
Coordinating Agent Plans Through Distributed Constraint Optimization

Brammert Ottens and Boi Faltings
{brammert.ottens, boi.faltings}@epfl.ch
Artificial Intelligence Laboratory (LIA)

EPFL, Switzerland

Abstract
In this paper we show how the coordination of agent plans
can be performed using Distributed Constraint Optimisation
(DCOP) techniques. In particular, we show how a Truck
Task Coordination problem can be modelled as a DCOP. We
introduce a complete asynchronous DCOP algorithm, Asyn-
chronous Open DPOP (ASODPOP), based on the DPOP al-
gorithm that exhibits fast convergence to the optimal solu-
tion compared with both ADOPT and Distributed Stochastic
Search (DSA). Fast convergence is useful when agents are
time bounded and are thus unable to wait for an optimal so-
lution.

Introduction
In every situation where multiple agents have to decide on
a set of actions to perform, coordination is of the utmost
importance. Not only do agents need to communicate with
each other to obtain a feasible plan, they have to coordinate
to obtain the best plan possible. The way such problems are
modelled has a big influence on the efficiency with which
they can be solved. If, for example, one only considers the
joint actions of all the agents, the problem very quickly be-
comes intractable as the number of agents in a problem rises.
Instead, one should make use of the fact that in most coordi-
nation problems agents decisions are directly influenced by
only a small number of other agents. Furthermore, distribut-
ing the search for a solution over the set of agents allows one
to make use of the parallelism available in most distributed
problems.

One way to reap the benefits of both the locality of the
interaction and the inherent parallelism is to model such
problems as Distributed Constraint Optimisation Problems
(DCOP) (Yokoo et al. 1992). In a DCOP every agent owns
a set of variables it can set, while the reward of a particular
agent depends not only on its own variables but also on the
variables of certain other agents. The goal of all the agents is
to maximise the combined reward of all the agents together.

In applying DCOP techniques to multi-agent planning, in-
teraction can be modelled by variables that are constrained
to take compatible values. One instantiation of such a
multi-agent planning problem is the Truck Task Coordina-
tion (TTC) problem. In a TTC problem one has a set of

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

trucks, dispersed over an area, and a set of packets that needs
to be picked up and delivered. Each truck needs to create its
own plan but also needs to coordinate with other trucks in or-
der to make sure that the global plan is both feasible and is
of a certain quality. Each truck operates in a specific region
that potentially overlaps with other regions. Each packet in
such an overlapping area can be picked up by any of the
trucks that cover it, and defines a coordination variable be-
tween different agents, making this problem very suited to
be solved by using DCOP methods. Note that the agents
only coordinate over which packet is picked up by whom.
All the agents are free to plan the pick up and delivery se-
quence for the allocated packages as they see fit.

The goal of this paper is to investigate the usefulness of a
particular DCOP algorithm, ASODPOP, when solving agent
coordination problems.

Agent Coordination
When all the agents are cooperative agents, they are inter-
ested in coordinating their decisions so as to maximise the
global reward of all the agents. In order to find these opti-
mal decisions, the agents have to communicate about their
preferences. However, agents are usually bounded by cer-
tain constraints on communication bandwidth, memory use
but also on the time available to solve the problem.

One way of modelling such coordination problems is, to
model them as a Distributed Constraint Optimisation Prob-
lem (DCOP). In a DCOP agents have to assign values to
their variables, where their rewards depend on the assign-
ments other agents make. These rewards are coded as con-
straints over combinations of values, and the agents solve
the problem via message passing

The types of decisions agents can coordinate over can
range from interpreting sensor data to attending meetings
to coordination pick up and deliveries by several trucks. In
this paper we shall focus on the latter, but keep in mind that
the methods used can be applied on a much wider range of
problems.

Solving a DCOP
During the past decade major progress has been made in
solving DCOPs, where ADOPT (Modi et al. 2003) was the
first algorithm that was able to optimally solve problems in a

ICAPS'08 Multiagent Planning Workshop

distributed fashion. ADOPT operates by first prioritising the
agents using a Depth First Search (DFS) tree. A DFS tree
is a spanning tree of the constraint graph (or coordination
graph) where all the branches are independent, i.e. neigh-
bours in the constraint graph are in an ancestor-descendant
relation in the DFS tree. It then performs a distributed depth
first search by allowing the agents to set their variables in a
top down manner. The disadvantage of this method is that
the number of messages is exponential in the depth of the
DFS tree and that it is not able to handle large domains.

Another approach to solving a DCOP is taken by
DPOP (Petcu and Faltings 2005). It also operates on a DFS
tree, but where ADOPT performs a top down search, DPOP
aggregates solutions in a bottom up manner to the root agent
and does not perform any search. The number of messages
that is sent is linear in the number of agents, but the size of
the messages is exponential in the induced width of the DFS
tree 1, which is never greater and usually much smaller than
the depth. Furthermore, large domains still pose a problem.

To tackle the deficiencies of DPOP, the ODPOP (Petcu
and Faltings 2006) algorithm has been developed. Just as
DPOP, ODPOP aggregates solutions in a bottom up manner,
but with the difference that solutions are sent upwards in a
best first manner, one at a time. The idea behind this ap-
proach is that, in general, agents do not need to have the full
picture of their local problem to be able to decide on an op-
timal solution. ODPOP uses only a fraction of the messages
used by ADOPT, it does not necessarily run into problems
when the domains become large and the size of the messages
grows only linearly in the induced width of the tree. The
only disadvantage of ODPOP is that it is still a synchronous
algorithm. It can receive messages in an asynchronous man-
ner, but it only considers sending up a solution when it has
received information on this solution from all its children.
As a result agents higher up in the hierarchy have to wait
for all their descendants before being able to make any deci-
sions. When agents have time constraints on how long they
can wait for an optimal answer, this can seriously degrade
the performance of the algorithm. One would therefore want
to have an algorithm that is able to aggregate partial infor-
mation and would be able to base its decision on this partial
information.

ASODPOP (Ottens and Faltings 2008) is an extension of
ODPOP that gets rid of this last disadvantage. It does this
by allowing partial information to be propagated upwards.
Furthermore, when the problem allows it, agents can com-
bine the partial information with estimates over the missing
information and in this way speed up the process of finding a
solution. Note that finding the optimal solution and proving
optimality are two different steps in this approach.

ASODPOP
Just as most DCOP algorithms, ASODPOP prioritises
agents using a Depth First Search (DFS) tree.

Definition 1 (DFS tree) Given a graph G = 〈V, E〉, a DFS
tree on G is a directed spanning tree G′ = 〈V, E′〉where E′ ⊆

1A formal definition of a DFS tree is given in the next section

Figure 1: From a graph to a DFS tree

E such that all the branches of the tree are disconnected.
That is, if (a, b) ∈ E but (a, b) < E′, then a is an ancestor of
b.
Figure 1 contains an example of a DFS tree. Edges shown
as a solid line are tree edges, while edges shown as a dashed
line are back edges. Each agent i has a separator sepi that
contains a minimal set of agents that need to be removed
to completely separate the sub tree rooted at i from the rest
of the tree. The separator edges are the edges that connect
an agent with the agents in its separator. For example, the
separator of agent 1 consists of agent 2, 3 and 4, wile the
separator of agent 5 contains only 4. The induced width of
a tree is the size of the largest separator. This makes the tree
of Figure 1 a tree of width 3.

To simplify the discussion, from here on we assume that
all the agents own exactly one variable and that all the con-
straints are valued binary constraints2. So, every agent i
owns a variable xi and f (xi, xk) denotes a valued constraint
over xi and xk, where the value denotes the utility for the
particular combination of values. The goal is to find an as-
signment s such that

s = argmax{x1,...,xn}

∑
i

∑
k

f (xi, xk) (1)

When deciding upon an assignment, an agent will only
have access to the variables in its separator. It has no in-
formation on what its descendants do. For example, when
looking at the DFS tree in Figure 1, agent 2 will know the
decision of both agent 3 and agent 4, but not the decision
of agent 1. In order to be able to make the optimal decision
given the decisions of 3 and 4, it has to know the influence
of its decision on agent 1. This influence is measured in
the utility that agent 1 can obtain when a certain decision is
made, and agent 2 then chooses the assignment that max-
imises this utility.

To make this more formal, let i be an agent and let Assi

be a set of assignments such that

Assi = {x j1 = v j1 , . . . , x jm = v jm |

x jk ∈ sepi ∪ {xi} , v jk ∈ D jk , j1 , . . . , jm} (2)

2A valued binary constraint over two variables x and y gives a
value to all the combinations of values of these variables.

ICAPS'08 Multiagent Planning Workshop

where D jk is the domain of x jk .

Definition 2 (Compatibility) Given two agents i and k, and
two assignment s ∈ Assi and t ∈ Assk. s and t are compati-
ble, denoted by s ≡ t, if s and t agree over the assignments
of their shared variables

In order to make an optimal decision, an agent i needs to
know, for each s ∈ Assi, the maximal utility the tree rooted
at i can obtain if s is used. We can assume that the agent is
aware of its own private utility owni(s) for each s ∈ Assi.
To stick with our example, this means that agent 2 needs to
know the utility agent 1 can obtain for all the value combi-
nations of x2, x3 and x4.

Let Ei(s) be the utility the tree rooted at i can obtain within
the subtree when s is used. This utility is based on both the
agents own utility and the utility of its children

Ei(s) = owni(s) +
∑

c

Ei
c(s) (3)

where Ei
c(s) is the utility child c can obtain when assignment

s is used. Since an agent knows its own utility and is notified
by its ancestors about their assignments, the only thing that
is left to do is to determine the values for Ei(s).

In DPOP, an agent’s children aggregate the information
concerning all their assignments in one message and send
this upwards. ODPOP is based on the observation that in
general an agent does not need information about all the util-
ities (Faltings and Macho-Gonzalez 2005), or even complete
domain knowledge about all the variables in its separator.
Instead only the best assignments will be part of the optimal
combination. Thus, agents sequentially send utilities for as-
signments upwards in a best-first order and stop when the
optimal solution is found. ODPOP significantly reduces the
amount of information that needs to be exchanged to find the
optimal solution, and is the best known algorithm in this re-
spect. The problem with ODPOP now is that its agents only
consider sending upwards an assignment if they have re-
ceived information about this assignment from all their chil-
dren. The difference between ODPOP and ASODPOP now
is that agents combine partial information with estimates to
propagate information sooner.

Since the root agent has no parents, its goal is simply to
obtain enough information about its assignments to make an
optimal choice. To do this, it sends ASK messages to its
children. With an ASK message, an agent asks its children
for new information concerning its assignments. When an
agent receives an ASK message, it responds with a good
g = 〈s, u, b〉, where s is an assignment, u is a utility and b a
boolean variable. When b = true, g is a true good, while if
b = f alse g is a false good. The difference between true and
false goods is that the false goods are used to aggregate par-
tial information, while the true goods are based on complete
information. Furthermore, the algorithm is designed in such
a way that true goods are always sent in a best first manner.

(a) Agent 3 asks for
a good

(b) Agent 2 re-
sponds

Figure 2: ASK/GOOD phase in ASODPOP

Example
Before we describe the algorithm in more detail, we first
give a simple example of how the algorithm works. Con-
sider the tree given in Figure 2 and let Table 1b represent the
constraint between agent 2 and agent 3. Agent 1 is a leaf
agent, and thus has complete information about the utilities
for all possible value combinations in his separator. This
means that he will always respond to an ASK message with
a true good, i.e. a good with a utility based on complete in-
formation. We also assume that agent 1 responds to an ASK
message in a best first manner with respect to the utility of
the different goods.

We start when agent 3 sends an ASK message to agent
2, and assume that this is the first ASK message agent 2 re-
ceives. Since agent 2 has not received any information from
agent 1, he is not aware of the fact that agent 4 is in his sep-
arator and hence all he knows is the information displayed
in Table 1b.

Upon reception of the ASK message, agent 2 first deter-
mines the assignment, based on his current knowledge, that
has the highest utility. In this case that is s1 = {x2 = a, x3 =
a}, which has a utility of 5. This utility is based on incom-
plete information (agent 2 does not know the utility of agent
1 for this assignment) and agent 2 thus responds to the ASK
message by sending a false good containing the assignment
s1 to agent 3, as depicted in Figure 2.

Because agent 2’s best assignment is based on incomplete
information, he also sends an ASK message to agent 1. As
a response to its ASK message, agent 2 receives the good
〈{x2 = b, x4 = t}, 4, true〉 from agent 1 (see Table 1a). Sup-
pose it again receives an ASK message from agent 3. With
the new information, this time s2 = {x2 = b, x3 = d, x4 = t},
with utility 7, is the assignment with the highest utility. Fur-
thermore, it is based on complete information (true goods).
However, because we assume that agent 1 responds with true
goods in a best first manner, we know that the real utility for
assignment {x2 = b, x3 = a, x4 = t} has an upper bound
of 9. Hence, when sending assignment s2, agent 2 is not
sure whether it is the next best assignment, and thus sends
a false good. After two more ASK messages from agent
3 and goods from agent 1, the assignment with the highest

ICAPS'08 Multiagent Planning Workshop

goods sent to parent goods received
〈{x2 = a, x3 = a} f alse, 5〉 〈{x2 = b, x4 = t}, 4, true〉

〈{x2 = b, x3 = d, x4 = t}, f alse, 7〉 〈{x2 = b, x4 = r}, 3, true〉
〈{x2 = b, x3 = d, x4 = t}, f alse, 7〉 〈{x2 = a, x4 = t}, 3, true〉
〈{x2 = a, x3 = a, x4 = t}, true, 8〉

(a) The sequence of goods agent 2 receives from agent 1 (right) and the
sequence of goods agent 2 sends to agent 3 (left)

x2\x3 a b c d e
a 5 5 1 5 1
b 2 0 1 3 2
c 1 2 3 1 4

(b) Valued constraint between
agent 2 and agent 3

Table 1: Example

utility is s3 = {x2 = a, x3 = a, x4 = t}, which has utility
8. Furthermore, the upper bounds on the utilities of all other
assignments is at least 8. This means that when a new ASK
message is received, agent 2 can respond by sending a true
good containing s3.

The example shows that agents are always able to respond
to an ASK message with incomplete information, by send-
ing a false good. Only when the agent is sure that his current
best assignment will remain his current best assignment, he
sends a true good.

The Algorithm
The goal of the algorithm (shown in Algorithm 1) is for each
agent to aggregate enough information to make an optimal
decision. In the example, we have seen that every agent does
this by sending ASK messages. An agent responds to an
ASK message by sending the assignment with the highest
utility to its parent. By assuming that its children respond to
ASK messages in a best first manner, it is able to maintain
upper bounds on the utilities of all the assignments. The
root agent is able to use this upper bound to determine when
it has found the optimal assignment, while other agents use
this upper bound to recognise when they have found the next
best assignment. Before the algorithm is explained in more
detail, some additional notation is needed.

Remember that an agent i stores the utility of a good ob-
tained by child c in Ei

c(s). To be able to distinguish between
values based on true goods and values based on false goods,
we use a binary variable bi

c(s) that is true if Ei
c(s) is based

on a true good and false otherwise, while bi(s) =
∧

c bi
c(s).

Note that this meas that bi
c(s) is also false when Ei

c(s) is un-
defined, i.e. child c has not sent any good with an assignment
compatible with s.

Furthermore, in order for an agent to determine its next
best assignment, it needs to remember which ”optimal” as-
signments it has already reported to its parent. To this end,
let sentGoodsi contain all the true goods that agent i has sent
to its parent.

Given this set of sent assignment, let smax ∈ Assi \

sentGoodsi be the unreported assignment that currently has
the highest utility

smax = argmaxs∈Assi\sentGoodsE
i(s) (4)

In the example, an agent never reports its own assignment.
Hence, given an assignment s ∈ Assi, let [s]i ≡ s be the

Algorithm 1: ASODPOP Agent

Receive(parent, ASK)
if ∃smax then

if valuation sufficient then
Send(Pi, GOOD([smax]i, Ei(smax), true));
sent goods←sent goods
∪{s|s ∈ Assi , s ≡ [smax]i};

else
Send(Pi, GOOD([smax]i, Ei(smax), f alse));
send ASK to children;

Receive(child, GOOD(s,V, b))
If s contains new information concerning the
separator or a variable domain, update S epi and
Assi;
for all t ∈ Assi such that s′ ≡ s do

Ei
child(t)← V;

bi
child(t)← b;

if b then
Adjust estimates Ei

child for all t ∈ S epi with
t ≡ s such that Ei

child(t) < V;
Elast

child ← V;

When the agents assignment changes due to
updated information, send a VALUE message to
children;

Receive(parent, VALUE(context))
Select the assignment s ∈ Assi that is compatible
with context and maximises Ei(s);
currentAssignment← assignment of xi in s;
for all children c of i do

t ← assignment for sepc given s;
send VALUE(t) to c;

ICAPS'08 Multiagent Planning Workshop

assignment equal to s, while not containing an assignment to
xi. For example, if s = {x1 = a, x3 = b} then [s]1 = {x3 = b}.

As mentioned in the example, the last true good that has
been received from a particular child can be seen as an upper
bound on utilities of the assignments yet to be reported. Let
Elast

c be the utility of the last true good to be received from
child c, then let the upper bound of the utility a child c can
obtain given assignment s be defined as

UBi
c(s) =

Ei

c(s) if bi
c(s) = true

Elast
c if Elast

c exists
∞ otherwise

(5)

UBi(s) =
∑

c UBi
c(s) now defines to total upper bound on

an assignment s.
Using these upper bounds, an agent is able to determine

when it has received enough information in order to decide
whether smax is its next best assignment. That is, when an
agent can determine when any additional goods received
from its children will not change smax.

Definition 3 Given an agent i and a set S ⊂ Assi. An as-
signment s ∈ Assi is dominant conditional on the subset S ,
when ∀s ∈ Assi \ S , Ei(s) ≥ UBi(t).

That is, when s is dominant conditional on the set S , s is
the next best choice from Assi after the assignments in S .

Definition 4 (Valuation sufficient) An agent i is valuation
sufficient if bi(smax) = true and smax is dominant conditional
on sentGoods.

So when the utility of smax is based on complete informa-
tion and no other assignment will ever have a higher utility,
agent i is valuation sufficient.

Initialisation
When the algorithm is initiated, an agent i is initialised with
complete knowledge of the domains of the variables it has a
constraint with. For example, when looking at the problem
depicted in Figure 1, agent 2 knows the domains of both x1
and x3. It does not, however, have any knowledge of x4.
Furthermore, all the upper bounds are initialised to∞

ASK/GOOD Phase
The phase in which all the agents aggregate information is
called the ASK/GOOD phase. An important assumption is
that all the children of an agent report true goods in a best
first manner.

When a leaf agent i receives an ASK message, it first de-
termines smax. Since a leaf agent has no children, Ei(smax) =
owni(smax), and is thus exactly the utility agent i can ob-
tain when smax is used. It is not hard to see that this means
that a leaf agent is always valuation sufficient. It thus re-
sponds with a good 〈[smax]i, Ei(smax), true〉 and stores [smax]i

in sentGoodsi.
When a non leaf agent i receives an ASK messages, again

smax is calculated. Remember that we assumed that all chil-
dren send true goods in a best first manner, and that these
true goods are based on complete information. Thus, if i is
valuation sufficient, we have that smax is the agent’s next best
good. It thus responds with 〈[smax]i, Ei(smax), true〉. In all

other cases, it responds with 〈[smax]i, Ei(smax), f alse〉. Fur-
thermore, it sends an ASK message to its children to ask for
more information.

It remains to be discussed what happens when an agent i
receives a GOOD message from child c, containing a good
〈s, u, b〉. Since an agent is not initialised with complete in-
formation on the domains of the variables in its separator, it
could be that it was not aware of the assignment s. In this
case it first updates the information on its separator. When
the separator is up to date, for every t ∈ Assi such that t ≡ s
it sets Ei

c(t) = u and bi
c(t) = b.

At every stage of the algorithm, an agent i has assign-
ments s for which Ei

c(s) is not yet defined, i.e. it has not
received any information on s from c. This means that the
current utility for s is based on only part of the tree rooted
at i. It can now decide to leave it be, and only work with
the partial information. However, when the problem at hand
allows it, it can decide to make an estimate of this unknown
value. This will not speed up the process of proving an op-
timal solution has been found. However, it could lead to a
speed up in the convergence to the optimal value.

VALUE Propagation Phase
We have discussed how an agent can collect information
about its sub tree, but we have not yet elaborated on how
an agent receives information on the assignments used by
the agents in its separator. Remember that agents might be
operating under certain time constraints. It is therefore not
always possible to wait until the algorithm has ended, which
means that agents continuously need to update their current
best assignment and propagate this to their children.

Lets start with the root agent. It always sets itself to smax
and whenever this changes, it notifies its children using a
VALUE message. The other agents always set their vari-
ables to the values that maximise the known utilities given
the assignments in their separator. Thus their assignment
can change either when they receive an new VALUE mes-
sage from their parent or when they receive a good from one
of their children. Each time an agent changes its assignment,
it sends a VALUE message to all its children to notify them.
A VALUE message to child c contains an assignment to all
the variables in sepc that his parent is aware of.

The algorithm terminates when the root agent is valua-
tion sufficient, and the optimal assignments have been prop-
agated using VALUE messages.

Completeness and Termination
The algorithm described above only terminates when valu-
ation sufficiency has been reached by the root agent. The
following theorem states that ASODPOP using bounds al-
ways terminates, i.e. reaches valuation sufficiency when the
domains are finite.

Theorem 1 (Termination) When the variable domains are
finite, ASODPOP using bounds always terminates.

Proofsketch
All the leaf agents are initialised with complete knowl-

edge on all their constraints, and are thus fully informed over
their part of the problem. By definition, the root agent will

ICAPS'08 Multiagent Planning Workshop

continue to send ASK messages until it is valuation suffi-
cient. Lets assume that the root agent never reaches valua-
tion sufficiency. Using induction it is not hard to show that
the ASK messages send by the root agent pull information
from the leaf agents up into the tree, and since the domains
are all finite, at some point the root note must have com-
plete knowledge of all the utilities, and thus all the upper
bounds are equal to the actual value. Now since there must
be at least one assignment that has a maximal utility, the root
agent must become valuation sufficient at some point. �

The algorithm is designed with the assumption in mind
that all the true goods are sent in a best first order. The fol-
lowing proposition shows that if this assumption holds, an
agent has found its next best good when it is valuation suffi-
cient.

Proposition 1 Given an agent i, if all its children report true
goods in a best first order and it is valuation sufficient, then
no assignment s , smax not in sentGoods will be able to
obtain a valuation Ei(s) greater than Ei(smax), i.e. smax is
the next best assignment.

Proofsketch Suppose that agent i is valuation sufficient, and
that there is some assignment s such that s < sentGoods and
s , smax. We can then discern two different cases.

In the first case we assume that s ∈ Assi. Now let
Ei

optimal(s) be the optimal utility of the subtree rooted in i
when assignment s is part of the global assignment and as-
sume that Ei

optimal(s) > Ei(smax). Assuming that every child
always sends it true goods in a best first order, it is always
the case that UBi(s) > Ei(smax). But since i is valuation suf-
ficient this cannot be the case, hence Ei(smax) ≥ Ei

optimal(s).
In the second case assume that s < Assi. This means that

agent i does not know of the existence of s. Despite this, it
can say something concerning the upper bound of s. Since
all agent i’s children respond with true goods in a best first
manner, it can assume that the value Ei

c(s) is smaller than
Elast

c , which means that it cannot be the case that UBi(s) is
bigger than any already calculated upper bound. Hence, by
assumption, Ei

optimal(s) can never be greater then Ei(smax),
making smax the next best assignment �

Remember from the description of the algorithm that the
leaf agents always sent their goods in a best first order. With
the help of Proposition 1, it is not hard to show that the al-
gorithm is complete.

Theorem 2 (Completeness) Given that the leaf agents
send their true goods in best first order, ASODPOP is able
to find the optimal assignment.

Proofsketch The algorithm terminates when the root agent
is valuation sufficient. Theorem 1 shows that the root
agent will always become valuation sufficient. Furthermore,
Proposition 1 shows that this means that upon termination
the root agent has found the assignment that allows the tree
to obtain the highest utility. It is not hard to show, using in-
duction, that the VALUE propagation phase ensures that the
agents set their values to the optimal value. �

Truck Task Coordination
Being able to efficiently distribute goods using a set of trucks
has large practical values. In today’s, ever more globalis-
ing world goods are becoming more an more mobile, and
coordinating the movement of these goods is becoming in-
creasingly more complicated. It is therefore important to
have methods that can efficiently plan and make use of the
locality present in most problems. In order to benchmark
different approaches a proper model is needed. To that end
we introduce a model for the TTC problem

The basic constituents of the model are

• a set of cities
• a set of roads between the cities
• a set of agents that represent the trucks
• a set of packets to be picked up and delivered

Together, the cities and roads form a map on which the
trucks and packets are dispersed. The types of problems we
are looking at are inspired by the problems parcel delivery
services like DHL and TNT face. Drivers stay in a certain
area, which means that the movements of each truck are re-
stricted. Therefore, it is reasonable to assume that the trucks
are restricted to certain regions on the map when picking up
packages. These regions, however, can overlap. As a re-
sults, certain packages can be picked up by different trucks,
and the agents must coordinate who picks up which packet.
From now on, when we talk about a truck we mean the agent
that represents the truck. In modelling this problem, one
must make use of the fact that only certain regions overlap
with each other, and thus trucks do not have to coordinate
with every other truck over every other package.

Besides making sure that only one truck picks up a certain
package, the individual trucks also have to take the cost of
picking up and delivering a packet into account. The cost
consists of the distance travelled, and thus the gas consumed.
Note that this planning problem is a problem that is local
to each of the trucks. A truck is only interested in which
packets another truck delivers and the cost associated with
it. It is not interested in the exact path the truck takes. In
this problem , the planning and coordination are thus nicely
separated.

Model
The model we use is based on (Bettex 2008). Let T be the
set of trucks. Due to the overlapping areas, packets can be
divided into two different types of packets. There are the
packets that only a particular truck can pick up, and there
are packets that several trucks can pick up. Given a truck
t ∈ T , let Ot be the set of packages that only truck t can pick
up and let S t be the set of packages that truck t shares with
other trucks.

Each truck t ∈ T owns one variable xt ∈ P(S t) that con-
sists of the set of packets it will pick up, where xt can only
contain packets that other trucks can also pickup. The cost
of an instantiation of xt is determined by the route taken by
truck t when delivering its allocated packages. These costs
are computed off line, and are represented as a unary con-
straint f1 over xt.

ICAPS'08 Multiagent Planning Workshop

We also want to make sure that each packet is delivered,
i.e. each packet is selected by at least one truck. Further-
more, a packet cannot be delivered by more than one truck,
hence, each packet is to be selected by at most one truck. In
the following we introduce two different ways of modelling
this. The first does not introduce any additional variables
but does require k-ary constraints, while the second uses
only binary constraints but does need an additional variable.

Model 1 When two trucks t and t′ have overlapping re-
gions, they must make sure that they do not try to pick up
the same packet. In other words, they must make sure that
xt ∩ xt′ = ∅. This can be done by defining a constraint
f2 : P(Dt)×P(D′t) 7→ R, where f2(a, b) = 0 if a∩ b = ∅ and
f2(a, b) = ∞ otherwise.

In order to make sure that every packet is delivered, a
third constraint must be used. Say that k trucks can pick
up a certain packet p. Then a k-ary constraint f3 : P(Dt1) ×
. . . × P(Dtk) 7→ R is needed between the trucks, such that
f3(x1, . . . xk) = 0 if p ∈

⋃k
i=1 xi and f3(x1, . . . xk) = ∞ other-

wise.
We now want to solve the following problem

x = argminx1,...,xn

∑t

f1(xt)+

∑
regions t and r overlap

f2(xt, xr) +

∑
regions t1, . . . , tk overlap

f3(xt1 , . . . , xtk)

 (6)

Model 2 In order to circumvent the addition of a k-ary
constraint an extra variable yp can be added for each packet
p, where the domain of yp consists of all the trucks that can
pick it up. For example, if trucks 1, 5 and 7 can pick up
packet p1, then yp1 ∈ {1, 5, 7}. One now creates a constraint
f t,p
4 between a packet p and each truck t that can pick it

up, that enforces that yp = t if and only if t ∈ xt. Hence
f t,p
4 (xt, yp) = 0 if yp = t and p ∈ xt and∞ otherwise.

x = argminx1,...,xn

∑t

f1(xt)+

∑
p is in the region of truck t

f t,p
4 (xt, xp)

 (7)

Problem Generator
A problem is generated in the following manner. First, a
grid of a predefined size is created, and on such a grid the

cities are randomly placed. Between the cities a network of
roads is grown by first selecting one city in the map, and
then iteratively adding the closest city to the graph.

In the next step, each truck is assigned a specific city in
which it is to begin its days work and for each truck the
areas are generated in such a way that a specified number
over overlapping points is present. Next, the packets are
dispersed over the network in such a way as to make the
resulting problem connected. Finally, for each truck the cost
of every combination of packets it can accept is calculated
using a local search method with restart, where the path used
to restart is an adaptation of the path the previous cycle has
ended with.

The generation of f1 is straightforward. However, due
to limitations of the implementations of the algorithms at
hand we were not able to directly implement constraint f3.
The reason is that the present version of ASODPOP does not
handle k-ary constraints. Hence, we have to use model 2.

Experimental Evaluation
We are interested in the performance of ASODPOP on the
TTC coordination problem compared to other DCOP ap-
proaches. To that end, we compared our approach with both
ADOPT (with the DO2 pre processing step (Ali, Koenig,
and Tambe 2005)) and Asynchronous Distributed Local
Search (DSA-C) (Zhang et al. 2005). The former is a com-
plete solver while the latter is a stochastic, and thus incom-
plete solver. Since ASODPOP is designed to operate un-
der time constraints, we are most interested in the conver-
gence speed of the three different approaches. However, due
to the fact that we simulate our runs on a single machine,
the total runtime of an algorithm does not necessarily corre-
sponds to the real behaviour. Therefore, we also look at the
number of Non-Concurrent Constraint Checks (Meisels et
al. 2002) to get a feeling of the level of parallelism present
in the algorithms, where we take the look-up of the value
of a constraint for a particular instance of the variables as
a constraint check. Furthermore, we also look at the total
number of message used by the different algorithms. Since
both ADOPT and ASODPOP use messages to either send a
single assignment plus the costs/utility associated with this
assignment, or a value message, the size of the messages is
constant and it thus suffices to compare the number of mes-
sages.

The implementation of ASODPOP that we used does as-
sume full knowledge on the agents separator and uses ran-
dom estimates to complement that partial information. Fur-
thermore, one might note that where ADOPT is designed to
minimise cost, ASODPOP maximises utility. The solution
to this is simply to look at costs as having negative utility.

Experimental Setup
All three algorithms are implemented in the FRODO plat-
form (Petcu 2006) and the experiments have been performed
on a 2 Ghz Intel Core Duo MacBook with 1 GB of ram, run-
ning Leopard. The problems where generated on a map with
50 cities and 15 trucks and we ran two different experiments,
varying two different parameters

ICAPS'08 Multiagent Planning Workshop

(a) Experiment 1 (b) Experiment 2

Figure 3: Converge speeds

(a) Experiment 1 (b) Experiment 2

Figure 4: : the number of messages sent

Experiment 1: In this experiment we fixed the number of
packets to 20 and varied the number of overlapping cities
between 10 and 30 with steps of 5.
Experiment 2: In the second testset we fixed the number of
overlapping cities to 20 and let the number of packets range
between 15 and 30 with steps of 5.

For each combination of parameters, 40 different in-
stances were generated. Since both the messages of ASOD-
POP and ADOPT are constant in size, we can directly com-
pare the number of messages. For all the assignments with
partial information, random estimates have been used to fill
in the gaps.

Results
Figure 3 shows the convergence results on one type of prob-
lem in experiment 1 and one in experiment 2, averaged over
40 runs. Due to space limitations we cannot show the re-
sults for all the instances, but they all show a similar picture.
ASODPOP converges much faster than both ADOPT and
DSA, where the latter does not even come close to the so-
lution. The gap for ADOPT in the right graph is caused by
the fact that we simulate a distributed algorithm on a single
machine. It does, however, show that the initialisation of
ADOPT turns out to be quite expensive.

Figure 4 show the messages used by both ADOPT and
ASODPOP to find the optimal solution. It shows that
ASODPOP is 2 orders of magnitude more efficient in terms
of the number of messages send. Because we simulate ev-
erything on a single machine, we also looked at the number
of non-concurrent constraint checks to measure the level of
parallelism in both ADOPT and ASODPOP. The results are
shown in Figure 5, where ADOPT is slightly better when
sending a message is free (instantaneous delivery and no
computation). When there is a cost to sending a message
however, ASODPOP performs better.

Discussion
In this paper we showed that DCOP techniques can directly
be used for coordinating agent plans. It must be noted that
DCOP techniques are only useful when the problem at hand
is loosely coupled. In the TTC problem, for example, this
amounts to small overlapping regions.

The algorithm used for coordination, ASODPOP, is an
adaptation of the well known DPOP algorithm. The dif-
ference between ADOPT and ASODPOP is as follows. In
ADOPT, agents choose values. Based on these values their
children choose values and send costs upwards. Their par-
ents then change their values based on the costs, and so on

ICAPS'08 Multiagent Planning Workshop

(a) Experiment 1: message cost = 0 (b) Experiment 1: message cost = 1000

(c) Experiment 2: message cost = 0 (d) Experiment 2: message cost = 1000

Figure 5: The number of messages sent

and so fort. Such a loop is not present in ASODPOP. On the
contrary, in ASODPOP the costs (or utilities) that are send
upwards are not influenced by the values send downward,
i.e. the best first-order is only influenced by descendants of
an agent and not by its parents.

The experiments showed that ASODPOP performs much
better in terms of both the number of messages that are
needed, but also in terms of speed of convergence, then
ADOPT and DSA. This last property is useful when agents
are under time constraints, i.e. they are not able to wait for
the algorithm to find the optimal solution. In such a case,
the faster the convergence, the better the result is when the
algorithm is stopped prematurely.

Future Work
For future work we are planning to investigate the influence
of the quality of the estimates on the convergence of ASOD-
POP. We also want to extend the TTC model, for example
by letting an agent have a different variable for each over-
lapping area. We intend to replace the hard constraint that
each packet should be delivered by a cost of not delivering a
packet and it would be interesting to find ways of not having
to pre compute all the costs off line.

Acknowledgements
Our thanks go to the anonymous reviewers, who’s comments
have been valuable in improving the final version of this

paper. We also would like to thank the participants of the
DCR’08 workshop for their helpful comments on prelimi-
nary versions of ASODPOP.

References
Ali, S.; Koenig, S.; and Tambe, M. 2005. Preprocessing
techniques for accelerating the DCOP algorithm ADOPT.
In AAMAS ’05, 1041–1048. New York, NY, USA: ACM.
Bettex, M. 2008. Truck-task scheduling using dpop.
Semester project at the Artificial Intelligence Laboratory
(LIA), EPFL (for a copy of the work, please mail the au-
thor).
Faltings, B., and Macho-Gonzalez, S. 2005. Open Con-
straint Programming. Artificial Intelligence 161(1-2):181–
208.
Meisels, A.; Kaplansky, E.; Razgon, I.; and Zivan, R. 2002.
Comparing Performance of Distributed Constraints Pro-
cessing Algorithms. In DCR 2002.
Modi, P.; Shen, W.; Tambe, M.; and Yokoo, M. 2003. An
asynchronous complete method for distributed constraint
optimization. AAMAS’03.
Ottens, B., and Faltings, B. 2008. Asynchronous open
dpop. In Proceedings of the 10th International Workshop
on Distributed Constraint Reasoning (DCR’08).
Petcu, A., and Faltings, B. 2005. DPOP: A Scalable

ICAPS'08 Multiagent Planning Workshop

Method for Multiagent Constraint Optimization. In IJCAI
05, 266–271.
Petcu, A., and Faltings, B. 2006. O-DPOP: An algorithm
for Open/Distributed Constraint Optimization. In AAAI-06,
703–708.
Petcu, A. 2006. FRODO: A FRamework for
Open/Distributed constraint Optimization. Technical
Report No. 2006/001 2006/001, Swiss Federal Insti-
tute of Technology (EPFL), Lausanne (Switzerland).
http://liawww.epfl.ch/frodo/.
Yokoo, M.; Durfee, E. H.; Ishida, T.; and Kuwabara, K.
1992. Distributed constraint satisfaction for formalizing
distributed problem solving. In International Conference
on Distributed Computing Systems, 614–621.
Zhang, W.; Wang, G.; Xing, Z.; and Wittenburg, L.
2005. Distributed stochastic search and distributed break-
out: properties, comparison and applications to constraint
optimization problems in sensor networks. Artif. Intell.
161(1-2):55–87.

ICAPS'08 Multiagent Planning Workshop

