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ABSTRACT
Thermostatic loads are promising energy buffers that could
be unlocked through Demand Response. Existing research
has shown that an aggregation of thermostatic loads can
be made to follow a power curve using reactive control. In
this paper we investigate the use of planning to proactively
control an aggregation of Thermostatic Loads as storage to
overcome temporary dips in power availability.

We first present a formal problem definition of the planning
problem under consideration, and apply Dynamic Program-
ming to it to obtain an optimal solution. However, because
we can prove the problem to be NP-complete, we need effi-
cient heuristic solutions to solve practical instances. There-
fore, we then extend the Dynamic Programming solution
with approximations of the state and action space to ob-
tain efficient heuristic solutions. We evaluate our proposed
heuristics through simulation on instances with a range of
power capacity constraints, and show that they are able to
obtain a factor two improvement over the reactive approach
under the hardest power constraints.

1. INTRODUCTION
A large potential storage capacity can be found in the var-
ious heat buffers operated by consumers: Houses, refrigera-
tors and hot water reservoirs all need to be maintained at
a certain temperature offset from the environment tempera-
ture. All of these buffers decay to the environment tempera-
ture over time, which requires constant action to counteract.
But precisely when these buffers are heated or cooled can be
shifted in time. By storing more energy in the heat buffer
now, we can later ‘extract’ this heat from the buffer in the
form of reduced loads. In this sense, we may think of heat
buffers controlled by thermostats as a kind of batteries [4].
The storage potential in these batteries can be exploited
through Demand Response.

These Thermostatically Controlled Loads (TCLs) can them-
selves be controlled automatically by the system operator,

provided that an ICT infrastructure is in place. Existing
work [2, 4] has mainly focused on using Control Theory
to make an aggregation of TCLs closely follow an available
power signal. There, control is applied reactively on a sec-
ond timescale to obtain a solution for the immediate grid
balancing, which means that both fluctuations up and down
must be followed, and that the power available is expected
to cover the demand on average.

Instead of using TCLs for balancing, we investigate the po-
tential of TCLs for buffering temporary drops in power pro-
duction, such as those caused by the fluctuations in renew-
able generation. These fluctuations typically occur on longer
timescales [6], potentially violating the consumers comfort
constraints if no preventive action is taken. This motivates
using planning to respond to fluctuations before they occur,
to minimize the discomfort experienced by the end-users.

In this paper we present a novel Power Constrained Plan-
ning (PCP) problem formulation, in which the deviation
from the TCL set-point is optimized under power avail-
ability constraints. There are two reasons for considering
available power as a constraint. Firstly, while excess power
can be discarded, without power the TCLs cannot operate.
Secondly, there may be too little power to satisfy the com-
fort constraints for a period of time. But even in this case
we want to minimize the total discomfort. Unfortunately,
we also prove that PCP is an NP-complete problem, which
means that computing an optimal solution is intractable.
Therefore, we present two heuristics for an optimal Dynamic
Programming [3] algorithm and evaluate their performance
against an existing Control Theory solution.

To evaluate the proposed heuristics, we simulate how the
temperatures in an aggregation of 500 heterogeneous TCLs
evolve under a number of scenarios with increasingly tight
power constraints. For each scenario we compare the total
error resulting from the control actions of the proposed algo-
rithms with a control scheme. We find that as the power con-
straints become severe, the heuristics outperform the con-
ventional control system by a factor two, while requiring less
than 10 seconds of planning time.

The organization of this paper is as follows. First the math-
ematical model of a TCL is presented in Section 2. Then
Section 3 defines the PCP problem we are studying here.
An optimal Dynamic Programming algorithm is given in
Section 4, and extended to two heuristic solutions in Sec-



tion 4.3. Sections 5 and 6 evaluate the performance of the
algorithms on respectively a single device and an aggrega-
tion. Section 7 describes the related work, while Section 8
states our conclusions and future work.

2. BACKGROUND
A thermostatic load is any device that is able to consume
(electric) power for the heating or cooling of a body in re-
lation to its natural temperature, such as refrigerators or
central heating systems. The goal of the thermostat is to
operate the device so that the temperature of the body re-
mains as close as possible to the set-point at all times.

A Markov chain model of thermostats controlled by hystere-
sis controllers was presented by Mortensen and Haggerty [8].
In their model, the temperature of the body in the next time
step θi,t+1 is deduced from the current temperature θi,t, the
current outside temperature θout

t , a temperature input from
the device θpwr

i , and a random temperature shift θrnd
i,t mod-

eling exogenous actions such as opening a door.

The temperature input from the device is determined through
the interaction of the effective thermal power produced Pi
(kWh) with the thermal resistance Ri (°C / kW) as θpwr

i =
RiPi. It signifies the maximum temperature offset obtain-
able when the device is permanently switched on. The hys-
teresis controller switches the device state depending on the
measured temperature θi,t relative to the set-point θset

i,t . To
protect the device from short-cycling, the set-point is sur-
rounded by a dead-band θδ. Hysteresis control is modeled
through the boolean variable mi,t. The controller maintains
the previous state mi,t+1 = mi,t, unless the temperature
boundaries are violated. In case of a heating device:

mi,t+1 =


0,

(
θi,t > θset

i,t + θδ
2

)
1,

(
θi,t < θset

i,t − θδ
2

)
mi,t, otherwise

(1)

The size of the time step ∆, together with the thermal con-
stants Ri and Ci (the thermal capacitance, kWh / °C) de-
termine how quickly the current temperature responds to
the external factors through the fraction ai = exp −∆

RiCi
, re-

sulting in the model:

θi,t+1 = aiθi,t + (1− ai)
(
θout
t +mi,tθ

pwr
i

)
+ θrnd

i,t . (2)

Finally, the power extracted from the grid is determined
through the efficiency µi of the heater, thus P eff

i = Pi
µi

. Then,

we can determine the power consumption of i at time t to
be mi,tP

eff
i .

3. PROBLEM DEFINITION
In this section we formally define the problem of planning
the activation of thermostatic loads under power constraints.
First we present the mathematical model of the planning
problem. Subsequently, we prove that it is an NP-complete
problem, showing that computing the optimal solution is
intractable.

3.1 Power Constrained Planning (PCP)
We adapt the unconstrained model from Section 2 into a
Power Constrained Planning problem. We use boldface char-
acters to represent vectors of device parameters over all de-
vices, i.e. θt =

[
θ0,t θ1,t · · · θn,t

]
. Then, using the

Hadamard product b = a ◦ θt =⇒ bi = ai × θi,t ∀i, we
can define a state transition function to computes θt+1 as
f(θt,mt, θ

out
t ) = a ◦ θt + (1− a) ◦

(
θout
t +mt ◦ θpwr

)
With this function, we can define a planning problem us-
ing a given horizon h, the thermal properties of the n ther-
mostatic loads with initial temperatures θ0, the predicted
outdoor temperature θout

t , and the predicted power produc-
tion Lt. A solution is a device activation schedule that never
consumes more power than is available while minimizing the
cost function c(θt). The entire planning problem becomes:

minimize
[ m0 m1 ··· mh ]

h∑
t=0

c(θt)

subject to θt+1 = f(θt,mt, θ
out
t )

mt · P eff ≤ Lt
mi,t ∈ [0, 1] ∀i, t

(3)

Due to the generality of the model, the controlled loads can
have different objectives which can be expressed through the
cost function. Besides typical functions such as the squared

error c(θt) =
∑n
i=0

(
θi,t − θset

i,t

)2
or maximum set-point de-

viation c(θt) = maxi
(
θi,t − θset

i,t

)
, we might consider more

application specific functions, such as the comfort level of
a home owner which might be affected more by low tem-
peratures, or a refrigerator which only incurs high penalties
when the temperature gets too high.

3.2 PCP is NP-complete
We demonstrate that the Power Constrained Planning prob-
lem is an NP-hard problem via reduction from Partition,
which is an NP-complete problem [5].

Given an instance of the Partition problem consisting of a
set of n integers si ∈ S, we construct an instance of PCP
with a horizon of one time-step. The power production in
the only time-step is equal to L0 = 1

2

∑n
i=0 si. The power

consumption of the n thermostatic loads is mapped to the
weight of the equivalent integer in S as P eff

i = Pi = si, while
the thermal constants of each load are set to Ri = 2, Ci = 1
for all i. The time step ∆ is set such that ai = exp −∆

RiCi
= 1

2
,

thus ∆ = −2 ln 1
2
. The initial temperature θi,0 and the

outside temperature θout
0 are both set to 0 for all i. Finally,

the set-point is equal to si, and the cost function is simply
the sum of all errors, thus c(θt) =

∑n
i=0(si − θi,t). Does

there exist a schedule with error at most ε ≤ 3
2

∑n
i=0 si?

It is easy to see that the generated instance has a solution
iff S contains a partition. Consider how the temperature at
the horizon θi,1 depends on the state of the device mi,0:

θi,1 = aiθi,0 + (1− ai)
(
θout

0 +mi,0RiPi
)

=

{
1
2
× 0 + 1

2
× (0 + 2si) = si, mi,0 = 1

1
2
× 0 + 1

2
× (0 + 0) = 0, mi,0 = 0

(4)



At time t = 0, all loads incur an error of size si because θi,0 =
0. The error in time step t = 1 depends on mi,0. Those
devices that were turned on do not contribute to the error,
while those that remained off again contribute si. Because
the contribution to the power demand

∑n
i=0 mi,0Pi is the

inverse of the contribution to the error, the power limit L0

imposes the constraint that at most half of the total load
can be active at the same time, while the decision requires
at least half of the total load to be active. A partition of
S can thus be represented by setting mi,0 = 1 for all i in
the ‘left’ partition, since this requires exactly the available
power while imposing exactly the required error. In the
other direction, if the generated PCP instance contains a
solution, then that solution cannot have more than half of
the total load active. But in order to be a solution, it must
activate at least half the total load to match the required
error. Thus the decision partitions the set into exactly half
on, half off.

To prove that PCP is NP-complete, we must further show
that we can verify a certificate in polynomial time. To ver-
ify that the certificate schedule

[
m0 m1 · · · mh

]
is a

solution, we need to test that it never exceeds the power con-
straints Lt, and that the total error is less than the decision
value ε. To test the power constraints, we must compute
mt · P eff ≤ Lt for all t, which takes O(nh). Testing the de-

cision requires evaluating
∑h
t=0 c(θt) ≤ ε, which consumes

O(c(θt)h). Provided that h and O(c(θt)) are at most poly-
nomial in n, verifying a certificate for PCP takes polynomial
time in n.

4. DYNAMIC PROGRAMMING
The defining aspect of the PCP is the Markov model of the
temperature progression. Such a state transition model is
easy to embed in a Dynamic Programming solution, which
we will present in this section. Unfortunately, since PCP
is NP-complete, finding an optimal schedule for a PCP in-
stance is an intractable problem. Therefore, in this section
we also propose heuristics that we expect will allow the Dy-
namic Programming solution to return good plans quickly.

4.1 Optimal Dynamic Program
Using the notation developed in the previous section, we
can define the following recurrence for the power constrained
planning problem:

p(mt) =

{
0, mt · P eff ≤ Lt
∞, mt · P eff > Lt

S(θt) = min
mt

(
c(θt) + p(mt) + S(f(θt,mt, θ

out
t ))

)
S(θh+1) = 0

(5)

By computing S(θ0) we obtain the schedule that results in
the minimum possible error. This scheme can be imple-
mented using the standard backward recursive dynamic pro-
gramming algorithm, but such a scheme will quickly become
intractable since the state space θt and the action space mt

are both exponential in n. The next sections propose heuris-
tics to reduce the size of the state and action space.

4.2 Price-Based Switching Heuristic
Since it is intractable to control each device separately, we
are looking for a heuristic that abstracts away the activating

and deactivating of the loads. Considering that the loads are
expected to contain a thermostat, the obvious choice would
be to let each device be switched by its hysteresis controller.
What then remains is to decide which devices are allowed to
stay on when there is not enough power to run them all.

We propose to use a greedy heuristic to control the switching
of the devices. Sort the devices that want to be on by the
estimated reduction in error from being on. Switch as many
as feasible, starting from the highest error reduction. We as-
sume devices can estimate their error contribution through
the difference between the measured temperature and the
set-point. This heuristic may be implemented as the price-
based mechanism proposed by Koch, Zima, and Andersson
[6], who demonstrate a controller that assigns a price to
switching device state based on its estimated error. A sim-
ilar heuristic was proposed by Hao, Sanandaji, Poolla, and
Vincent [4], who call it a priority-stack-based control algo-
rithm.

4.3 State Estimation of Price-Based Aggrega-
tion

Given the greedy switching heuristic, this section deals with
estimating its current state. Following that, we also present
two action spaces to control the aggregation. In this section
we assume without loss of generality that the devices are for
heating.

When the devices are similar, we may estimate their state
by computing the state of the average device. In the fol-
lowing, we use an overline to indicate an average, thus θ̄t =
1
n

∑n
i=0 θi,t is the average temperature. Unconstrained and

in steady state, we expect the average temperature to equal
the average set-point. Otherwise, we may bound the devel-
opment of the temperature as follows. The lower bound on
the temperature is obtained when all devices are off. It is
equal to the average decay to the outside temperature, thus:

θ̄min
t+1 = āθ̄t + (1− ā)θout

t . (6)

The upper bound depends on the number of devices that
can be switched on. Suppose that we know the maximum
possible power consumption at the grid is Pmax =

∑n
i=0 P

eff
i ,

then we may estimate the maximum average duty cycle to
be equal to D = Lt

Pmax . Given this duty cycle, the maximum
temperature can be approximated from a period of heating
of length D∆ and a period of cooling of length (1−D)∆ as

θ̄max
t+1 = āθ̄t+

(
1− exp

−D∆

R̄C̄

)(
θout
t + θ̄pwr)+(

1− exp
−(1−D)∆

R̄C̄

)
θout
t .

(7)

Thus, the state transition is estimated by function f̄ :

θ̄t+1 = f̄(θ̄t, θ̄
set
t , θout

t ) =


θ̄min
t+1, θ̄set

t < θ̄min
t+1

θ̄max
t+1 , θ̄set

t > θ̄max
t+1

θ̄set
t , otherwise

(8)

To control the aggregation we propose to use a global set-
point offset θoff

t as state, so that θ̄t+1 = f̄(θ̄t, θ̄
set
t +θoff

t , θout
t ).



This approach was taken by Callaway [2] to make an aggre-
gation of thermostatic loads closely follow a load signal. Be-
cause maintaining a range of possible offsets as actions may
be expensive, we further propose a heuristic that considers
just the three extremes, heating, maintaining and cooling:
θoff
t ∈

[
θ̄min
t+1, 0, θ̄

max
t+1

]
.

5. SINGLE DEVICE PLANNING
In order to demonstrate the value of planning for load bal-
ancing, this section evaluates the performance of planning a
single load. Planning a single device is tractable and thus
we are able to use the optimal algorithm specified in Section
4.1. This algorithm is compared with the baseline case using
the hysteresis controller, and with the proposed three-action
state approximate model from Section 4.3.

The experimental setup is as follows: We simulate a fictional
household heated by a small heat-pump in winter, under in-
termittent power from a renewable source such as wind en-
ergy. In particular, thermal capacitance C = 12, thermal re-
sistance R = 14 and heating power P = 3.2. The horizon is
set to 6 hours, and during this time the outside temperature
remains constant at 10 degrees, while the occupants request
a set-point of 20 degrees inside. For these 6 hours there are
predictions for three short outages, during which no power
is available for running the heat-pump. In this scenario the
consumers want to remain warm, and therefore the system
is penalized more for temperatures lower than the set-point,
compared to temperatures higher than the set-point. Small
fluctuations in temperature within the 1 degree deadband
of the hysteresis control are not penalized. Thus the error
function becomes:

c(θt) =


(θt − θset

t )2 − 1
2

2
, θt > θset

t + 1
2

(θt − θset
t )4 − 1

2

4
, θt < θset

t − 1
2

0, otherwise

(9)

Given this scenario, we expect the optimal algorithm to
pre-heat the home before each outage, thereby reducing the
amount by which it drops below the set-point. This should
result in a reduced error compared to the hysteresis control.
In order to not unfairly judge the control system, we reduced
its deadband to

[
− 1

8
, 1

8

]
, and made it maintain an average

temperature of 20 3
8
, thereby ensuring it stays at the top of

the allowed deadband under normal operation. For all ex-
periments, the control system updates device state with an
interval of 1 second. With respect to the three state model
from Section 4.3, because we are planning a single device,
there is no state estimation, and thus we expect it to reduce
to the optimal algorithm.

Figure 1 presents the results of the deterministic simula-
tion. For these scenarios each plan was produced within
10 seconds. In this figure the two left-most graphs show
the performance of optimal planning, while the middle and
right graphs show how performance deteriorates when the
planning system is limited to taking an action every two or
five minutes respectively. As the bottom graphs show, the
cumulative error is much smaller when using the planning
algorithms, achieving around 1

4
of the error incurred by con-

trol only. As expected, this reduction in error is obtained by
‘over-heating’ the house before the predicted outages, which

can be seen in the rise in temperatures before the periods of
no power indicated by the vertical bands.

Two interesting observations can be made from the results.
The dynamic programming solutions use the error free zone
as a buffer, by trying to stay at the top of the band at all
times. When the intervals between actions become too large
at five minutes (right figures), we see that the DP algorithm
decides to increase the temperature above the deadband to
incur the least possible error. Secondly, we observe that the
three state algorithm (DP3) is able to avoid this temperature
peaking by delegating to the high frequency control mech-
anism by using the ‘Maintain’ action during the periods of
power availability. As a consequence, it actually incurs a
smaller total error than the DP algorithm in the five minute
interval case.

Using planning interval sizes that are larger than the mod-
eled time step size has two advantages. In the first place,
it reduces the number of states to evaluate, and thereby re-
duces the time needed to compute the plan. Secondly, and
more importantly from a practical standpoint, larger plan-
ning intervals prevent short-cycling the controlled device by
ensuring it stays in one state for the duration of the inter-
val. Fewer commands also reduces the constraints on the re-
quired communication interface. We conclude that the good
performance for the larger planning intervals demonstrates
that planning has merit outside a theoretical scenario.

6. MULTI DEVICE PLANNING
To see if the positive results obtained in the previous result
carry over to the multiple device scenario, this section eval-
uates the performance of the heuristic planning algorithms
proposed in sections 4.3 and 4.3. The scenario considered
here is similar to the scenario proposed in the previous sec-
tion except for the number of devices and the nature of the
outages. In this multi device setting, we consider houses
of varying build quality by simulating 500 houses with ca-
pacitance C ∈ U [10, 14] and resistance R ∈ U [12, 16]. The
heat-pumps are assumed to be identical for all houses.

When multiple devices are considered, a reduction in the
available power may switch off a subset of the controlled de-
vices. Then, some of the devices may be getting too cold
even when the average temperature is within the deadband.
We thus expect that the difficulty of the problem depends on
the magnitude and frequency of the power outages. There-
fore, the size of the outages is varied on three levels: dur-
ing ‘Mild’ outages, approximately two-thirds of the average
unrestricted load remains available, while during ‘Severe’
outages at most one-third of the needed power is available.
‘Full’ outages are like the binary case considered in the sin-
gle device setting, which means that during an outage no
power remains. The frequency of the outages is controlled
through the probability of an outage occurring on each time
step (the planning algorithms are still provided with accu-
rate predictions of the outages before planning).

Under these varying constraints we expect the planning al-
gorithms to perform better than just the price-based control
system whenever the power constraints are severe enough to
cause dips in the temperature below the deadband. Fur-
ther, because the performance of the group of devices must
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Figure 2: Performance of the heuristic Dynamic Programming models DP3 (Equation 4.3) and DPs (Equation
4.3) under varying levels of power constraints.

be estimated from the power availability, we expect the best
performance when outages are ‘Full’ outages, which are es-
timated accurately by θ̄min

t+1.

Figure 2 presents the results of the multi-device experi-
ments. Since the heuristics plan one ‘average’ device, run-
ning times are still below 10 seconds. In these figures, the
y-axis presents the normalized error: The method with the
highest error is assigned a normalized error of 1, and the
others are then computed through their ratio to the worst
method. The results are averaged over 20 runs per setting.
We make a number of observations: As the severity of the
outages increases, the benefit of planning becomes larger
compared to just using control. But when the outages be-
come very frequent, errors start becoming unavoidable which
translates into an increasing error for increasing outage fre-
quency for the DP heuristics. The three-state planning algo-
rithm does not perform well under ‘Mild’ outages, which is
a consequence of the continuous error incurred from staying

just inside the error-free band ‘on average’. The more fine-
grained offset-based algorithm (DPs) instead consistently
outperforms the control mechanism.

7. RELATED WORK
A similar setting is investigated by Rogers, Maleki, Ghosh,
and Jennings [9], who consider optimizing the energy cost
and carbon intensity of a single household by planning the
activation of a heater using a smart predictive thermostat.
Because our algorithm builds plans for an aggregations of
households, our solution is able to take into account the
interactions that occur due to periods of high simultaneity.
Planning only individual households risks overloading the
grid capacity during periods of cheap electricity caused by
high renewable production.

Mathieu, Kamgarpour, Lygeros, and Callaway [7] propose
controlling thermostatic loads as arbitrage, essentially mak-
ing them follow the inverse of a real-time price signal. They



consider a control scenario where loads are only allowed to
be controlled inside their deadbands, which is unobtrusive
to the end-user. Their focus is on reducing the energy costs
of consumers, under the assumption that sufficient power is
available to maintain temperature inside the deadbands as
required.

Stadler, Krause, Sonnenschein, and Vogel [10] present the
dynamics of a system of set-point controlled refrigeration
units. They examine the requirements of the controllers em-
bedded into the units by considering two different types of
controller, one which only accepts binary signals requesting
an increase or decrease in load, and a more powerful con-
troller that allows to specify a start time and duration during
which reduction of load is requested. They demonstrate that
when devices are equipped with the advanced controller, a
100% load reduction can be sustained for more than 45 min-
utes if given a 20 minute lead time to cool the refrigerators.
Another contribution of their paper is a mathematical ap-
proximation model of the state of the aggregated fridges.
Their results demonstrate that planning is necessary to get
the most out of the storage capacity of these devices, which
matches our observations.

A planning problem definition related to our own is pre-
sented by Bosman, Bakker, Molderink, Hurink, and Smit [1].
The authors consider the planning of a fleet of MicroCHP
units, so that their profit is maximized while the heat de-
mand and minimum and maximum power production con-
straints are satisfied. The local search algorithm used first
builds plans for each device individually using Dynamic Pro-
gramming, which are then combined into a global plan and
checked against the power constraints. If constraints are
violated, the objective function of each house is updated
and the devices replanned until a feasible solution is found.
Compared to our contribution the authors do not consider
time-variable power constraints. Their heuristics are also
much more computationally intensive, which limits their ex-
periments to planning interval sizes and number of devices
planned of 15 minute intervals over 24 hours and 100 units
respectively, while requiring more than an hour of computa-
tion time.

8. CONCLUSIONS AND FUTURE WORK
In this paper we investigated the algorithmic challenges to
using Thermostatically Controlled Loads for buffering for
periods of low power availability. To this end we presented a
planning problem definition for the optimal control of Ther-
mostatically Controlled Loads under power constraints. Be-
cause this is an NP-complete problem, we extended an op-
timal dynamic programming approach to two heuristic al-
gorithms. From evaluating these heuristics on a range of
different power constraints we can conclude that using plan-
ning techniques can strongly reduce the deviation from the
set-point that occurs as a consequence of intermittent power
drops. Planning becomes particularly effective when the op-
erating constraints are more severe.

Building upon this work we want to look at a number of
extensions to the solutions proposed in this paper. In the
first place, we may try to make the proposed heuristics more
accurate through the use of clustering. By grouping devices
with ‘similar’ heat response together, we can reduce the er-

ror incurred by averaging their properties. Secondly, we
want to look at modeling and handling uncertainty in the
power availability predictions. Topics include investigating
how uncertainty can best be represented, and whether these
algorithms can be made suitable for handling this uncer-
tainty. Related to this, we also want to investigate how we
can build online versions of these algorithms. One question
that needs to be answered for an online version is how large
the planning interval should be. It is likely that the length of
the planning horizon must depend somehow on the thermal
properties of the device being planned.

References
[1] M. G. C. Bosman, V. Bakker, A. Molderink, J. L.

Hurink, and G. J. M. Smit. “Planning the production
of a fleet of domestic combined heat and power gener-
ators”. In: European Journal of Operational Research
216.1 (2012), pp. 140–151.

[2] D. S. Callaway. “Tapping the energy storage potential
in electric loads to deliver load following and regu-
lation, with application to wind energy”. In: Energy
Conversion and Management 50.5 (2009), pp. 1389–
1400.

[3] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C.
Stein. “Dynamic Programming”. In: Introduction to
Algorithms. 3rd. The MIT Press, 2009, pp. 359–413.

[4] H. Hao, B. M. Sanandaji, K. Poolla, and T. L. Vincent.
“A Generalized Battery Model of a Collection of Ther-
mostatically Controlled Loads for Providing Ancillary
Service”. In: Annual Allerton Conference on Commu-
nication, Control and Computing. 2013.

[5] R. M. Karp.“Reducibility among Combinatorial Prob-
lems”. In: Complexity of Computer Computations. 1972,
pp. 85–103.

[6] S. Koch, M. Zima, and G. Andersson. “Active Coor-
dination of Thermal Household Appliances for Load
Management Purposes”. In: Symposium on Power Plants
and Power Systems Control. 2009, pp. 149–154.

[7] J. L. Mathieu, M. Kamgarpour, J. Lygeros, and D.
S. Callaway. “Energy Arbitrage with Thermostatically
Controlled Loads”. In: European Control Conference.
2013, pp. 2519–2526.

[8] R. E. Mortensen and K. P. Haggerty. “A stochastic
computer model for heating and cooling loads”. In:
IEEE Transactions on Power Systems 3.3 (1988), pp. 1213–
1219.

[9] A. Rogers, S. Maleki, S. Ghosh, and N. R. Jennings.
“Adaptive Home Heating Control Through Gaussian
Process Prediction and Mathematical Programming”.
In: Second International Workshop on Agent Technol-
ogy for Energy Systems. 2011, pp. 71–78.

[10] M. Stadler, W. Krause, M. Sonnenschein, and U. Vo-
gel. “Modelling and evaluation of control schemes for
enhancing load shift of electricity demand for cooling
devices”. In: Environmental Modelling & Software 24.2
(2009), pp. 285–295.


