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Abstract
In domains such as electric vehicle charging, smart distribution grids and autonomous

warehouses, multiple agents share the same resources. When planning the use of these
resources, agents need to deal with the uncertainty in these domains. Although several
models and algorithms for such constrained multiagent planning problems under uncertainty
have been proposed in the literature, it remains unclear when which algorithm can be
applied. In this survey we conceptualize these domains and establish a generic problem
class based on Markov decision processes. We identify and compare the conditions under
which algorithms from the planning literature for problems in this class can be applied:
whether constraints are soft or hard, whether agents are continuously connected, whether
the domain is fully observable, whether a constraint is momentarily (instantaneous) or on
a budget, and whether the constraint is on a single resource or on multiple. Further we
discuss the advantages and disadvantages of these algorithms. We conclude by identifying
open problems that are directly related to the conceptualized domains, as well as in adjacent
research areas.

1. Introduction

The recent arrival of Artificial Intelligence (AI) as a household term comes from the success
of well-known examples like digital personal assistants (Hoy, 2018), media recommender
systems (Möller et al., 2018), and game-playing AI capable of surpassing human experts (Sil-
ver et al., 2018). However, these examples have in common that they interact one-on-one
with the user. We expect that increased uptake of AI systems will quickly also lead to more
multiagent systems, in which multiple intelligent agents interact while making decisions. In
such systems the agents are likely to encounter constraints due to the presence of shared
resources, which limits their potential decisions.

Multiagent systems with resource constraints arise naturally in several parts of our
society nowadays. For example, in autonomous warehouses there are multiple robots
which collect items for delivery, and these robots are constrained by, e.g., time constraints,
locations, and facilities they use (Claes et al., 2017). Another example can be found in power
distribution grids, in which aggregators control charging of multiple autonomous electric
vehicles which are not allowed to violate distribution grid constraints (De Weerdt et al.,
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2018). Multiagent decision making with constraints also occurs in online advertising, in
which a limited advertising budget should be assigned to online users in order to maximize
conversion (Boutilier & Lu, 2016). Finally, monitoring tasks at airports need to be performed
with limited security staff while considering multiple autonomous adversaries (Pita et al.,
2008). Besides the existence of i) more-or-less independent agents and ii) resource constraints,
all aforementioned applications include iii) sources of uncertainty which need to be considered
while making decisions where these decisions may affect each other sequentially, and iv)
there is an opportunity for coordination in advance. These four properties identify the type
of problems under discussion in this article.

Markov decision processes (MDPs) provide a well-studied framework for decision-making
problems with uncertainties (Puterman, 1994; Boutilier, 1996). Over the years many
extensions have been proposed which augment the framework with additional constraints
on the optimal policy. Altman (1999) gives a comprehensive overview of the properties
of constrained Markov decision processes with discounted or expected average costs. In
this paper we survey work that builds on these models by taking a multiagent perspective,
emphasizing the coordination aspect between agents regarding resources. Additionally, we
include work that defines constraints that must hold absolutely, under any circumstance.
These different definitions of constraints have mostly been studied in isolation, which makes
it unclear how the algorithms proposed in literature compare against each other, and under
what circumstances they can be used when solving planning problems.

In this survey we aim to establish a general understanding of problems that can be
modeled as constrained multiagent Markov decision processes and the associated algorithms
that have been proposed in the literature. A first aim is to provide further understanding
which (type of) algorithm works best for which type of domains. Moreover, the overview
enables us to identify unexplored areas in the field as well as promising research directions
that can be pursued in future research.

1.1 Contributions

We present a general conceptualization of constrained multiagent planning problems based
on Markov decision processes. This conceptualization describes all aspects of resources and
planning domains that need to be considered when performing planning in environments
with shared constraints. This leads to taxonomy in which all relevant techniques developed
in the literature can be placed.

Second, we give an extensive overview of solution algorithms that appeared in the planning
literature, and we identify and compare the conditions under which these algorithms can be
applied. We further discuss the advantages and disadvantages of these algorithms.

Third, we identify open research directions that can be pursued to advance the research
field in the future. This discussion identifies open problems that currently exist, as well
as research areas that are closely related. These areas have strong connections with the
research area covered by this survey, and both areas may strengthen each other in the future.

From a more general perspective, our survey also aims to provide a comprehensive
overview for new researchers in the field, such that they can quickly grasp the main concepts
and solutions that have been developed in the literature. This enables them to understand
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the constrained planning field as it is right now, and it ensures that they can quickly identify
open problems and research directions to work on.

1.2 Outline

The structure of this survey is as follows. In Section 2 we start from motivating application
domains involving multiple agents, uncertainty and constraints, analyze the properties of
these domains, and introduce general potential solution approaches which enable agents
to coordinate their actions subject to the availability of resources informally. In Section 3
we introduce formal models that capture the identified domain properties. The potential
solution approaches provide the starting point for Section 4, in which we describe several
algorithms that can be used to compute or implement solutions in multiagent systems with
resource constraints. In Section 5 we describe related problem variants and algorithms that
are outside the main focus of this survey. In Section 6 we describe open research directions
and important observations regarding the general field of constrained planning. Finally, we
summarize and conclude the survey in Section 7.

2. Characteristics of Constrained Multiagent Markov Decision Problems

In this section, we first introduce motivating examples of problems that can be modeled as
constrained multiagent Markov decision processes (CMMDPs). Using these examples, we
discuss which properties these problems have in common, but also which properties vary
over the problems. Depending on the specific properties a problem has, different solution
approaches are applicable.

2.1 Motivating Application Domains

We find CMMDPs in several prominent domains including energy, advertising and mainte-
nance. First we give some example domains with autonomous decision makers that need
to coordinate the use of a shared resource or infrastructure. After that we introduce two
example domains where there is a single, centralized decision-maker that reasons about all
the agents in the domain and their resource allocation. Both categories of domains motivate
the need for sophisticated algorithms to solve these problems.

2.1.1 Autonomous Agents Coordinating their Resource Usage

In order to avert runaway climate change, there is now significant momentum towards using
renewable sources like the sun and wind to generate electricity, and simultaneously to move
as many energy-consuming activities as possible to use electricity as a power source. Notable
examples of this trend include electric vehicles (EVs) as replacement for combustion engine
vehicles, and electric heat pumps as replacement for gas-based house central heating systems.

However, this energy transition causes several practical problems, by placing additional
demands on the electricity generation and transportation infrastructure. Firstly, the intro-
duction of new high-power loads like EVs can cause the daily peak demand to exceed the
transmission capacity of the local distribution network. Secondly, supply from renewable
sources depends on the weather conditions, which cannot be predicted perfectly. However,
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supply and demand of electricity must be balanced at all times to maintain grid stability,
which requires that fluctuations in wind speed or cloud cover must be compensated.

Both these problems could be alleviated or reduced by smart grid control, for example
by using flexibility in the demand for electricity. Several types of (potentially) flexible load
have been identified: EVs typically need shorter to charge than the total time they spend
parked, and can thus have their charge rate modulated or time periods shifted (De Weerdt
et al., 2018). Heat pumps and air conditioners may also be shifted in time, because the
indoor temperature changes gradually due to thermal inertia. Because people experience a
range of temperatures as comfortable, there is typically some time before the temperature
deviates too far from its setpoint (see, e.g., De Nijs, Spaan, & De Weerdt, 2015).

However, because using consumer appliances for demand-side flexibility affects the
comfort of the user, its usage should be optimized to minimize its impact. Optimizing
the control decisions for all appliances in a neighborhood of devices subject to total power
consumption constraints, and/or to network constraints are important examples of problems
that can be modeled as CMMDPs, with slightly different properties, such as whether there
is sufficient time and communication reliability to coordinate online, and whether these
limitations are strict or some (short) violation of these constraints is allowed.

Moreover, controllers for flexible loads need to reason about several sources of uncertainty.
In the first place, the power supply itself is subject to uncertainty, or in the case of dealing with
network constraints, the available amount may be uncertain due to other loads. Secondly, in
the case of charging, the arrival and departure times of EVs are uncertain. Finally, simplified
models of thermal inertia may not capture all aspects of the actual temperature transition,
in particular due to the behavior of people in a building.

Similar examples can be found in other situations where a common resources or infras-
tructure is shared with multiple actors, such as barges going through locks, trains from
different companies using a shunting yard, car owners finding a parking place, search and
rescue parties coordinating use of resources, and the en-route charging of EVs (De Weerdt
et al., 2016). In some domains, the decisions to be supported are not directly made by the
agents in the system, but the agents are influenced by a centralized decision maker.

2.1.2 Coordination of Agents by a Centralized Decision-Maker

Online advertising involves presenting advertisements to online users which browse the
internet (Boutilier & Lu, 2016), aiming to seduce these users to use the advertised good
or service (called conversion). In the related planning problem, these users are modeled by
agents and the decisions on which agents to serve ads to is (stochastically) based on their
potential for conversion, subject to the advertising budget of the advertiser.

As such, each agent has states corresponding to its level of interest in the advertised
product, ranging from uninterested, to searching, to interest in either the advertiser’s or
the competitor’s product, all with various levels of intensity. The level of interest of real
online users cannot be measured accurately, and therefore the state of the system is partially
observable from the viewpoint of the advertiser. Global reward is obtained when the agent
moves to the conversion state of the advertiser’s product. The advertiser influences the
state transitions of the agent by selecting the intensity of the campaign directed at each
browser. At the lowest level, no ads are shown and no costs are incurred. The next levels
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use progressively more resources to increasingly influence the transition function in favor of
reaching the advertiser’s conversion state.

The advertiser has only a single resource, a budget for funding the advertising actions.
Budget constraints mean that consumption in all time steps is counted towards a single
resource constraint. In principle such a budget is a hard constraint, but the large-scale, high-
speed nature of online advertising means that it may be more practical for an advertisement
aggregator to aim to meet their clients’ budget constraints in expectation, in which case the
constraint can be seen as a soft resource constraint.

Since the advertiser models each individual user and optimizes the advertisements the
system shows, there is no communication required between online users that browse the
internet. Instead, the advertiser can decide in each time instant which advertisements are
shown, after which these advertisements are sent to the online user.

Another example of centrally making decisions about the allocation of limited resources
to agents is in the context of condition-based maintenance. Systems for which the condition
and performance deteriorate over time require maintenance in order to prevent damage
and failures. Performing maintenance on a regular basis in fixed intervals can be costly,
and therefore condition-based maintenance has been proposed to reduce maintenance cost
and operational cost in general (Jardine et al., 2006). Condition-based maintenance uses
inspections and sensor diagnostics to decide about the maintenance to perform. Condition-
based maintenance emerges in several areas, including wind turbine maintenance (Byon &
Ding, 2010), bridges and infrastructure (Neves & Frangopol, 2005; Van den Boomen et al.,
2020) and aircraft components (Harman, 2002). From a decision-making point of view, the
complexity can be found in deciding when and how maintenance is performed.

In condition-based maintenance the main objective is keeping multiple objects in a good
condition given a fixed maintenance budget. Each object that requires maintenance can
be seen as an agent whose condition behaves stochastically over time, and inspections and
maintenance can be performed on these objects to maintain its condition. The current
condition of an object is partially observable, because sensor readings and diagnostics
do not provide perfect information about the actual condition of the object. The actual
condition becomes known after performing manual inspections, which can be costly or
time-consuming in practice. The model that can be used for maintenance planning of an
individual object consists of states that reflect the condition of the object, and actions that
represent either inspection or maintenance actions. The costs associated with these actions
represent monetary cost of inspections and maintenance.

Typically there is a fixed budget available for performing maintenance, which represents
a resource constraint that needs to be considered while performing planning of maintenance.
This constraint can be a global constraint that spans a long period, but the problem can
also be formulated with multiple short-term budget constraints or constraints that affect
only a subset of objects. Depending on the actual objects and the business, the constraints
can be considered either hard or soft.

2.2 Analysis of Problem Domain Properties

While the ‘decision maker’ in the problems described in the previous sections may be either
a centralized entity or a true collection of individual agents, both types of problems can be
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approached with essentially the same solution methods. This is because the problems have
three fundamental properties in common, which are the key elements of CMMDPs.

Common Properties of CMMDPs In the first place, each problem has multiple entities
(agents) that are functionally independent, except for their resource consumption. Secondly,
the decisions need to be made sequentially, while taking uncertainty over their consequences
into account. Thirdly, in each domain, there is an opportunity to coordinate in advance,
allowing to plan a course of action that takes all entities into account.

Apart from the aspects that are common across these domains, they also vary along
problem domain properties that affect what types of solution approaches are useful. These
properties form the core of the conceptualization of CMMDPs. We discuss them here in turn
and indicate which of the motivating application domains have which properties, summarized
in Table 1.

Persistence of Communication One approach to handle uncertainty is to make coordi-
nated decisions when sufficient information is available. Coordinating the decision-making
regarding resource usage during plan execution requires a central decision maker, or a
persistent communication channel between the agents and sufficient time between decisions
to allow for computing a recourse solution. Such coordination may be assumed in the
domains of online advertising and condition-based maintenance.

However, not every domain can provide for persistent, reliable communication. The
environment in which agents operate may impose restrictions on the communication capa-
bilities of the agents. For example, during rescue missions in hostile environments agents
may not be able to communicate with each other while deciding about actions that require
shared resources. In the case of smart grid control, localized power outages can bring down
communication infrastructure, which means that relying on always-available communication
reduces system robustness.

When communication is persistently available or the domain allows for a centralized
decision-maker, we say that a domain is connected. Otherwise, a domain is disconnected. In
disconnected domains solutions may need to be more conservative with the allocation of
resources, especially when the domain also has hard constraints.

Partial Observability of the State Whether the available information is accurate and
complete is an important assumption. When not all relevant information about the current
state is known, we say the domain is partially observable. In some domains, such as in smart
grids with a reliable measurement and communication infrastructure this is reasonable, but
in other domains, such as in condition-based maintenance and in the advertising domain
information is incomplete and sensor readings can be noisy. Algorithms that explicitly
model the uncertainty regarding the state and that this is only partially observable often
perform better in these domains than algorithms that work based on the assumption that
all information is correct and fully observable.

Strictness of Constraints The presence of uncertainty means that the outcomes of
plans are themselves random variables. As such, a decision maker has to decide whether it
optimizes its behavior for the expected return, or for avoiding worst-case situations. As the
impact of a plan on constraints is also stochastic, the same dilemma appears for satisfying
constraints in expectation or also in the worst case.
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Connected PO Strictness Timespan
Budget Inst. Multi

Smart grid control * * hard/soft ✓ ✓
Online advertising ✓ ✓ hard/soft ✓
Condition-based maintenance ✓ ✓ hard/soft ✓

Table 1: Motivating application domains and their properties: “Connected“ is the property
that agents can reliably communicate during execution, PO stands for whether
the current state is only partially observable, “Hard” and “Soft” refer to whether
constraints need to be met always or in expectation, and budget/inst./multi whether
the constraint holds across the whole timespan, only a single instant, or that there
are multiple constraints, respectively. A ‘*’ indicates that it depends on the specifics
of the use case.

While it may seem natural to assume that constraints must always be satisfied, there are
many domains in which satisfying constraints in expectation is a better choice. For example,
constraints may be used as a proxy for multiple objectives, by setting constraints in order
to attain some minimum performance level for each secondary objective. In this case, it
makes sense to treat all objectives in the same way. In some other domains, such as grid
congestion management, it can be acceptable to exceed capacity constraints occasionally;
briefly exceeding capacity limits may heat up equipment, which may degrade material life if
it persists for a long time. However, if the situation normalizes quickly, no harm is done.
In online advertising budget constraints need to be met, but since this budget is allocated
for a certain period, and the process is likely repeated many times, meeting the budget
constraint in expectation could be quite reasonable. Finally, in settings like maintenance, the
probability of impacting the constraint (i.e., the chance of simultaneously finding multiple
major defects) may be so low that planning for worst-case situations leads to extremely
conservative plans. In this case, it may be better to employ plan repair to handle unlikely
constraint violations.

When the domain requires that constraints are met in the worst case, we call such
constraints hard. If constraints only need to be met in expectation, we instead call them
soft. We will see later that soft constraints are significantly easier to plan for, even allowing
for efficient optimal algorithms in specific cases. A few algorithms for soft constraints bridge
the gap, by providing bounds on the risk that actual resource use exceeds the limits.

Timespan of Constraints The application domains presented as motivation in Section 2
highlight the importance of time in the definition of a constraint. For example, the maximum
electrical power that can be supplied by renewable generators implies a constraint that
applies to a specific instant in time. This stands in contrast to optimizing maintenance
activities under a fixed budget, which defines a constraint that is evaluated over a long-run
horizon. In the subsequent we will refer to these two types as instantaneous and budget
constraints, respectively.

The timespan of constraints can shape algorithm design; while instantaneous constraints
and budget constraints both impose a requirement on agents to coordinate their actions
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(e.g., who draws power), budget constraints also require them to keep track of the budget
remaining (e.g., remaining state of charge in the battery). In this sense, budget constraints are
inherently more general than instantaneous constraints, since we could define an instantaneous
constraint as a budget constraint that can only be impacted by actions in one particular
time step. On the other hand, problems with instantaneous constraints typically contain
multiple constraints (e.g., a maximum bandwidth that applies in all time steps), which
introduces game-like strategic considerations around trading resources of unequal value from
a particular agent’s viewpoint.

In the next section we show how the problems may be mathematically formalized using
the framework of sequential decision-making under uncertainty.

3. Modeling Constrained Multiagent Decision-Making

First we present multiagent Markov decision processes, a standard modeling framework for
these types of problems. Then we introduce a model for resources and constraints on these
resources.

3.1 Multiagent Decision-Making under Uncertainty

To model decision making under uncertainty, we employ the typical Markov Decision
Process (Bellman, 1957; Puterman, 1994, MDP) framework. An MDP model specifies how
a stochastic environment behaves as a decision maker interacts with it: every discrete time
step t, the decision maker is asked to choose an action a from the finite set of available
actions A on the basis of the current state s. This action then induces a stochastic
state transition in the environment, resulting in a subsequent state s′ sampled according
to transition function T (s, a). By choosing a, the decision maker is rewarded with an
instantaneous reward R(s, a). A multiagent MDP (Boutilier, 1996, MMDP) generalizes this
modeling framework with the notion of multiple cooperative actors, each with their own
action sets, as defined in Definition 1.

Definition 1 (MMDP). A finite-horizon multiagent Markov decision process M is defined
by the tuple ⟨α, S, {Ai}i∈α, T, R, h⟩, containing

• a finite set of agents α identified by i ∈ {1, 2, . . . , n},

• a finite set of states S,

• a finite set of actions Ai for each agent i,

• a joint transition function T : S ×A1 × . . .×An × S → [0, 1], inducing the probability
mass function T (s, a1, . . . , an, s′) = P(s′ | s, a1, . . . , an),

• a joint reward function R : S ×A1 × . . .×An → R, and

• a finite time horizon h of discrete time steps t ∈ {1, 2, . . . , h}.

Decision making in an MMDP allows for either a centralized or a decentralized perspective:
in the centralized view, a single decision maker prescribes the actions for all the actors to
take, while in the decentralized view there is one decision maker for each agent. These

962



Constrained Multiagent MDPs: a Taxonomy of Problems and Algorithms

two perspectives match the two main application domain categories of either autonomous
decision makers that need to coordinate, or a single centralized decision maker (as identified
in Section 2.1). In either case, rational decision maker(s) will plan to select actions that
maximize the expected cumulative reward of their choices.

A solution to an (M)MDP takes the form of a policy π : {1, 2, . . . , h} × S → A, with A
representing the set of joint actions in the multiagent case: A = ×i∈α Ai. The expected
value of a specific policy π is given by the value function Vπ, defined recursively through the
Bellman (1957) equation:

Vπ(t, s) =
{

R(s, π(t, s)) +∑
s′∈S T (s, π(t, s), s′) · Vπ(t + 1, s′) 1 ≤ t ≤ h,

0 otherwise.
(1)

An optimal policy π∗ selects an action that maximizes expected value, meaning

π∗(t, s) = arg max
a∈A

[
R(s, a) +

∑
s′∈S

T (s, a, s′) · Vπ∗(t + 1, s′)
]
. (2)

The recursive structure of the optimal policy π∗ allows for a dynamic programming algorithm:
first compute and memoize the values Vπ∗(t + 1, ·), then use those values to compute Vπ∗(t, ·).
This algorithm takes time O(h · A · S2) to compute the optimal policy, and is therefore
polynomial in the size of an MDP. In the MMDP case, action set A is itself exponentially
sized, making this algorithm inefficient for general multiagent problems. However, this does
not hold for MMDPs where the agents are independent, as defined below.

Factored States and Independent Agent Models

In an MMDP, each agent sees the entire system state s. In large-scale multiagent systems,
the requirement that all agents can observe everything may be too restrictive (Becker et al.,
2004). Instead, we can consider the case where the state space is factored into per-agent
sets, S = ×i∈α Si. When agents must condition their policy only on a locally observed
factor of the state space si ∈ Si, the model becomes a decentralized MDP (Dec-MDP).
Computing an optimal policy for a Dec-MDP is NEXP-complete (Bernstein et al., 2002),
unless the transition and reward functions are independent (Becker et al., 2004). In this
case the transition function and reward function are factored into per-agent components Ti,
Ri without dependence on other agents’ local state:

T (s, a, s′) =
n∏

i=1
Ti(si, ai, s′

i), (3)

R(s, a) =
n∑

i=1
Ri(si, ai). (4)

When states, transitions, and rewards are all factored, we have a model where each agent i is
represented by its own MDP, αi = ⟨Si, Ai, Ti, Ri, h⟩. Then the optimal policy for each agent
can also be computed separately from the other agents. This independence of models may
seem to make them uninteresting from a multiagent perspective. However, this situation
changes when the agents are faced with joint constraints, as we will see later, in Section 3.3.
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Partial State Observability

In partially observable settings, we model (in)visibility of the state space by assuming that
an agent only has access to (noisy) observations, correlated with the state. Under partial
observability, if the decision maker selects action a and the environment state transitions to s′,
then the agent observes o with probability Ω(a, s′, o) = P (o | a, s′). While the probability to
observe o is dependent on the successor state s′, the agent never receives explicit information
about s′. A Partially Observable MDP (Kaelbling, Littman, & Cassandra, 1998; Spaan, 2012,
POMDP) thus generalizes the regular MDP model by adding a finite set of observations o ∈ O,
and an observation function Ω : A× S ×O → [0, 1], resulting in tuple ⟨S, A, O, T, R, Ω, h⟩.

In fully observable MDPs the state provides a Markovian signal on which to base optimal
decisions. However, in POMDPs an individual observation does not provide sufficient
information to make optimal decisions. All executed actions and observations encountered
in the past can affect the knowledge the agent has about the current state, and hence a
notion of memory is necessary to define an optimal decision making policy.

A Markovian planning signal can be recovered by using belief states b in place of actual
states s. A belief state b is a vector of length |S| defining the probability that the current
environment state is s, i.e. b(s) = P(s). In other words, the vector characterizes the current
belief of the decision maker regarding the actual environment state. A belief is a sufficient
statistic for the full history of actions and observations, and therefore no other representations
would provide the decision maker with more information about the history.

While interacting with the environment, the decision maker needs to update its belief b
after every action-observation pair a, o. The prior probability P(s′ | b, a) that the environment
transitions to state s′ is obtained by enumerating all possible ways s′ could be reached
according to the current belief,

P(s′ | b, a) =
∑
s∈S

P(s′ | s, a)b(s) =
∑
s∈S

T (s, a, s′)b(s). (5)

Then, the posterior probability bo
a(s′) that the system is in state s′ after taking action a and

observing o is obtained through an application of Bayes’ rule:

bo
a(s′) = P(s′ | b, a, o) = P(o | a, s′) · P(s′ | b, a)∑

s′′∈S P(o | a, s′′) · P(s′′ | b, a) = Ω(a, s′, o) · P(s′ | b, a)∑
s′′∈S Ω(a, s′′, o) · P(s′′ | b, a) .

Given this belief updating rule, the optimal policy can again be obtained using dynamic
programming. However, due to the continuous nature of the space of beliefs b this becomes
more complicated. Dynamic programming algorithms for finite-horizon POMDPs make use
of a representation that encodes the value function Vπ as a set of |S|-dimensional vectors.
Based on this representation the optimal value function can be computed using incremental
pruning (Cassandra et al., 1997; Walraven & Spaan, 2017). Unfortunately, computing an
optimal policy for a POMDP is a PSPACE-complete problem (Papadimitriou & Tsitsiklis,
1987), making it intractable for reasonably sized models. Therefore it is common in practice
to use point-based value iteration algorithms which compute an approximate solution by
executing backups on a finite set of beliefs (Pineau et al., 2003; Spaan & Vlassis, 2005; Smith
& Simmons, 2005; Kurniawati et al., 2008; Poupart et al., 2011).

The generalization from single-agent to multiagent POMDPs is the same as in the
MDP case. Multiagent POMDPs can also be made decentralized, by factoring both the
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state and observation spaces, such that agents only receive individual observations. Dec-
POMDPs (Oliehoek & Amato, 2016) share NEXP-completeness with Dec-MDPs, unless
they are transition, reward, and observation independent; the last one being formally defined
analogously to transition independence.

3.2 Multiagent Planning with Shared Resources

The planning models presented in the previous section optimize a single objective, namely the
expected value obtained by executing the policy. However, in most practical situations, the
control policy should achieve this goal subject to some constraints. Constrained versions of
single-agent MDPs have therefore been studied extensively, dating back at least to the works
of Rossman (1977), Kallenberg (1983), and Beutler and Ross (1985). Moreover, Altman
(1999) provided an overview of the theory and algorithms to solve constrained MDPs.

In this survey we focus on planning problems which include resources that impose
constraints on the behavior of agents that are otherwise completely independent. A resource
is an asset that agents should use in order to complete a planning task. If agents share the
resources and if the availability of these resources is limited, then such resource constraints
need to be considered while solving the planning problems of the agents. In the remainder
of this section we formalize the basic terminology that we use for resources throughout
this survey. Furthermore, we introduce various types of resources and multiple types of
constraints imposed by these resources, which is important to understand and compare
algorithms in the remaining parts of this survey. We start with a basic definition of the
notion of resources in the context of planning:

Definition 2 (Resource). A resource j is a shared asset that agents have to use when
executing actions during the execution of their policies.

As an example of a resource, one can think about power that needs to be available in
order to run a machine. Another example of a resource is money that needs to be invested
when making planning decisions. Resources can affect individual agents, such as agents
that carry a battery during plan execution. If agents share a global financial budget then
the resource affects multiple agents. In both cases, limited availability of the resources
imposes constraints on the behavior of the agents during plan execution, which needs to be
considered by planning algorithms.

Consumption of resources during plan execution can be formalized using a resource
consumption function, which defines the resource consumption when executing an action
in a state. For agent i the instantaneous consumption of resource j is defined using a
function ci,j : Si × Ai → [0, cmax,i,j ], where cmax,i,j denotes the maximum consumption of
resource j by agent i. This function has the same form as the regular reward function, and
it defines the consumption of resource j for each state-action pair of agent i.

Two types of resources can be distinguished, which both lead to a different type of
constraint on the behavior of the agents. The first resource type is a non-replenishable
resource, for which a bounded quantity is available that is (partially) consumed over time
until it is depleted, at which point no further consumption is allowed. Such resources can be
seen as ‘budgets’, such as an amount of money, or the remaining energy stored in a battery.
A key characteristic of this resource type is that it spans the entire plan execution, and
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the total resource quantity represents a ‘budget’ that the agents can use when executing
their policies. Therefore, we formalize the constraint imposed by this type of resource as a
so-called budget constraint, as defined below.

Definition 3 (Budget constraint). A budget constraint is a constraint imposed by a non-
replenishable resource j for which a bounded quantity Lj is available during the entire plan
execution. Resource consumption at time t reduces the resource availability during the
remaining time steps t′ > t.

Agents are collectively constrained to use at most Lj units of the resource, which means
that a constraint violation occurs if the agents collectively use more units during plan
execution. More formally, the budget constraint imposed by resource j is violated when it
holds that

h∑
t=1

n∑
i=1

ci,j(si,t, πi(t, si,t)) > Lj , (6)

in which πi denotes the policy used by agent i and si,t denotes the state of agent i at time t.
The second type of resource that can be distinguished is a replenishable resource for

which the same quantity is available during every time instant. For example, the number of
vehicles on a road-segment is bounded by the number of lanes, but once the vehicles have
passed the lanes are available again. Other examples include bandwidth in a communication
network, instantaneous power production and transmission capacity in an electricity grid,
but also shared tools or CPU cycles. This resource type imposes so-called instantaneous
constraints, which represent the maximum consumption at each decision point.

Definition 4 (Instantaneous constraint). An instantaneous constraint is a constraint imposed
by a replenishable resource j for which a bounded quantity Lj is available during each time
instant. Resource consumption at time t does not affect the resource availability during
subsequent time steps t′ > t.

For instantaneous constraints the agents violate the constraint on resource j at time t
when it holds that

n∑
i=1

ci,j(si,t, πi(t, si,t)) > Lj . (7)

As can be seen, the only difference with budget constraints is that the resource limit Lj affects
only individual time steps, rather than all steps of the execution of a policy. Instantaneous
constraints can also be applied in settings where the resource availability is time dependent.
In this case the definitions remain unchanged, except that the resource quantity becomes Lj,t,
thereby conditioning the limit of resource j also on the current time step t.

Both Definition 3 and 4 consider constraints that are hard, or strict, meaning that they
should hold for all realizations of uncertainty in the state transition dynamics of the agents.
However, another definition for the constraints is possible, where the constraint is soft, which
means we accept policies that meet a limit L in expectation. Whether a constraint should
be modeled as hard or soft depends on the problem domain: soft constraints are appropriate
for concepts like quality of service, whereas hard constraints are appropriate when exceeding
them causes significant harm to the agent or its environment, for example in grids where
exceeding capacity constraints leads to blackouts. What type of constraint is used also has
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complexity consequences, as soft constraints can be handled in polynomial time by using
relaxations, as we will see later.

3.3 Agent Coupling Imposed by Resource Constraints

The resource constraints couple the decision making problems of otherwise independent
agents. In other words, the presence of the constraints cause agents to exert influence on
the (allowable) decisions of other agents. Constrained but otherwise independent multiagent
systems can be characterized as ‘weakly coupled’ (Meuleau et al., 1998; Adelman & Mersereau,
2008). This claim appeals to the intuitive idea that, from the perspective of one particular
agent, the other agents exert anonymous influence (Robbel et al., 2016): for agent i to know
whether it can use resources, it only needs to know if the cumulative demand of the other
agents leaves sufficient room, not which agents use the resource.

The independence assumption needs to be treated carefully from a modeling point of
view. The model assumes that each agent is modeled using a separate MDP, which means
that the state transitions and rewards in the MDP do not depend on the transitions and
rewards defined by the MDPs corresponding to other agents. However, coupling the agents
through shared resources creates dependencies between agents, because state transitions
of an agent may affect the resource availability and state transitions of other agents in the
remaining steps. In this case an optimal policy for the constrained planning problem is
conditional on the joint state and the availability of the shared resources, similar to the joint
policies in the multiagent MDP model for unconstrained problems (Boutilier, 1996).

Two types of algorithms are covered in this survey. The first type considers the coupled
planning problem, such that agents choose their actions based on the joint state and resource
availability. Other algorithms in this survey do not model the dependencies, and they let
agents choose their actions based on their individual states while ignoring the behavior of
the other agents. Although this assumption potentially sacrifices optimality of the decisions,
it typically provides better scalability for problems with many agents.

4. Algorithms for Constrained Multiagent Markov Decision Problems

The presence of resource constraints forces agents to coordinate their decisions in order to
satisfy them. In this section we identify two main categories of solution approaches which
can be used to achieve this coordination between agents.

Resource Preallocations One of the central assumptions in CMMDPs is that it consists
of multiple independent agents that are only coupled through one or more resources that
need to be shared by the agents. The decision processes of the agents can be decoupled by
allocating resources to the agents prior to execution using a so-called resource preallocation.
Such a preallocation enables the agents to compute a policy that respects the resource
allocation, and it is no longer necessary to consider the states of other agents and the
resources allocated to other agents. As a result, after preallocating resources the agents
can safely choose a resource-consuming action without coordinating this decision with other
agents.

The strictness of the constraints influences what type of preallocation is acceptable. Hard
constraints require deterministic preallocations, whereas soft constraints can also be met with
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stochastic preallocations. A deterministic preallocation is an allocation of resources to agents
prior to policy execution, such that each possible realization of the resource consumption of
an agent does not exceed the quantity that is allocated to the agent. For example, (Wu &
Durfee, 2010; Agrawal et al., 2016) propose methods that use such a solution approach.

Stochastic preallocation approaches allocate resources to agents under the condition that
their expected resource consumption does not exceed the quantity that is allocated to the
agent. This is a common approach, taken for example by (Altman, 1999; Yost & Washburn,
2000; Isom et al., 2008; Kim et al., 2011; Poupart et al., 2015; Walraven & Spaan, 2018;
Dolgov & Durfee, 2003; De Nijs et al., 2017).

Both deterministic and stochastic preallocations can be seen as offline solution methods
to achieve coordination in constrained multiagent systems. In both cases the resources are
assigned to the agents when solving the planning problem, and online communication during
policy execution is therefore not required.

Online and Hybrid Online/Offline Solution Approaches The communication-free
advantage of resource preallocations comes at a cost: the resources are allocated under
maximum uncertainty, before any realizations are known. Stochastic system evolution may
see an agent end up unable to make use of a preallocated resource as a result. Online
solution strategies, on the other hand, may use communication between the agents to make
or adjust the resource assignments at the point in time that resources are actually used.
These strategies fall into two broad groups, those that coordinate purely online, and hybrid
methods that can use communication to improve or repair initial offline coordination.

A fully online strategy sees agents perform their planning and coordination without a
precomputed baseline policy. This means that the agents have to decide in a relatively short
timeframe what they should do to maximize their expected reward, for example through a
forward search of their currently reachable state space. As a result, minimal computational
resources are spent on parts of the state space that are not reached in practice (e.g., De Nijs
et al., 2015).

Hybrid strategies can be seen to combine an offline planning phase with an online recourse
strategy. In the offline phase agents compute an initial decision making policy based on
a coordination strategy similar to resource preallocation. During online policy execution,
agents coordinate with each other or through a centralized mechanism, to ensure that the
resources are deployed to the best effect while respecting the constraints. For example, it
may be effective to allocate resources to agents based on the expected value gained or lost
due to changing its action from its intended course. Because the online phase guarantees
constraint satisfaction, the offline phase can be more aggressive in its resource demands
compared with preallocation solutions. Depending on how the online phase is implemented,
it may also involve (partial) replanning to optimize future resource usage. Hybrid approaches
are taken by Meuleau et al. (1998), Boutilier and Lu (2016), Undurti and How (2010), Lee
et al. (2018), among others.

An important advantage of online solutions is that it potentially allows agents to base
their decisions on the state of other agents, as well as on the current resource availability.
Due to the dependencies between the agents introduced by the resource coupling, this may
provide better decisions than the decisions made with offline methods.
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Connected PO Strictness Timespan
Stochastic preallocation (4.1.1 ) * soft *
PO stochastic preallocation (4.1.2) * ✓ soft *
Deterministic preallocation (4.2) * hard/soft *
Online/hybrid allocation (4.3.1) ✓ hard/soft *
PO online/hybrid allocation (4.3.2) ✓ ✓ hard/soft *

Table 2: Taxonomy of solution approaches for constrained multiagent systems that makes two
main restrictions explicit: i) online methods require coordination while execution
(“Connected“), and ii) stochastic preallocations cannot deal with hard constraints.

Taxonomy of Solution Approaches In each of the two solution approaches identified
above, domain properties such as whether the state is fully observable and whether constraints
are instantaneous or define a budget for the whole planning horizon also influence specifics
of the algorithms, but to a lesser extent than whether coordination is done during execution.
The solution approaches above thus play the most important role in the solution taxonomy
for planning and coordination in constrained multiagent systems. In disconnected domains,
online solutions cannot be used, because of their reliance on communication to coordinate
decisions. However, online solutions exist for both hard and soft resource constraints. For
offline methods we can distinguish deterministic and stochastic preallocations, of which only
deterministic preallocations can be used to deal with hard constraints. This taxonomy, as
visualized in Table 2, thus sketches the general landscape of solution strategies in planning
problems with shared resources. The taxonomy can also be used to decide what kind of
algorithms need to be applied given a planning problem and given the characteristics of the
resources. For this purpose it includes pointers to the next sections, in which we describe the
specific planning algorithms in more detail, and where we also further refine this taxonomy
to include the timespan of resource constraints.

For each algorithm we provide the intuitions behind it, as well as mathematical details to
illustrate how the algorithms operate, using pseudocode where this seems the most effective
way to communicate this. Following the in-depth treatment of the algorithms mentioned
in the coming subsections 4.1–4.3, organized according to the taxonomy from Table 2, in
Section 4.4 we discuss observed trends and gaps in the state of the art of solving constrained
multiagent Markov decision problems.

4.1 Stochastic Preallocations

Stochastic preallocations algorithms can be used to compute policies for the agents such
that the agents do not violate the resource constraints in expectation, as defined in Eq. 8, in
which the expectation defines the expected resource consumption for resource j at time t
while executing the policy πi,

E[Cj,t
πi

] ≤ Li
j,t ∀i, j, t. (8)

The approaches for stochastic preallocations use linear programming to express such
resource constraints. We therefore start with a brief introduction to linear programming
formulations for MDPs without constraints. Traditional MDP algorithms exploit the fact
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that the Bellman equation not only describes optimality, but also prescribes the method to
get there through the fixed point: starting from arbitrary initial values, repeated application
of the Bellman equation eventually results in the optimal value function. This idea is also
used in the ‘primal’ linear program (LP) for solving MDP policies (Littman et al., 1995):

min
v1,s

∑
s∈S

P(1, s)v1,s

s.t. vt,s ≥ R(s, a) +
∑
s′∈S

P(s′ | s, a)vt+1,s′ ∀t < h, s, a

vh,s ≥ R(s, a) ∀s, a.

(9)

In this LP the variables vt,s hold the expected value of following the computed policy from
time t and state s onward, vt,s = V [t, s]. The constraints encode the Bellman equation, by
ensuring that the value vt,s is at least as large as the expected value of any action (including
the best action). By minimizing v1,s, the solution is made tight to the strongest constraint,
which is given by the value of the best action.

Unfortunately, because the chosen action is implicit in the model, the primal LP is
unsuitable to use with constraints on the resource usage of actions. However, by the strong
duality theorem, the LP (9) has an equivalent ‘dual’ LP, which does have variables for
actions (Littman et al., 1995):

max
xt,s,a

h∑
t=1

∑
s∈S

∑
a∈A

xt,s,aR(s, a)

s.t.
∑

a′∈A

xt+1,s′,a′ =
∑
s∈S

∑
a∈A

P(s′ | s, a)xt,s,a ∀t < h, s′

∑
a′∈A

x1,s′,a′ = P(1, s′) ∀s′.

(10)

In this LP, the xt,s,a variables encode the unconditional probability that the computed policy
uses action a in state s at time t, xt,s,a = P(t, s, a | π). The constraints ensure conservation
of flow, meaning that the sum of probability coming out of s′ at time t + 1 equals the total
incoming probability as a result of transitions to s′. The term P(1, s′) denotes the probability
that the initial state is s′ in the first time step. The LP optimizes the expected value directly
by considering the cumulative rewards discounted by their probability of being awarded.
Note that action selection may be randomized, as the probability of an action being selected
is given by:

P(a | π(t, s)) = xt,s,a∑
a′∈A xt,s,a′

. (11)

Thus far, we have presented the LPs in the context of planning for a single MDP. In the
case of a multiagent MDP with independent agent dynamics, we can add all their models
together in a single LP with only a polynomial increase in the total size of the program,
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resulting in the following multiagent dual LP:

max
xi,t,s,a

n∑
i=1

h∑
t=1

∑
s∈Si

∑
a∈Ai

xi,t,s,aRi(s, a)

s.t.
∑

a′∈Ai

xi,t+1,s′,a′ =
∑
s∈Si

∑
a∈Ai

Pi(s′ | s, a)xi,t,s,a ∀i, t < h, s′

∑
a′∈Ai

xi,1,s′,a′ = Pi(1, s′) ∀i, s′.

(12)

This multiagent dual LP forms the basis for the stochastic preallocation approaches
presented in this section. First we discuss two approaches for fully observable models, and
then three methods that can be applied also when the state is not fully observable.

4.1.1 Stochastic Preallocations for Fully Observable Models

The first approach below leverages a linear programming formulation based on the Bellman
equation for MDPs, and the second approach uses a column generation approach for linear
programming in order to split the optimization problem into subproblems that can be solved
independently.

Constrained MDPs (CMDPs) leverage the multiagent dual LP in order to handle
additional constraints (Altman, 1999), such as the ones we intend to model. In our case, we
can add the resource constraints by adding the following constraint to LP (12):

n∑
i=1

∑
s∈Si

∑
a∈Ai

xi,t,s,a · ci,j(t, s, a) ≤ Lj,t ∀j, t. (13)

Because xi,t,s,a is the probability that agent i reaches state s at time t and takes action a,
we obtain the expected consumption of the agent by multiplying with the consumption of
the action. The resulting LP therefore computes a solution which maximizes the expected
value of the agents’ joint policy, subject to it satisfying each of the constraints in expectation.
Because the model is an LP, its optimal solution can be found in a polynomial time, making
this a highly tractable approach for computing a stochastic preallocation.

The preallocation LP that we just discussed decouples the constraints from the agents’
planning problems, but it still requires optimizing a single large centralized program. A
column generation procedure has been proposed which allows agents to solve their individual
subproblems independently. Column generation (Gilmore & Gomory, 1961) is an effective
technique for decomposing combinatorial optimization problems, provided there is some
method to generate new potential solutions to subproblems efficiently. The technique uses
the insight that when a linear program is used to select solutions from an exhaustive set, the
simplex algorithm iteratively adds elements to the solution which are not ‘priced out’ by the
λ prices computed in the dual solution. An element is priced out if its contribution to the
objective per unit of the constraint is less than λ. If we can generate the optimal element
to be selected on the fly, we avoid maintaining the exhaustive set of elements explicitly.
Generating the element comes down to optimizing an ancillary problem subject to the λ
costs.
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Yost and Washburn (2000) identified (for POMDPs, but it straightforwardly applies here)
that we can compute a policy that optimizes for λ efficiently, allowing the use of column
generation to solve constrained MDPs. Just as the expected value of a policy is given by
a recursive function Vπ, the expected consumption of a policy, which we will denote Cπ,
follows the same structure:

Cπ,j(t, s) = cj(t, s, π(s)) +
∑
s′∈S

(
P(s′ | s, π(s)) · Cπ,j(t + 1, s′)

)
. (14)

When we are searching for the maximally-improving column, we are searching for the column
satisfying

max
π

(
Vπ(t, s)− λ · Cπ(t, s)

)
= max

π
V C

π,λ(t, s), (15)

where · takes the dot product of the price vector λ with the consumption vector Cπ.
Both Vπ and Cπ are Markovian, and therefore we can write out the optimization problem

from the perspective of a single current state:

V C
π,λ(t, s) = Vπ(t, s)− λ · Cπ(t, s) =

R(s, a) +
∑
s′

P(s′ | s, a)Vπ(t+1, s′)− λ ·
(
c(t, s, a) +

∑
s′

P(s′ | s, a)Cπ(t+1, s′))
)

=

R(s, a)− λ · c(t, s, a) +
∑
s′

P(s′ | s, a)
(
Vπ(t+1, s′)− λ · Cπ(t+1, s′)

)
=

R(s, a)− λ · c(t, s, a) +
∑
s′

P(s′ | s, a)V C
π,λ(t+1, s′).

This equation resolves to a resource-priced Bellman-like recursive form, which we can use
as the objective function in the traditional dynamic programming algorithm. Therefore,
we can compute the optimal column to be selected at the same complexity as planning a
regular MDP policy.

In the multiagent case a newly computed policy optimized for objective (15) is then
added to the set of potential policies Zi for each agent i, which together form the search
space of the column generation ‘master LP’ selecting the optimal mix of policies subject to
constraints:

max
xi,k

n∑
i=1

∑
πk∈Zi

xi,kVπk
(1, s1),

s.t.
n∑

i=1

∑
πk∈Zi

xi,k Cπk,j,t(1, s1) ≤ Lj,t ∀j, t,

∑
πk∈Zi

xi,k = 1 ∀i,

xi,k ≥ 0 ∀i, k.

(16)

Putting the master LP and the planning subroutines together results in Algorithm 1.
The resulting solution defines a probability distribution over agent policies, such that the
probability that agent i will follow policy πi,k over the entire horizon is given by:

P(πi = πi,k) = xi,k∑
πk′ ∈Zi

xi,k′
. (17)
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Algorithm 1 Column generation for CMDP M (Yost & Washburn, 2000)
λ = 0, λ′ =∞, Z = ∅

1: while λ ̸= λ′ do
2: λ← λ′

3: ∀i : πi,new ← plan(Mi, λ) ▷ Eq. 15
4: Zi ← Zi ∪ {πi,new}
5: ⟨x, λ′⟩ ← solveLP(Z) ▷ Eq. 16
6: end while
7: return ⟨x, Z⟩

Algorithm 1, like the Constrained MDP LP, computes optimal joint policies which
satisfy the constraints in expectation. It does so in the same worst-case complexity, but the
algorithm has two practical scalability benefits: (i) planning the individual agent policies on
line 3 can be done fully in parallel, and (ii) the dynamic programming algorithm optimizing
Eq. 15 directly exploits the time-recursive structure present in the MDP. Therefore, it can be
expected that in practice column generation will be significantly more scalable than directly
solving the CMDP dual LP of Eq. 12.

4.1.2 Stochastic Preallocations for Partially Observable Models

Stochastic preallocation algorithms for POMDPs can be grouped into three categories.
The first category consists of algorithms for unconstrained POMDPs, augmented with
additional constraints on the computed policy. The second category takes the opposite
approach, and augments algorithms for constrained MDPs with partial observability. The
third category formalizes the constrained planning problem as a sequence of unconstrained
planning problems, similar to the column generation algorithm for MDPs. In the remainder
of this section we describe the algorithms belonging to these three categories in more detail.

Isom et al. (2008) consider optimal single-agent POMDP planning in domains with
an infinite planning horizon and a resource constraint that should be satisfied in expecta-
tion. Optimal unconstrained POMDP solutions are typically computed using exact value
iteration (Cassandra et al., 1997), which executes dynamic programming iterations to com-
pute a value function V (b). This value function can be represented using a finite set of
|S|-dimensional vectors (Sondik, 1978). A value function represented by such vectors can be
formalized as follows:

V (b) = max
α∈V

α · b, (18)

in which we intentionally overload V to represent both the value function V and the vector
set that defines this function.

Before the resource constraint can be integrated in exact value iteration, it is important
to know the expected resource consumption of the policy computed by the algorithm. In
order to keep track of expected resource consumption in exact value iteration, the value
function is defined using pairs (αr, αc) ∈ V , in which αr represents reward and αc represents
resource consumption. Based on these pairs the value function can be formalized as follows:

V (b) = max
(αr,αc)∈V

αr · b. (19)
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If the pair (αr, αc) is the maximizing pair in this equation, then αr · b denotes the expected
reward and αc · b the expected resource consumption. Keeping track of additional resource
consumption vectors αc in value iteration requires only a minor additional computation that
is easy to integrate. For more details we refer to Isom et al. (2008).

The computed policy is characterized by the pairs (αr, αc) ∈ V , which means that a
constraint can be integrated by removing the vectors that correspond to actions that violate
the resource constraint. Exact value iteration executes a pruning algorithm to discard
dominated vectors (Walraven & Spaan, 2017), and it turns out that it is relatively easy to
integrate the additional constraint in this pruning algorithm. The pruning procedure starts
with an empty vector set U , and it iteratively checks whether candidate vector pairs (wr, wc)
should be added to the set U . It does this by finding a belief point b in which (wr, wc)
dominates all other vectors in U while remaining resource feasible. This computation can
be performed by solving the following mixed-integer linear program1:

max d

s.t. b · wc ≤ L

(wr − uk
r ) · b +Mqk ≥ d ∀(uk

r , uk
c ) ∈ U

uk
c · b +M(1− qk) ≥ L ∀(uk

r , uk
c ) ∈ U∑

s∈S

bs = 1

bs ≥ 0 ∀s
qk ∈ {0, 1} ∀k,

(20)

in which L denotes the resource limit and M is a sufficiently large constant. The second
and third constraint together define that (wr − uk

r ) · b ≥ d should hold if uk
c · b ≤ L. If

the optimization problem is feasible and if d > 0 then candidate vector should be added
to U . The mixed-integer linear program replaces the original linear program that is used by
exact value iteration. Unfortunately, from a practical point of view the resulting algorithm
is not useful due to the limited scalability of exact POMDP algorithms and due to the
large number of mixed-integer linear programs that need to be solved while computing a
solution. In addition to scalability issues, the policies computed with exact value iteration are
deterministic, which may be suboptimal in constrained problems. Furthermore, the pruning
operator ensures that every intermediate policy satisfies the constraint during the execution
of value iteration, while it is only required that the final policy satisfies the constraint. This
additional restriction may lead to policies that are unnecessarily conservative.

The limitations of exact value iteration for constrained problems have been addressed
by Kim et al. (2011). They propose an approximate point-based value iteration algorithm
which takes resource consumption into account. It does so by integrating the concept of
admissible resource consumption, which enables the algorithm to keep track of resource
consumption while executing point-based backups. The admissible resource consumption dt

defines the resource quantity that can be consumed during policy execution starting from

1. Compared to the formulation by Isom et al. (2008) we modified the constraints such that the formulation
is consistent with the problem setting considered in this survey.
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Algorithm 2 Constrained point-based backup stage (Kim et al., 2011)
1: Vn+1 ← ∅
2: Γa,o ← backprojections obtained for αk ∈ Vn with gk

a,o(s) = ∑
s′ P (o|s′, a)P (s′|s, a)αk(s′)

3: for (b, d) ∈ B do
4: for a ∈ A do
5: for o ∈ O do
6: do ← 1

γ (d− C(b, a))P (o | b, a)
7: solve LP (22) with pairs (αk

r , αk
c ) ∈ Γa,o and (b, do) to get probabilities w̃k

8: α̃a,o
r ←

∑
k w̃kαk

r

9: α̃a,o
c ←

∑
k w̃kαk

c

10: end for
11: α

(b,d),a
r ← αa

r + γ
∑

o∈O α̃a,o
r in which αa

r is the immediate reward vector for a

12: α
(b,d),a
c ← αa

c + γ
∑

o∈O α̃a,o
c in which αa

c is the resource consumption vector for a
13: end for
14: Γ(b,d) ←

⋃
a∈A{(α

(b,d),a
r , α

(b,d),a
c )}

15: solve LP (22) with Γ(b,d) and (b, d) to get probabilities wk

16: Vn+1 ← Vn+1 ∪ {(αk
r , αk

c ) ∈ Γb,d | wk > 0}
17: end for
18: return Vn+1

time t:

dt =
{

L t = 0
1
γ (dt−1 − C(bt−1, at−1)) otherwise,

(21)

in which bt−1 denotes the belief at time t− 1 and at−1 is the action that has been executed
in this belief. The term C(bt−1, at−1) denotes the expected resource consumption for this
action execution. Intuitively, the admissible resource consumption dt indicates how many
additional units of a resource can be consumed in the remaining time steps, and it is updated
after every action execution.

For a given belief point b and admissible resource consumption d, the action to be
executed can be determined by solving the following linear program based on the vector
pairs (αk

r , αk
c ) ∈ V :

max
wk

b ·
∑

k

wkαk
r

s.t. b ·
∑

k

wkαk
c ≤ d∑

k

wk = 1

wk ≥ 0 ∀k,

(22)

which yields a probability wk for each vector pair in V . The action to be executed is
determined by sampling a vector pair based on the distribution. The resulting vector pair
defines the action.

The constrained point-based value iteration algorithm combines the concept of admissible
resource consumption and the linear program to compute a vector-based value function V
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in such a way that the resource constraint is respected. The algorithm starts by sampling
a set B containing belief-admissible consumption pairs (b, d). After that, the algorithm
computes a series of value functions V1, V2, . . . by executing backup stages. Within a backup
stage a new value function Vn+1 is computed given the value function Vn. The full procedure
is described in Algorithm 2. For each (b, d) ∈ B and a ∈ A it constructs a vector α

(b,d),a
r

using a linear combination that considers the admissible resource consumption and the
observations that can be made in the next timestep. When constructing the final value
function Vn+1 the linear program is used again to discard the vectors that cannot be chosen
for the given admissible resource consumption d. Point-based value iteration keeps executing
backup stages until the value function converges.

Given a value function V that has been computed using constrained point-based value
iteration, policy execution can be performed using the linear program in (22) and some
additional bookkeeping to keep track of the admissible resource consumption. Each action
selection requires solving a linear program, but it can be expected that this operation is
relatively cheap to execute and it does not represent a major bottleneck.

The constrained variant of point-based value iteration scales better than the exact
algorithm for POMDPs with constraints because it limits policy computation to a finite
number of reachable beliefs. This restriction provides significant computational benefits, but
unfortunately it also creates undesirable effects in problems with constraints. If the set B
does not contain all belief points that are reachable during policy execution, then it is not
guaranteed that the computed policy satisfies the resource constraint in expectation. This
means that constraint satisfaction highly depends on the beliefs that have been sampled
prior to executing point-based value iteration.

Both aforementioned algorithms extend existing unconstrained POMDP algorithms with
additional constraints. Poupart et al. (2015) follow an alternative strategy and extend an
existing constrained MDP algorithm with partial observability. They observe that a POMDP
with constraints can be seen as a constrained belief-state MDP, and this makes it possible to
apply the linear programming formulation for constrained MDPs, similar to the algorithm
that we have discussed for MDPs in Section 4.1.1. Assuming that the set B contains all
reachable beliefs, the optimization problem can be written as follows:

max
yb,a

∑
b∈B

∑
a∈A

R̄(b, a)yb,a

s.t.
∑

a′∈A

yb′,a′ = δ(b′, b1) + γ
∑
b∈B

∑
a∈A

P (b′ | b, a) ∀b′

∑
b∈B

∑
a∈A

C̄(b, a)yb,a ≤ L

yb,a ≥ 0 ∀b ∈ B, a ∈ A,

(23)

in which R̄(b, a) = ∑
s R(s, a)b(s) and C̄(b, a) = ∑

s C(s, a)b(s) denote the reward and
cost function defined over beliefs rather than states. Similarly, the function P (b′ | b, a) =∑

{o|bo
a=b′} P (o | b, a) denotes the transition function over beliefs. The function δ(b′, b1) is

equal to 1 if b′ = b1 and 0 otherwise. The variables yb,a define a stochastic policy π(b, a) =
yb,a/

∑
a′∈A yb,a′ , such that π(b, a) denotes the probability to execute a in belief b.

The formulation above can only be applied after enumerating all reachable beliefs, which
is typically not feasible. Instead, a subset B̂ can be used to obtain a solution based on a finite
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number of beliefs, but in that case the transition function P (b′ | b, a) is no longer well-defined
if some reachable beliefs are not present in B̂. Fortunately, it is possible to replace a
belief b /∈ B̂ with a convex combination of beliefs that are present in B̂ = {bk}k=1,...,|B̂|. This
convex combination can be obtained using the following linear program:

min
∑

k

wk ∥b− bk∥22

s.t.
∑

k

wkbk(s) = b(s) ∀s∑
k

wk = 1

wk ≥ 0,

(24)

such that w(bk, b) = wk is the probability assigned to bk ∈ B̂ when interpolating b. The
convex combination can be obtained to construct an approximate transition function:

P̃ (b′ | b, a) =
∑

o

P (o | b, a)w(b′, bo
a). (25)

This approximation becomes more accurate once more reachable beliefs are present in the
set B̂. Given the subset B̂ and the transition function approximation it becomes feasible to
solve the constrained belief-state MDP in Eq. 24 without full belief enumeration.

The solution provided by the linear program based on B̂ can be executed by constructing
a stochastic finite state controller. For each belief b ∈ B̂ a node nb is created, in which
action a is chosen with probability P (a | nb) = yb,a /

∑
a′∈A yb,a′ . After executing action a

and observing o the finite state controller transitions to node nb′ with probability P (nb′ |
nb, a, o) = w(b′, bo

a). For additional details regarding exact policy evaluation and the
expansion of the set B̂ we refer to Poupart et al. (2015).

The final stochastic preallocation method for POMDPs that we consider is based on
column generation, similar to the column generation algorithm for MDPs discussed in
Section 4.1.1. The original column generation algorithm by Yost and Washburn (2000)
applies directly to POMDPs, but it requires solving a series of unconstrained POMDPs using
an exact solution algorithm (i.e., the exact plan step in Algorithm 1). The scalability of
exact POMDP algorithms is typically limited, which renders the column generation approach
intractable in the POMDP setting, and it prevents application of this approach to more
realistic application domains. Walraven and Spaan (2018) changed the original column
generation algorithm into an approximate algorithm that is called Column Generation
algorithm for Constrained POMDPs (CGCP), which offers much better scalability for
problems with partial observability.

The scalability problems of the plan step are addressed by integrating point-based
value iteration algorithms, which dramatically decrease the running time that is required.
However, after integrating point-based algorithms there are additional scalability problems
that remain. The new policies πi,new need to be evaluated in order to obtain the expected
reward and expected resource consumption that is used in the column in the linear program
in Eq. 16. Performing exact policy evaluation is computationally demanding, which means
that the approach still does not scale well. Walraven and Spaan (2018) propose to convert
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the policy πi,new into a finite state controller that is approximately equivalent, which can
be evaluated efficiently by solving a linear constraint system. As a result, the plan step
becomes feasible to execute in the POMDP setting and it makes it possible to use the column
generation algorithm for larger problems.

Compared to other stochastic preallocations for POMDPs, the type of stochastic solution
computed by CGCP can be seen as an important disadvantage; rather than randomizing
the decisions at every time step, it only randomizes the policy choice of the agents prior to
execution, which potentially increases the variance of the cost incurred during execution.
Furthermore, there are no guarantees about the number of iterations that column generation
requires to converge. In the POMDP setting this may be problematic, because one iteration
of column generation requires solving a POMDP, which is more computationally demanding
than solving subproblems in the MDP setting.

However, compared to constrained value iteration discussed above, the column generation
algorithm also provides several advantages. First, it solves the constrained POMDP problem
as a sequence of unconstrained POMDPs, which means that state-of-the-art unconstrained
point-based methods are easy to integrate. Second, the method naturally supports problems
with multiple independent agents, which is a problem setting that has not been considered by
the other methods. Third, the column generation approach makes it possible to parallelize
the computations, since subproblems belonging to the individual agents can be solved
independently in parallel. Finally, the approximate method based on column generation
guarantees that the resource constraint is satisfied in expectation, which is not the case in
constrained point-based value iteration. In addition, CGCP has been shown to outperform
the LP in Eq. 23 empirically in several domains.

4.1.3 Bounded Risk of Constraint Violations

A special type of constraint occurs when we want to bound the probability of constraint
violations by some tolerance α. This problem occurs when domains exhibit constraints
which are in between the typical soft and hard categories, and has the added benefit of
allowing the system operator to influence the risk/reward balance of computed policies.
For the single-agent case, Dolgov and Durfee (2003) propose to approximate the constraint
using Markov’s inequality, which gives a rough but effective initial bound. In the multiagent
case, De Nijs et al. (2017) apply Hoeffding’s inequality on the sum of independent random
variables to improve the bound. Nevertheless, this bound also proves to be loose empirically,
prompting the authors to explore a gradient-descent style optimization to obtain relaxed
bounds that closely match the tolerance level. Unfortunately, the relaxation scheme relies on
empirical estimates of the violation probability, and therefore it cannot be used to provide a
strict guarantee on the probability of constraint violations. However, if the domain does not
require such a strict guarantee then it can be an attractive scheme to obtain policies.

These strategies bound the risk of constraint violation by imposing tighter constraints
on the space of admissible policies, leaving the variance in consumption free. Alternative
formulations and frameworks have been proposed which maximize the ratio between expected
reward and its standard deviation (Sobel, 1985; Huang & Kallenberg, 1994). These methods
potentially could be applied to (also) reduce the variation in expected resource consumption,
but further work is needed to establish if this can be scaled up to multiagent systems.
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4.2 Deterministic Preallocations

The Constrained MDP formalism is a powerful stochastic preallocation method for resource-
constrained multiagent MDPs, but its fundamental drawback is that it meets the constraints
only in expectation. Wu and Durfee (2010) address this by proposing several Mixed-Integer
Linear Programs (MILP) that can be used to obtain deterministic preallocations that
guarantee strict adherence to the constraints. When we have a model with binary resources,
we can add the following binary variables and constraints to the LP (12):∑

s∈Si

∑
a∈Ai

xi,t,s,a · ci,j(t, s, a) ≤ ∆i,j,t ∀i, j, t

n∑
i=1

∆i,j,t ≤ Lj,t ∀j, t

∆i,j,t ∈ {0, 1} ∀i, j, t.

(26)

When the resource consumption function ci,j(t, s, a) is binary-valued, the product with
the probability xi,t,s,a is guaranteed to lie in [0, 1], with values greater than 0 when a
resource-consuming action is chosen with any probability. Thus, the first constraint ensures
that for any agent policy that has any chance of using resources, resources must be allocated.
The second constraint ensures that no more resources are allocated than are available in total.
The resulting MILP thus computes policies optimizing the expected value while ensuring all
constraints are strictly satisfied.

While the MILP (26) only applies to problems with binary resource consumption, Dolgov
and Durfee (2006) show that the approach can be modified to apply to models with arbitrary
resource consumption functions. To do so, we start by precomputing a test-function I over
the (ordered) set Ct of potential consumption vectors cj :

Ct =
{
cj | ∀s, a : cj(t, s, a) > 0

}
,

I(j, ck) =
{

1 if ck = Ct,j ,

0 otherwise.

(27)

Function I(j, ck) checks if resource consumption vector ck appears at position j in the set Ct.
This allows us to map the expected consumption of an action to an indicator variable ∆i,ck,t

per ‘consumption level’ ck, in the same way as the ∆i,j,t indicator variables in Eq. 26.
Then, we know that ∆i,ck,t · ck resources are required if there is any chance that an action
requiring ck is chosen. We add additional linear variables ui,j,t for the required consumption
of agent i, resulting in the following addition to the LP (12):∑

s∈Si

∑
a∈Ai

xi,t,s,a · I
(
k, c(t, s, a)

)
≤ ∆i,ck,t ∀i, ck, t,

∆i,ck,t · ck,j ≥ ui,j,t ∀i, j, ck, t,
n∑

i=1
ui,j,t ≤ Lj,t ∀j, t,

∆i,ck,t ∈ {0, 1} ∀i, ck, t.

(28)
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With the modification proposed in Eq. 28, strict constraint adherence can be guaranteed
for all types of models. However the cost of optimizing the MILP is worst-case exponential
in the number of binary variables ∆i,ck,t, and therefore in the number of agents, the length
of the planning horizon, and the number of resource levels. Nevertheless, note that both
the CMDP and MILP algorithms are based on the same LP. Therefore we are allowed to
mix their constraint models, applying the MILP technique only to those constraints which
are indeed hard. As a consequence, we expect this algorithm to be especially well suited to
problems which have a small number of hard constraints.

In the stochastic preallocation method based on column generation, the single-agent
problems are decomposed by the introduction of λj,t dual costs per resource. For deterministic
preallocations, Agrawal et al. (2016) make use of the same principle applied to the (binary-
consumption) resource preallocation MILP model. This results in a single-agent MILP
where the global constraint has been replaced with a λj,t cost per requested allocation in
the objective function:

max
xt,s,a

h∑
t=1

∑
s∈Si

∑
a∈Ai

xt,s,aRi(s, a)−
h∑

t=1

∑
j

λj,t∆i
j,t

s.t.
∑

a′∈Ai

xt+1,s′,a′ =
∑
s∈Si

∑
a∈Ai

Pi(s′ | s, a)xt,s,a ∀t < h, s′

∑
a′∈Ai

x1,s′,a′ = Pi(1, s′) ∀s′

∑
s∈Si

∑
a∈Ai

xt,s,a · cj(t, s, a) ≤ ∆i
j,t ∀j, t

∆i
j,t ∈ {0, 1} ∀j, t.

(29)

For a given cost vector λ each agent can individually compute its optimal allocation and
policy by optimizing Eq. 29. However, depending on the value of λ, these policies may not
satisfy the constraints when combined. Agrawal et al. (2016) propose a greedy rounding
scheme to arrive at a joint policy which respects the constraints. The rounding scheme
iteratively selects the agent whose policy has the highest expected value that can still be
allocated, and allocates the resources to allow the agent to use this policy, until no more
policies can be feasibly allocated. In case too many resources would be used by the joint
policy computed for λ, some agents will end up without a policy; these agents instead use
their resource-free policy, i.e., the best possible policy subject to constraint ∆i

j,t = 0 ∀j, t.
To arrive at the optimal λ vector, the authors propose to use a projected subgradient

ascent with learning rate γ,

qj,t =
(

n∑
i=1

∆i
j,t

)
− Lj,t

λ′
j,t = λj,t + γqj,t.

(30)

This process gradually increases λj,t when the (uncoordinated) consumption due to the
current λj,t exceeds the capacity Lj,t, and vice versa. The learning rate is derived from the
estimated distance to optimality, which is given by the distance between the relaxed upper

980



Constrained Multiagent MDPs: a Taxonomy of Problems and Algorithms

Algorithm 3 LDD+GAPS for CMDP M (Agrawal et al., 2016)
λ =∞, λ′ = 0

1: ∀i : π0
i ← solveMILP(Mi, λ) ▷ Resource-free policies

2: π∗ ← π0 ▷ Best joint policy
3: while λ ̸= λ′ do
4: λ← λ′

5: ∀i : ⟨πi, ∆i⟩ ← solveMILP(Mi, λ) ▷ Eq. 29
6: π′ ← gaps(π0, π, ∆) ▷ Greedily select feasible policy π′

7: V up ←
∑

j,t(λj,t · Lj,t) +∑
i

(
Vπi −

∑
j,t(λj,t ·∆i

j,t)
)

8: V low ← Vπ′

9: ∀j, t : qj,t ←
(∑n

i=1 ∆i
j,t

)
− Lj,t

10: γ ← V up−V low

∥∇q∥2

11: λ′ ← λ + γ · ∇q
12: if Vπ′ > Vπ∗ then π∗ ← π′ ▷ Keep best feasible policy
13: end while
14: return π∗

bound given by the values from optimizing individual agents’ policies using Eq. 29, and the
achieved lower bound given by the value of the joint policy selected by the greedy routine.
For ∥∇q∥ the Euclidean norm over the resource-difference gradient, the learning rate is
updated as:

γ = V up − V low

∥∇q∥2
. (31)

Algorithm 3 puts all the steps together, presenting the complete approach.
Unfortunately, the single-agent optimization problem of Eq. 29 obtained by decomposing

the centralized MILP cannot be solved using dynamic programming: the resource costs
incurred when selecting an allocation ∆i

j,t cannot be attributed to any individual state,
but must instead be evaluated with respect to the entire trajectory from the starting state.
Therefore the single-agent problem remains of exponential complexity. In addition, the greedy
rounding of allocations is only likely to be accurate when the number of agents is relatively
large. Nevertheless, because the algorithm splits up planning the single-agent problems from
optimizing the global constraint, it obtains similar benefits to Column Generation: not only
can the single-agent models be optimized in parallel, but the individual MILP models also
have a factor n fewer binary variables, greatly improving its practical complexity.

An alternative linear programming approach for computing a deterministic preallocation
has been proposed by Ross and Varadarajan (1989). The main idea is to impose constraints
on so-called sample paths, such that all feasible policies violate a resource constraint with
probability 0. The method can only be used for instantaneous constraints, and budget
constraints cannot be integrated.

4.3 Online and Hybrid Methods

Online and hybrid solutions perform planning and resource allocation while decisions are
made, rather than computing a solution prior to execution. This can be advantageous
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because information that is revealed online can be taken into account in the decisions
that are subsequently made. However, this comes at a cost since additional planning and
coordination is required during execution.

4.3.1 Online and Hybrid Methods for MDPs

Meuleau et al. (1998) present an online coordination scheme for multiagent planning problems
with limited resources. The problem consists of n separate tasks (i.e., agents) which
require resources to be completed. The tasks are completely independent, and only the
shared resources couple the planning problems corresponding to the tasks. A Markov Task
Decomposition (MTD) is proposed which decouples the planning problems using an offline
phase and online phase. In the offline phase a value function Vi(s, t, m) is computed for
task i, which defines the expected reward that is received when starting from state s at
time t while m resources are available. This value function can be computed using a simple
dynamic programming procedure:

Vi(s, t, m) = max
a≤m

∑
s′∈Si

Ti(s, a, s′)
[
Ri(s, a) + Vi(s′, t + 1, m− a)

]
− c · a, (32)

in which the actions a correspond to the resource quantity used and the constant c corresponds
to the cost for using one unit of the resource.

The online phase starts with assigning resources mi to tasks i such that ∑i mi ≤ mg, in
which mg denotes the total available units of a global resource. Next, the value functions Vi

are used to decide which actions can be executed, given the mi resource units available for
the tasks. Finally, the total amount mg is updated based on the actions that have been
executed. The main difficulty of the online procedure is the heuristic allocation of resource
units to the tasks. A simple greedy heuristic can be used, based on the increase in expected
value when assigning more resources:

∆Vi(s, t, m) = Vi(s, t, m + 1)− Vi(s, t, m), (33)

which represents the expected value increase when assigning one additional resource unit to
task i. Unfortunately this heuristic does not provide any guarantees, but in a simple domain
it has shown to be effective.

The coordination scheme based on precomputed value functions and online resource
allocation is simple to execute, but it has several practical limitations. For example, actions
need to correspond to a resource quantity, and in the online phase only budget constraints
can be considered. Instantaneous constraints may be integrated by restricting the resource
quantities that are assigned online, but this leads to an overestimation of the expected value
because the value functions Vi are computed without this additional restriction.

A more sophisticated budget allocation and reallocation scheme has been proposed
by Boutilier and Lu (2016), which follows roughly the same ideas as the concepts used
in the method by Meuleau et al. (1998). The planning problem consists of n agents that
are allowed to spend total budget B. Independent planning problems of the agents are
considered separately, and after solving these problems an additional online procedure is
used to derive a joint action to execute, given the remaining budget and the joint state of
the agents. The resource limit B should be satisfied only in expectation. This is a minor
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difference compared to the method described above, which treats the resource constraint as
a hard constraint that should not be violated. Another difference is that discounting is used
for both the reward in the objective function and the cost in the budget constraint.

A value function V i
t (s, b) is used to represent the expected discounted reward that an

individual agent i receives when starting from state s while the remaining budget is b. This
value function takes the following form:

V i
t (s, b) = max

a∈A
Ri(s, a) + γ

∑
s′∈S

Ti(s, a, s′)V i
t+1(s′, bs′)

s.t. ci(s, a) + γ
∑
s′∈S

Ti(s, a, s′)bs′ ≤ b,
(34)

in which the objective function represents the expected discounted reward, and the constraint
defines that the expected discounted cost is upper bounded by b. The term bs′ denotes the
remaining budget after executing action a in state s with budget b. It can be shown that
the value function Vt has a finite number of useful budget levels to consider. A budget b is
called useful if and only if Vt(s, b) > Vt(s, b− ε) for all ε > 0. Another convenient property
is that the value function is piecewise linear and monotone non-decreasing in budget b. Both
properties turn out to be crucial in the construction of the budget allocation algorithm.

The complexity of computing an optimal value function depends on the number of useful
budget levels. By exploiting the piecewise linearity and the finite number of useful budget
levels the value function Vt(s, b) can be approximated using a value function Ṽt(s, b). This
approximation is derived using a procedure that prunes budget levels, which we do not
further discuss here. Besides computing the expected value, it is also possible to keep track
of the resource usage variance of the corresponding policy. This variance can be useful to
know since the method treats the resource constraint as a soft constraint.

Given the value functions for time step t, resource allocation is done using a budget-
constrained optimization problem defined over the finite number of useful budget levels,
indexed by k:

max
xi,k

∑
i

∑
k

V i
t (si, βi,k) · xi,k

s.t.
∑

i

∑
k

βi,k · xi,k ≤ B∑
k

xi,k = 1 ∀i

xi,k ∈ {0, 1} ∀i, k.

(35)

In this formulation the binary variable xi,k indicates that agent i gets budget βi,k assigned
at time step t. Given the structure of the mixed-integer linear program, it turns out that an
optimal solution can be obtained in polynomial time using a simple greedy algorithm. The
budget allocation is performed in each time step, which means that budget is reallocated
online depending on the outcome of the uncertainty. This requires online communication for
solving the budget allocation problem shown above, to obtain the joint state s = ⟨s1, . . . , sn⟩
of the agents. In some sense the online budget allocation phase is similar to the procedure
proposed by Meuleau et al. (1998). A key difference, however, is that the budget is allocated
by solving an optimization problem, rather than assigning the resources using a heuristic.
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Both aforementioned online approaches have in common that value functions are precom-
puted, and these value functions are utilized in the online phase to choose resource-feasible
actions. De Nijs et al. (2015) follow a different approach and present an online planning
algorithm in which both value function computation and coordination take place in an online
fashion. It is assumed that the resource-constrained planning problem of the agents can be
decoupled at agent level, identical to the problem setting with independent agents that we
sketched in Section 3. Hard resource constraints are enforced by a so-called arbiter which
may override the intended actions of the agents in case execution of the intended joint action
leads to overconsumption of resources. Agents iteratively compute new policies that are a
best response to the decisions made by the arbiter and, implicitly, a best response to the
intended actions of the other agents. Below we describe the algorithm in more detail.

The arbiter performs arbitrage in case the policies π1, . . . , πn of the agents prescribe
actions which lead to a violation of at least one resource constraint. Intuitively, the arbiter
aims to maximize the future expected reward of the agents while making sure that the
current action execution is feasible. This arbitrage step can be formalized using the following
mixed-integer linear program:

ARBITRAGE(π, t, s) = argmax
x

n∑
i=1

|Ai|∑
k=1

xi,k ·Qi(t, si, ai,j)

s.t.
n∑

i=1

|Ai|∑
k=1

xi,k · ci,j(t, si, ai,k) ≤ Lj,t

|Ai|∑
k=1

xi,k = 1 ∀i

xi,k ∈ {0, 1} ∀i, k,

(36)

in which the binary variable xi,k indicates whether the k’th action of agent i has been
selected, and Qi denotes the Q-function corresponding to policy πi of agent i. The arbitrage
step assumes that resource conflicts can always be resolved using arbitrage. This is natural
in several domains, such as temporarily disabling electric heating in a house at the cost of
minor discomfort. Since arbitrage takes place online, Eq. 36 must always be solved in the
span of a single time step. Because this involves solving a mixed-integer linear program, this
may be too computationally demanding. However, it is important to note that the structure
allows for an O(n) solution if there is only one resource. Furthermore, suboptimal arbitrage
decisions can be made by considering a rounding scheme based on the linear relaxation of
the problem.

Agents use the arbitrage scheme to compute a best-response policy. The policies of
the agents are simulated multiple times using Monte Carlo trials, during which the agents
estimate the probability that an action a becomes a′ due to arbitrage. More formally, the
agents compute probabilities P ARBI(a′ | πi, si, a), which represents the probability that the
arbiter decides that action a′ should be executed while the current policy πi prescribes that
action a should be taken in the current state si. The probability estimates can be used to
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compute a best response as follows:

V ARBI
πi

(h + 1, ·) = 0,

QARBI
πi

(t, si, a) = Ri(t, si, a) +
∑

s′
i∈Si

P (s′
i | si, a)V ARBI

πi
(t + 1, s′

i),

V ARBI
πi

(t, si) = max
a∈Ai

∑
a′∈Ai

P ARBI(a′ | π, si, a)QARBI
πi

(t, si, a′).

(37)

This variant of value iteration explicitly considers the probability estimates regarding actions
that changed due to arbitrage. The computation of best-response policies based on arbitrage
is repeated multiple times until convergence. When this procedure converges, the agents
cannot improve their own expected utility by changing their policy individually. No formal
guarantees have been provided regarding the best-response strategy and the equilibrium it
reaches. This means that the decisions may converge to a local optimum that is much worse
compared to a potentially optimal set of decisions. However, the algorithm has shown to be
effective in a power-constrained heating problem with multiple heating devices which are
tasked to maintain the temperature in a room.

4.3.2 Online and Hybrid Methods for POMDPs

Undurti and How (2010) have presented an online search algorithm which can be used to
choose actions in such a way that reward is maximized while avoiding forbidden states. The
planning problem can be modeled using a constraint penalty function C(s) which defines
the penalties associated with forbidden states:

C(s) =
{

1 state s is forbidden,

0 otherwise.
(38)

Based on this function, the constrained planning problem is defined using the following
constraint:

E

[
h∑

t=1
C(st)

]
≤ 0. (39)

In case forbidden states cannot be left, the expectation in Eq. 39 defines the probability
of reaching a forbidden state, which should be upper bounded by 0. The proposed search
algorithm relies on two stages. The online stage finds a reward-maximizing action for a
given time horizon while avoiding forbidden states. In order to guarantee feasibility of the
constraint beyond the time horizon, the algorithm uses a conservative baseline policy which
has been precomputed in an offline stage. Below we discuss both stages in more detail.

In the offline stage point-based value iteration is used to obtain a policy which minimizes
the sum of constraint penalties:

min
π

E

[
h∑

t=1
C(st)

∣∣∣∣∣ π

]
, (40)

in which st denotes the state at time t. Since the policy minimizes the constraint penalties
incurred, the policy can be used to avoid forbidden states as best as possible. However,
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reward is not considered so executing this policy is unlikely to lead to high reward. Given a
current belief b, an online tree search algorithm is used to find a reward-maximizing action
up to a given search depth d. Beyond this depth the minimum penalty defined by the offline
policy is used to check constraint feasibility.

The proposed search algorithm is conceptually simple but it has several practical and
fundamental limitations. Although the current algorithm only considers problems with
forbidden states, it can be expected that the approach can be easily generalized to budget
constraints. However, instantaneous constraints appear to be more challenging due to the
behavior of this constraint beyond the time horizon considered by the search tree. Another
limitation is that the algorithm only supports one cost function, and the search algorithm
does not easily generalize to settings with multiple cost functions. Finally, in domains where
minor violations are allowed the offline policy may be too conservative since it minimizes
the cost incurred beyond the planning horizon.

The tree search algorithm proposed by Lee et al. (2018) exploits two further insights that
have been introduced earlier in this survey. First, it is observed that solving a constrained
planning problems boils down to finding a λ such that a policy computed with a modified
reward function R − λ · C satisfies the constraint. We have seen this insight before in
Eq. 15 and in the description of the column generation method in Algorithm 1. Second, it is
observed that a POMDP can be seen as a belief-state MDP, similar to the linear programming
formulation introduced in Eq. 23. Both insights together lead to an iterative procedure
to optimize for λ while considering a constraint. The procedure solves a belief-state MDP
based on the modified reward function R − λ · C and a given λ. After that, it executes
policy evaluation to obtain the expected cost V

π∗
λ

C of the policy that was found using the
belief-state MDP. Finally, it updates the λ parameter based on the difference between the
resource limit L and the current expected cost V

π∗
λ

C . If both the solving and evaluation
step are performed optimally and if an appropriate step size α is set, then this procedure is
guaranteed to converge to an optimal solution.

Unfortunately it is intractable to solve the belief-state MDP optimally. Therefore,
Lee et al. (2018) propose an approach based on the Monte Carlo tree search algorithm
POMCP (Silver & Veness, 2010). The POMCP algorithm has shown to be very effective for
large POMDPs, but the original version does not take additional constraints into account.
Lee et al. (2018) show how POMCP can be adapted such that constraints are considered,
and they show how POMCP can be interleaved with the λ update scheme that we described
above. For more details regarding the POMCP algorithm, the required adaptations and the
parameter τ we refer to the respective papers.

Compared to the tree search algorithm by Undurti and How (2010) it can be expected
that POMCP for Constrained POMDPs provides better performance because of the more
advanced action selection heuristics that are used during the search. Additionally, the
algorithm includes a more advanced belief estimation data structure based on state particles,
which is expected to improve solution quality as well. A disadvantage of POMCP for
Constrained POMDPs is that expected resource consumption is estimated during the tree
search, which means that it cannot be strictly guaranteed that the soft constraint is respected
while executing the actions. In practice, however, it can be expected that the realization of
resource consumption is close to the expectation.
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§ Reference Conn. Strictness PO Timespan Impl.
Budget Inst. Multi

4.1.1 Altman (1999) soft ✓ ✓ m ✓
4.1.1 Yost and Washburn (2000) soft ✓ ✓ ✓ m ✓
4.1.2 Isom et al. (2008) soft ✓ ✓ 1
4.1.2 Kim et al. (2011) soft ✓ ✓ m
4.1.2 Poupart et al. (2015) soft ✓ ✓ m ✓
4.1.2 Walraven and Spaan (2018) soft ✓ ✓ ✓ m ✓
4.1.3 Dolgov and Durfee (2003) soft w. bound ✓ m
4.1.3 De Nijs et al. (2017) soft w. bound ✓ ✓ m ✓
4.2 Wu and Durfee (2010) hard ✓ ✓ m ✓
4.2 Agrawal et al. (2016) hard ✓ m
4.3.1 Meuleau et al. (1998) ✓ hard ✓ ✓ m
4.3.1 Boutilier and Lu (2016) ✓ soft ✓ 1
4.3.1 De Nijs et al. (2015) ✓ hard ✓ h
4.3.2 Undurti and How (2010) ✓ hard ✓ ✓ 1
4.3.2 Lee et al. (2018) ✓ soft ✓ ✓ m ✓

Table 3: Overview of algorithms for constrained multiagent Markov decision problems.
Columns indicate whether the algorithm requires continuous communication
(Conn.), whether it is able to plan for models with partially observable state
dynamics (PO), whether it deals with (a) hard or soft constraint(s), whether
constraints are active across the entire horizon (budget), individual time steps
(Inst.), and/or whether multiple constraints are allowed (Multi). The final column
indicates whether an implementation is available in our open-source Constrained
Planning Toolbox.

4.4 Reflections on the State of the Art

We are now ready to reflect on the state of the art. In Table 3 we provide an overview of
the algorithms described in this section, organized along the taxonomy introduced earlier.
Furthermore, to aid in the reproducibility of past results and algorithms, we implemented a
significant portion of them in an open-source Constrained Planning Toolbox, which may be
found on-line.2 The final column of Table 3 indicates whether the algorithm is present in
the toolbox at the time of writing the article.

We observe that soft, in-expectation constraints have received the majority of attention.
The expectation is a natural objective for decision making under uncertainty, because
it aggregates over outcomes, making it easy to compute and analyse. Soft-constrained
algorithms typically also use the state-occupancy-based linear programs as a base. A major
advantage of linear programming formulations is that they allow for an essentially unbounded
amount of constraints to be considered. However, these methods also come with significant
downsides: firstly, by casting the problem as an LP, we ignore the computational benefits
that the recurrent structure of the Bellman equation can give us, in the form of the dynamic

2. The toolbox and documentation can be found in the following repository:
https://github.com/AlgTUDelft/ConstrainedPlanningToolbox.
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programming paradigm. Secondly, by representing the resources outside of the MDP state
space, the agents cannot condition their decisions on past usage in the case of budget
constraints. Finally, soft constraints on their own offer no guarantees on the magnitude or
frequency with which a constraint might be exceeded.

Each of these downsides is individually addressed by some of the surveyed works. The
first issue can be avoided by decoupling the constraints from the planning problems through
methods such as Lagrangian relaxation (Yost & Washburn, 2000). Boutilier and Lu (2016)
show that recourse can be implemented by integrating an online recourse step with a method
that computes a policy for every possible budget level. And finally, a few works have applied
bounds on the tail probability of resource consumption (Dolgov & Durfee, 2003; De Nijs
et al., 2017), to increase the safety of the solution.

Whereas soft constraints can be satisfied in polynomial time, hard constraints do not allow
for efficient solutions. This is reflected by the surveyed works that cover hard constraints,
which either approximate the solution, or try to cover special cases (or both). As such,
these methods are more likely to impose limitations on the number or type of constraints.
An interesting observation is that not many hard-constrained works consider instantaneous
constraints; this is surprising because instantaneous constraints are in some sense the simplest
type of situation to study multiagent coordination, because there is no history to consider.

Hard constraints prove especially challenging for algorithms that also handle partial
observability. We speculate that this is an especially difficult problem to solve: if the
resource consumption is state-dependent, a constraint can only be guaranteed to be met
if there is absolute certainty (in the belief probability sense) that an agent’s state is not
one where (too many) resources would be used. Only the work by Undurti and How (2010)
considers constraints that can be seen as hard constraints, but the application of their
current algorithm is limited to domains with forbidden states. More general hard budget
constraints and hard instantaneous constraints have not been considered. Further, regarding
partial observability, it is important to mention that most existing Constrained POMDP
algorithms include discounting in the constraints, which is an additional assumption that is
not always appropriate in realistic domains.

A final reflection on the discussed contributions is that these (obviously) concentrate
on the coordination of the use of shared resources. Some of the online/hybrid methods
are completely centralized algorithms for both planning and coordination of the resources.
These leave only execution to the agents. Other potential dependencies between the agents
would then need to be included in this centralized algorithm, which may swiftly lead to
fully-dependent multiagent MDPs. The methods that use pre-allocation however, return
autonomy to the agents to plan and execute their actions as long as they stick to this
agreed allocation. An important advantage of these approaches is that they could rather
straightforwardly be combined with other methods for coordinating agent interactions. This
in fact also applies to decentralized online methods where agents plan independently, and
then are forced to (learn to) coordinate when accessing the shared resources (e.g., by a
so-called arbiter, De Nijs et al., 2015). Combining algorithms for CMMDPs with other
methods for agent coordination seems to be an otherwise completely unexplored territory.
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5. Extensions and Variants

The planning problems and algorithms discussed in this survey involve multiple independent
agents which operate in an uncertain environment with resource constraints. This is a
rich problem class with several applications, and as a result several closely related variants
have been proposed. In this section we discuss the following variants: 1) instead of sharing
resources, agents need to allocate tasks, 2) agents may have to deal with constraints on the
probability of violating a limit (chance constraints), 3) agents are still learning about the
environment while meeting constraints (safe reinforcement learning), or 4) the limit may be
uncertain itself. Such variants are not supported by the algorithms that we described in
the previous section. In addition to these, we provide below a brief overview of alternative
planning problem models that can be (ab)used to deal with resource constraints, such as 1)
multi-objective problems, where instead of modeling a resource limitation as a constraint,
the respective resource use is seen as an objective to minimize, 2) congested multiagent
systems where resource costs increase with resource use, and 3) optimal decentralized policy
computation, which allows expression of other interactions between agents than just resource
use.

Task Allocation Problems In task allocation problems, agents are required to complete
a set of tasks, usually with the objective to achieve all tasks as quickly as possible (a task
could for example be ‘pick up a package and deliver it’). Tasks are similar to resources, in
that we want mutual exclusivity to hold, meaning that each task is completed exactly once.
Basic exclusivity between agents can be implemented through budget constraints: for every
task, add one budget constraint with one unit of availability. Any agent that starts on a given
task consumes the resource. However, sometimes task models may specify additional features
such as the possibility of task failure, or the existence of precedence constraints requiring
(one or more) tasks to be completed before the current task can be started (Beynier &
Mouaddib, 2006, 2011). Such cases may be covered by careful use of resource production (for
example on all transitions where a task fails, allowing it to be re-attempted). Nevertheless,
it is often easier to model tasks into the coordination problem directly, as shown by Agrawal
et al. (2016), who propose an efficient Lagrangian relaxation of a multiagent problem that
includes both tasks and resources including precedence constraints.

Chance Constraints Chance constraints arise in domains in which a notion of risk should
be bounded. In such domains it is important to bound or minimize the probability that an
undesirable event occurs, such as reaching a dangerous state or exceeding the capacity of a
resource. Problem domains where such constraints occur include the dynamic allocation
of radio spectrum while minimizing the risk of collisions (Tehrani et al., 2012), as well as
planning autonomous planetary exploration (Santana et al., 2016b). In the conceptualization
considered in this survey we can model a chance constraint for a single agent by defining a
resource consumption function that equals 1 when the undesirable event occurs, and equals
0 otherwise. The expected resource consumption becomes equal to the probability that
the event occurs, and the resource limit represents an upper bound on this probability.
The mapping from chance constraints to a resource constraint in our conceptualization is
straightforward, but there are two major limitations associated with this approach. First, the
constraint only represents a valid chance constraint if policy execution terminates when the
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undesirable event occurs. This is a major limitation, because problem domains in which such
events do not cause termination cannot be considered. Second, chance constraints are not
additive (Ono et al., 2015), which means that the existence of a chance constraint couples the
planning problems of multiple agents. Tailored algorithms for dealing with chance constraints
have been developed, such as heuristic search for chance-constrained POMDPs (Santana
et al., 2016a). Alternatively, in case the chance constraints apply to a finite-horizon POMDP,
they may be converted into regular constrained POMDP models through a polynomial-time
reduction (Khonji et al., 2019), after which the algorithms surveyed here may be applied.

Safe Reinforcement Learning The methods described in this work all require that the
models of the agents are fully specified (i.e., the transition and reward functions are given
as input). However, it may not always be possible to (fully) specify the models in advance,
which requires algorithms that learn the dynamics of a system through interactions. This is
called reinforcement learning. In standard reinforcement learning an agent is able to explore
the environment freely without any additional constraints. However, in domains with limited
resources such freedom may lead to violations of constraints during exploration, highlighting
the need for safe exploration in reinforcement learning (García & Fernández, 2015; Ray
et al., 2019). Achiam, Held, Tamar, and Abbeel (2017) made the connection between safe
reinforcement learning and CMDPs by observing that notions of safety can be encoded in
terms of the constraints, leading to a line of work on constrained policy optimization (Tessler
et al., 2019; Yang et al., 2020). In general, constrained reinforcement learning has received a
large amount of attention in recent years, for instance focusing on safety during training
(Chow et al., 2018; Simão et al., 2021), online actor-critic approaches (Yu et al., 2019; Yang
et al., 2021), or learning with safety functions that are unknown a priori (Wachi & Sui,
2020). Safe reinforcement learning in multiagent systems remains under-explored, however.

In Bayesian reinforcement learning, uncertainty over model parameters is explicitly
tracked, making this framework well-suited for designing safe learning algorithms; see the
survey by Ghavamzadeh, Mannor, Pineau, and Tamar (2015, Section 6) for an overview.
Bayesian reinforcement learning also provides the most straightforward connection between
reinforcement learning and planning, because the problem of optimizing a learning policy
in this setting is equivalent to planning in a POMDP model (Duff, 2002). Several works
have looked at solving constrained reinforcement learning problems through the Constrained
POMDP lens: Kim, Kim, and Poupart (2012), and later Lee, Jang, Poupart, and Kim (2017)
look at scaling up the single-agent case by using approximate back-ups and belief-state
merging, respectively. In the multiagent case, Castañon (1997) studies a sensor management
problem where each agent represents an object to be classified. De Nijs, Theocharous,
Vlassis, De Weerdt, and Spaan (2018b) scale up the multiagent constrained learning setting
to a large tourist recommendation problem, by truncating the planning horizon when the
remaining risk falls below the approximation threshold.

Uncertainty in Constraints In constrained settings we may also encounter domains
where the constraint models are not fully specified. This may happen when actions take an
uncertain amount of time (Bresina et al., 2002), or because the constraint itself depends on
a quantity which cannot be predicted with perfect accuracy, such as wind speeds affecting
available power from wind farms. Compared to the safe reinforcement learning setting,
relatively few works have tackled uncertainty in constraints. Stochastic resource consumption
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has been studied by Mausam, Benazera, Brafman, Meuleau, and Hansen (2005). In this line
of work the resource quantity available is assumed to be known, but there is uncertainty
regarding the consumption of a resource when executing an action, in the context of a
planning for a planetary rover with budget constraints. De Nijs, Spaan, and De Weerdt
(2018a) proposed two methods to integrate stochastic resource constraints in algorithms for
computing deterministic and stochastic preallocations.

Conversely to the above problem variants, which incited adaptations of the presented
algorithms for CMMDP, algorithms for the following variants may inspire novel ways to
solve CMMDPs.

Multi-objective Problems Multi-objective planning under uncertainty (Roijers et al.,
2013, 2018) deals with the computation of decision-making policies while considering multiple
objective functions, rather than just an individual reward signal. It is clear that there is a
strong connection between constrained planning and planning for multiple objectives. The
resource usage corresponding to each resource constraint can be seen as a separate objective
that needs to be optimized. In the context of constrained planning we have made a similar
observation when we introduced column generation for computing stochastic preallocations
(Section 4.1.1). In this algorithm the modified reward function takes the form R−λ ·C, which
is a linear combination of the reward objective R and the resource consumption objective
C, and λ is a pricing parameter iteratively determined by the algorithm. The challenge in
applying insights from multi-objective planning methods to constrained planning lies exactly
in choosing the values for such a λ parameter (i.e., weight vector) in order to satisfy the
resource constraint(s), since these methods either assume fixed objective weights, or they
compute solutions for all possible assignments of weights to objectives.

Congested Systems There is a close link between constrained multiagent systems and
congested multiagent systems. While a constraint specifies some threshold that should be
satisfied at all times, it allows the system to operate freely within the constrained space.
Congested systems, on the other hand, do not impose specific limits, but instead assign
higher costs to states with higher resource usage. While this survey focuses on constrained
systems, we mention two state-of-the-art approaches for congested systems as a source of
inspiration. Kumar, Varakantham, and Kumar (2017) study models of congested systems
where the reward of the system is submodular (decreasing reward growth with increased
resource use) in the number of agents participating in an action. They explore greedy and
lazy greedy approaches, showing that practical performance far exceeds the theoretical
guarantee of 50 percent of optimality. He, Wallace, Gange, Liebman, and Wilson (2018)
instead model congestion by a quadratic optimization problem, simultaneously varying
the resource price and control decisions. They apply the Frank-Wolfe convex optimization
algorithm to find a probabilistic schedule optimizing congestion prices in constant time.
One effective way to model resource constraints by congestion is a queue where agents are
waiting until a resource becomes available. A practical illustration here is the coordination
of the use of charging stations for electric vehicles (De Weerdt et al., 2016).

Optimal Decentralized Policies The multiagent planning model considered in this
survey assumes that independent agents are coupled by one or more resource constraints.
Preallocation methods assign resources to agents in such a way that agents can execute their
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policies in a decentralized way without any communication during execution. Decentralized
MDPs (Bernstein et al., 2002) and Decentralized POMDPs (Oliehoek & Amato, 2016) are
based on a similar notion of decentralization, in which multiple agents collaborate in a
decentralized way in order to reach a common goal. The key difference, however, is that
the common goal is typically defined using a joint reward function that is conditioned on
joint states. This means that specific combinations of agent states can be rewarded, which
cannot be expressed in the model considered in this survey. The increased expressiveness of
the model comes at a cost, because solving Decentralized POMDPs is computationally very
demanding and it is limited to small instances. An independence assumption and additive
rewards restrict the application of the model, but result in more efficient algorithms (Scharpff
et al., 2016).

Decentralized POMDPs have been extended with resource constraints in work by Wu,
Jennings, and Chen (2012). They propose an exact dynamic programming algorithm and
a policy iteration approach that considers the resource constraints during planning. In
its current form the algorithm only supports constraints on budget. As discussed above,
Beynier and Mouaddib (2006, 2011) propose a task-oriented Dec-MDP variation which
models limited resources that are available to agents, but these resources are not shared
across agents. Finally, to overcome such limitations, an under-explored direction is to model
the usage of shared resources as influence sources (Oliehoek et al., 2012).

6. Research Directions and Algorithmic Challenges

Considering the discussed contributions on constrained multiagent Markov decision problems
and related problems and approaches, we next provide an overview of avenues of work that
can be investigated in the future.

Creating Challenging Benchmark Problems Constrained multiagent Markov decision
problems share a common underlying modeling paradigm, described in Section 3. Because
of this, most algorithms in this survey have been compared against one another in some
form. Nevertheless, we expect that future research in this area would strongly benefit from
a common set of challenging and relevant benchmark problems.

Openly accessible benchmark problems would provide the typical benefit of making
different ideas more directly comparable. Additionally, having access to realistic or ideally
real-world problems adds further credibility to the field. However, artificial benchmark
problem instances could also be of use, for example to identify specifically challenging or
successful conditions. Creating problems with meaningful uncertainty is generally difficult,
which is demonstrated by the first probabilistic International Planning Competition: a
deterministic replanner still achieved the best performance on most problem instances with
noise added to originally deterministic action effects (Younes et al., 2005). At the same time,
Pisinger (2005) showed that knapsack problems require specific correlations in weight and
value to be hard to solve. Because constrained multiagent decision-making problems have
both uncertainty and knapsack-like constraints, producing instances that are hard in both
dimensions is likely a challenging research topic in its own right. Furthermore, a careful design
of benchmark domains will help to ensure wider applicability of algorithm implementations,
by including domains with currently understudied cases, such as continuous-valued resource
consumptions, actions that produce resources, and inverted (≥ L) constraints.
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Handling Partial Observability Existing work on constrained planning mostly considers
models with full observability of environment states. There are a few algorithms that
explicitly take partial observability into account, as described in Sections 4.1.2 and 4.3.2, but
there are a few aspects which currently limit the applicability of most of these algorithms.
Most existing algorithms for Constrained POMDPs only support budget constraints which
include a discount factor in the definition of the constraint. This means that many types
of constraints that arise in domains cannot be modeled. Furthermore, the majority of
the existing algorithms consider soft constraints that need to be satisfied in expectation.
Approaches to enforce hard constraints and approaches for providing guarantees in the
MDP setting may be applied in the POMDP setting as well, but typically this leads to
scalability problems. Integrating multiple types of constraints and hard resource limits
requires additional work.

Using Non-Robust Communication Channels In our taxonomy mapping problem
domain properties to solution approaches (Table 2), we identified ‘disconnected’ domains:
domains where agents cannot expect to be able to communicate during policy execution.
This restriction limits us to the preallocation algorithms described in Sections 4.1.1 and 4.2.
These algorithms compute fixed resource allocations, and therefore come at the price of not
being able to adapt to realizations of uncertain state trajectories.

However, in many domains, non-robust communication options may be available. For
example, in the flexible load control setting of Section 2.1.1, it is undesirable for solutions
to depend on communication between loads, because power supply issues could take down
communication exactly at the time coordination is most critical. Currently only preallocation
algorithms are safe for this setting, but there is room for new algorithms that exploit
communication when it is available to better handle uncertainty. In future work it can be
investigated whether communication aspects can be explicitly considered in the planning
algorithms. In the unconstrained setting, Spaan, Oliehoek, and Vlassis (2008) look at
integrating communication delays in Decentralized POMDPs, but this line of work has not
yet been extended to general MDPs or POMDPs coupled through resource constraints.

Balancing Offline and Online Computation In Section 4 we described both online
and offline coordination algorithms that can be used in domains with resource constraints.
These algorithms have mostly been studied in isolation, making them either fully online or
fully offline. An important question is whether both types of approaches can strengthen
each other. In some domains, the online decision window may be too short to allow sufficient
deliberation time, whereas offline policy computation can take significantly longer. In such
a setting, offline preallocation-based policies may serve as heuristic in online coordination,
such that the online decisions can improve upon the decisions that would be made in the
offline case. A few online algorithms include some form of local policy computation prior to
online coordination, but typically these policies disregard the decisions of other agents. In
future work it can be investigated whether hybrid approaches can be developed, combining
the strengths of both online and offline methods.

Decoupling Level The multiagent planning model considered in this survey assumes
that the planning problem is decoupled at the level of individual agents. This means that
the model does not allow for modeling of dependencies between the planning problems of
the agents, other than global resource constraints. In practice the assumption of agent-level
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decoupling may be too extreme and it may restrict the potential for application (Oliehoek
et al., 2015). As an alternative to decouplings at the level of agents one can think about
clustering based on groups of agents, such that planning problems for groups of agents
can be defined rather than individual agents. Choosing the right clusters creates a new
optimization problem that decides at what level the agents are clustered into groups. This
direction of research may be expanded based on influences between agents (Witwicki &
Durfee, 2010; Scharpff et al., 2016).

When state transitions are fully coupled, we may have no alternative other than optimizing
the agents jointly. However, even if we can compute an optimal stochastic policy, the resulting
joint actions cannot be executed without communication: if we give these joint actions to
individual agents to execute, they may individually randomize their actions to arrive at a joint
action that was not intended. This can be avoided by letting the agents communicate during
action selection. Paruchuri, Tambe, Ordonez, and Kraus (2004) show that it is possible to
obtain policies that coordinate on soft resource constraints by reasoning explicitly about
inter-agent communication. They propose splitting the joint action selection in a coupled
CMDP into an ordered sequence of individual actions with communication after-states. This
way, an agent can decide as part of the planning for which action selections it needs to
communicate.

7. Conclusions

Multiagent planning problems in domains such as smart energy management, vehicle routing,
and conditional maintenance are effectively modeled and solved as constrained multiagent
Markov decision processes. Because of their wide applicability, many different solution
approaches for these problems exist. In this survey we first identify which domain properties
dictate whether or not a solution approach applies to it, namely: whether constraints are soft
or hard, whether agents are continuously connected, whether the domain is fully observable,
and whether a constraint is on a capacity (instantaneous) or on a budget, on a single resource
or on multiple. We then use these domain properties to define a taxonomy of the solution
approaches. By positioning existing algorithms in this taxonomy, a number of open problems,
understudied research areas and promising directions that can be followed to extend the
research field in the future are identified.

Firstly, while there are many algorithms that efficiently cope with soft constraints,
including a few that even provide guarantees on the number or probability of constraint
violations, there are fewer methods for dealing with hard constraints. Especially regarding
hard instantaneous constraints this is surprising, because this is a relevant variant and
arguably the most simple one. Almost no work has been done on methods for dealing
with hard constraints when the state of the domain is only partially observable. This,
however, is less surprising, because to be successful in such domains online and continuous
communication seems essential, which significantly complicates the required algorithms. A
second challenge regarding mainly the algorithms for partially observable domains is to drop
the discounting of future rewards from the model as this is only realistic in few domains.
Thirdly, we have identified that the pre-allocation methods and a few of the (non-centralized)
online methods are suited for extending with other inter-agent coordination issues, but that
this is rather unexplored territory.
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More generally, a number of the insights from algorithms for constrained multiagent
Markov decision processes (CMMDPs) can inspire algorithms for domains involving mul-
tiagent task allocation, chance constraints, safe reinforcement learning, and, an especially
understudied variant, domains where there is uncertainty in constraint limits. Conversely,
novel CMMDP approaches could be derived from algorithms that deal with multiple objec-
tives, congested multiagent systems, or decentralized (PO)MDPs.

As a final set of directions for future work we identified the benefit of good bench-
mark problems, the understudied challenge of dealing with non-robust communication,
balancing online and offline computations, and novel ways of decoupling or clustering agent
computations.
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