 36.74 | 18.34 28.72 1.28 1.20 1.26
Pipesworld-n p11|| 8 8 78.02 | 34.48 58.78 6.72 | 3.56 3.56
Pipesworld-n p12|| 12 | 13 505.94 | 108.68 87.10 28.42 | 63.28 36.06
Pipesworld-n p13|| 9 8 31.46 | 70.12 38.10 2.00 5.10 3.94
Pipesworld-t p01| 13 12 0.44 0.44 0.44 0.42 | 0.42 0.42
Pipesworld-t p02 || 20 18 2.66 4.30 1.78 0.94 1.38 0.60
Pipesworld-t p03 | 17 14 2.20 1.92 1.94 224 | 2.24 2.24
Pipesworld-t p04 || 19 | 16 19.98 | 19.70 19.42 230 | 2.34 2.68
Pipesworld-t p05| 19 16 2.26 2.02 2.40 2.74 2.68 2.72
Pipesworld-tp06 || 25 | 21 2.34 11.16 8.88 2.84 | 2.78 2.84
Pipesworld-t p07 | 17 11 9.04 8.30 26.52 14.10 | 14.44 14.32

Table 2: Results for Pipesworld problems.

40

MiniSAT-s MiniSAT-s

MiniSAT-GN-s MiniSAT-GN-s
MiniSAT-GN-FACT-s MiniSAT-GN-FACT-s
35 MiniSAT-p +H MiniSAT-p
iNiSAT-GN-p iNiSAT-GN-p
MiniSAT-GN-FACT-p 1000 ¢ MiniSAT-GN-FACT-p E|
30 q
— 5F 1 =
@ @
o o
E E 100 | E
> 20 1 o
= =
£ £
g g
g g
['3 15 - | ['3
10k i 10 E|
sl]
] [T (O A 1 | |I J J
poL po2 po3 po4 pos po6 po7 p0l p02 pO3 po4 p0OS pO6 p07 pO8 p09 plo pll pl2 pi3
Problem Problem
(a) Pipesworld-tankage (b) Pipesworld-notankage (log scale)

Figure 2: Results for Pipesworld problems.

7 Conclusion

The effects of using landmark knowledge cannot be easilyagxgd, but landmarks do show to increase
performance on some types of problems and domains. At theambitncan be concluded that landmarks
generally are useful on a small number of problems, but insgbat in some cases landmarks do not provide
additional information. We were not able to reproduce tihgdancrease in performance on the Openstacks

domain from[[1], but we observe that there is a significantrmmpment in some other cases. It confirms
that their approach is promising, even with the Madagassaes but more research is required to make
it working for a large range of problems. With that vision irinah, we identified research directions for
improving planning specific heuristics in the SAT solver.fasas we know, there are currently no planning
heuristics for SAT solvers exploiting landmark knowledgethis can be considered as future work.

Acknowledgements

We would like to thank Jussi Rintanen and Dunbo Cai for slugpirts of their source code and their helpful
correspondence.

References

[1] Dunbo Cai and Minghao Yin. On the utility of landmarks idBbased planningKnowledge-Based
Systems36:146-154, 2012.

[2] Niklas E€n and Niklas Sorensson. An extensible SAlo In Theory and Applications of Satisfia-
bility Testing, 6th International Conference, SAT 208&8ges 502-518, 2003.

[3] Henry Kautz and Bart Selman. Planning as satisfiabilityProceedings of the 10th European confer-
ence on Artificial intelligenceECAI '92, pages 359—-363. John Wiley & Sons, Inc., 1992.

[4] Henry Kautz and Bart Selman. Pushing the envelope: panpmpropositional logic, and stochastic
search. InProceedings of the thirteenth national conference on Ai#fiintelligence - Volume 2
AAAI'96, pages 1194-1201, 1996.

[5] D. Mcdermott, M. Ghallab, A. Howe, C. Knoblock, A. Ram, Meloso, D. Weld, and D. Wilkins.
PDDL - The Planning Domain Definition Language. Technicap&®e TR-98-003, Yale Center for
Computational Vision and Control, 1998.

[6] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, LiotZhang, and Sharad Malik. Chaff:
Engineering an efficient SAT solver. Wsnnual ACM IEEE Design Automation Conferenpages
530-535. ACM, 2001.

[7] Julie Porteous, Laura Sebastia, and Jorg Hoffmann. @rextraction, ordering, and usage of land-
marks in planning. IfProceedings of the 6th European Conference on Planning (E0QR2001.

[8] Silvia Richter. Landmark-Based Heuristics and Search Control for Autoch&@nning PhD thesis,
Griffith University, November 2010.

[9] Silvia Richter, Malte Helmert, and Matthias Westphalandmarks revisited. IRProceedings of the
23rd national conference on Artificial intelligence - Volerd AAAI'08, pages 975-982, 2008.

[10] Silvia Richter and Matthias Westphal. The LAMA plann&uiding cost-based anytime planning with
landmarks.Journal of Artificial Intelligence ResearcB9:127-177, 2010.

[11] Jussi Rintanen. Heuristics for planning with SAT angmssive action definitions. Iroceedings of
the 21st International Conference on Automated Plannirdyacheduling2011.

[12] Jussi Rintanen. Planning as satisfiability: Heursstsrtificial Intelligence 193:45-86, 2012.

[13] Jussi Rintanen, Keijo Heljanko, and llkka Niemeldafting as satisfiability: parallel plans and algo-
rithms for plan searchArtificial Intelligence 170(12):1031-1080, September 2006.

[14] G. S. Tseitin. On the complexity of derivation in progimmal calculus. InAutomation of Reasoning
2: Classical Papers on Computational Logic 1967-19F8ges 466—483. Springer, 1983.

	Introduction
	Planning
	SAT based planning
	Landmark knowledge
	Variable selection heuristics for planning as SAT
	Madagascar's variable selection heuristic
	Modification of the heuristic

	Experiments
	Openstacks domains
	Pipesworld domains

	Conclusion

