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Introduction
In this paper, we describe a “top down” technique for find-
ing approximately optimal joint policies for groups of co-
operating agents in stochastic environments. Our technique
is distinguished from previous methods for such problems
in that the agents’ policies are driven by commitments to
each other, rather than having coordination arise bottom-up,
driven by features of the policies of individuals.

Optimal coordination in stochastic multiagent environ-
ments is notoriously difficult because of the combinatorial
number of joint states and joint actions, which renders the
problem in the general case NEXP-complete (Goldman &
Zilberstein 2004). Additional challenges are imposed by
the inability for distributed agents to maintain full aware-
ness of system progress through the joint state space. As a
consequence, approaches to solving this problem either sac-
rifice generality (by, for example, assuming particular forms
of independence between agents or full observability of the
global state by all agents (e.g., (Beckeret al. 2004))), or
sacrifice optimality (by, for example, finding only locally-
optimal solutions (Nairet al. 2003)). Our work must make
its own concessions to computability, but makes different
choices.

Consider the very simple cooperative multiagent problem
shown in Figure 1. In this example, Agent A can either per-
form Method-A1 or Method-A2, where the former has an
expected reward of 0.8 (an 80% chance of achieving 1 unit,
and 20% chance of achieving zero), and the latter has an ex-
pected reward of 100. From a purely local perspective, the
choice for Agent A is obvious: it should execute Method-
A2. Meanwhile, Agent B can either perform Method-B1
or Method-B2. Method-B1 has an expected reward of8000
(80% probability of a reward of 10000) if Agent A has previ-
ously executed Method-A1. But it gets zero reward if Agent
A does not execute Method-A1. Alternatively, Method-B2
has an expected reward of 100 regardless of Agent A’s ac-
tion. As a team, the agents get the sum of the local rewards
that each accrues.

A key aspect of this example is that the agents face a ten-
sion between taking actions that depend on each others’ ac-
tivities, versus taking actions that achieve local reward uni-
laterally. The agents are not independent of each other, and
so each should formulate a policy based on expectations of
the policies (or the effects of policies) of the agents that

could influence it. This idea has been studied in the litera-
ture in work such as that of Nair, in which agents iteratively
formulate local policies and then exchange these. Knowing
the policies that other agents are planning on following, an
agent can use those policies to update local transition prob-
ability models, and thereby derive an adjusted local policy
that takes into account the likely behaviors of the others. Of
course, other agents are adjusting their policies as well, so
this process may require multiple rounds of iteration for the
policies to converge.

The approach we present in this paper uses a similar idea
of having each of the agents formulate its local policy that
will be part of a joint policy, but does not follow the bottom-
up process of searching through a portion of the joint policy
space by iteratively forming and exchanging local policies
until convergence. Our “top-down” strategy assumes that
agents are aware of the ways that they can influence each
other. In particular, as shown by our example, agents with
explicit models of their task hierarchies and task dependen-
cies know about opportunities for coordinated behavior from
the outset. Moreover, we assume that these interactions are
sparse compared to relationships between the tasks local to
an agent.Rather than iteratively formulating complex local
policies that get passed between the agents to incrementally
tweak the policies of others, our approach involves having
agents first reach agreement oncommitmentsabout their in-
teractions. These commitments are intended to becategori-
cal promises to achieve some objective or to perform some
task. The agents use those commitments to bias their local
policy formulation processes such that each agent builds a
policy that strives to meet the commitments to which it has
agreed, and also account for failures.

Unrolling Task Models into MDPs
Our approach to contingent planning starts with ahierar-
chical task network(HTN) model like the one presented in
Figure 1. These task models provide very concise, expres-
sive ways of specifying multi-agent planning problems. We
would like to apply powerful, generic algorithms for Markov
Decision Problems (MDPs) to the sequential decision prob-
lems (regarding which tasks to execute when) that are im-
plicit in the task models. MDP algorithms typically oper-
ate on the state spaces of MDPs, represented more or less
explicitly. We have developed algorithms that “unroll” the
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decision problem for each agent defined in our task models
into a MDP, capturing alternative choices about which task
to pursue in a particular state and the possible states result-
ing from executing a chosen task. The agents then construct
a joint policy implicitly; each agent computing its own local
policy. The agents’ local policy generation uses inter-agent
commitmentsto bias local policy generation to improve co-
operation among the agents.

Task Models

Our approach to contingent multiagent planning starts with a
hierarchical task network(Nau, Ghallab, & Traverso 2004)
like the one presented in Figure 1. The actual task model
format that our system uses as its input is the C-TÆMS
dialect (Boddyet al. 2005) of the TÆMS task modeling
language (Horlinget al. 1999), but the particular details
of TÆMS are not critical to our discussion here; we will
be focusing on aspects that are common to all flavors of
HTNs. In particular, our HTNs will containtasksthat may
be performed by the various agents, and top level tasks are
performed by performing special subsets of their subtasks
(child nodes); we say that tasks may bedecomposedinto
subtasks. For example, in Figure 1, “Agent-A tasks” may be
decomposed into “Method-A1” or “Method-A2,” or both.
One oddity of TÆMS terminology that will affect the reader
is that in TÆMS internal nodes are referred to astasksand
leaf nodes asmethods; this differs from standard HTN ter-
minology.

There are two features of TÆMS that are critical to our
discussion here. The first is that TÆMS problems are op-
timization problems. Groups of agents receive reward (re-
ferred to as “quality”) for performing sets of tasks. Note that
the reward is incurred by the collective as a whole; agents are
not individually self-interested. The second important fea-
ture is that tasks can interact with each other. In particular,
as in Figure 1, tasks canenableeach other. In this exam-
ple, no quality will be accrued by Agent-B from performing
Method-B2 unless Agent-A has already successfully com-
pleted Method-A1. These are the features that make TÆMS
particularly suited tomultiagenttask modeling.

TÆMS task models have temporal aspects. TÆMS meth-

Agent-A 
tasks

Agent-B 
tasks

Method-A1
Q: 1 80%, 0 20%

Method-A2
Q: 100 100%

Method-B1
Q: 10000 80% 0 20%

Method-B2
Q: 100 100%

enables

Figure 1: This simple multi-agent additive task model
shows time-constrained, uncertain-outcome
tasks for two agents.

ods are temporally extended, rather than instantaneous, and
there may be uncertainty about the duration of methods.
Furthermore, TÆMS tasks may have temporal constraints:
deadlines and release times (activities may not start before
their release times).

MDPs
We do not have space here for a thorough introduction
to Markov Decision Processes; we recommend Puterman’s
text (Puterman 1994) for more specifics. Briefly, an MDP
is akin to a finite state machine, except that transitions are
probabilistic, rather than deterministic or nondeterministic
and agents may receive reward for entering certain states.
Typically, this reward is additive over any trajectory through
the state space (some adjustments are needed in the case of
MDPs of unbounded duration).

More formally, an MDP may be defined as a tuple:
〈Ω, ω0, A, T, R〉 made up of a state space,Ω, an initial state,
ω0, a set of actions,A, that the agent may perform, a tran-
sition function,T : Ω × A 7→ P × A, and a reward func-
tion, R : Ω 7→ ℜ. The transition function defines a proba-
bility distribution over successor states, conditioned on tak-
ing some action in a previous state, and the reward func-
tion defines a reward conditional on reaching a particular
state.MDPs may be eitherfinite- or infinite- horizon prob-
lems; the problems that we are concerned with here are
finite-horizon problems.The solution to an MDP is apol-
icy, an assignment of action choice to every state in the
MDP.Typically, one searches for a policy that is optimal in
the sense of maximizingexpected reward.

Unrolling Task Models
For any agent, the task network implicitly defines a possi-
ble state space and a transition function that maps individual
states to possible future states (much of the rest of this paper
addresses the decomposition of the overall problem into a
set of single-agent MDPs). Our system reasons about task
networks by “unrolling” them into MDPs that make this im-
plicit state space explicit. In this section, we describe the
state space, explain how the transition function is defined
and describe our unrolling algorithm.

State space. In order to satisfy the Markov property, we
must incorporate in each state enough information to make
the state transition function be a function of only the current
state and the chosen action. We must also incorporate into
each state enough information that we can evaluate the re-
ward function for the task network. Doing so is complicated
somewhat by the temporal aspects of the problem.

There are two primary methods for representing temporal
problems as MDPs. The first is to have a “clocked” MDP
where each state represents the state at an instant of time, so
for a trajectory of ten time units, there would be ten states
(and nine transitions). This kind of representation works
well when the actions have relatively short and regular du-
rations. The alternative is to make the time value part of the
state of the MDP and have states be temporally extended.
So, for example, if the agent chooses to perform a method
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of duration ten, then there would be a transition from a state
with t = 1 to one witht = 11. For the task models with
which we are working, having an explicit time component
to the state works better; the methods have widely-varying
durations, and the clocked models are too large.

To compute the reward for our task networks, we need
to record the completion time and quality of each executed
method. We must do this because inter-task relationships
such as enablement mean that we cannot immediately deter-
mine all of the effects of performing a given action.

Because methods have duration and release time con-
straints, we must record “wall-clock time” in the state of
the agent. That is, in order to know the possible outcomes of
executing a method (recall that the outcome is characterized
by duration and quality), we must know when the action is
starting. When determining the outcome distribution for a
methodM , we must also know the quality of every noden
for which there exists an NLE,n → M , and we must know
the quality ofn at the timenow − delay(n → M).1 The
need to reason about NLEs is another reason we must record
the completion times of all methods. Because of the delays
in the NLE effects, we must be able to compute a quality for
the tail nodes at different times in the trace.2

Given the above features of C-TÆMS, we can define the
state of a C-TÆMS agent as a tuple〈t, M〉, wheret is the
current time, andM is a set of method outcomes. IfM is the
set of methods a TÆMS agent can execute, we can assign to
M an arbitrary numbering1...n, for n = |M|. ThenM is a
set of tuples〈i, σ(i), δ(i), q(i)〉: the index of the method, its
start time, duration, and quality.3 This information is suffi-
cient (but not always all necessary) to give a state space that
has the Markov property.

Transition function. The task network, with its duration
and quality distributions, defines a transition function. For
example, if an agent executes a methodi starting at time
t, yielding a durationδ(i) and a qualityq(i), that is a state
transition as follows:

〈t, M〉 → 〈t + δ(i), M ∪ {〈i, t, δ(i), q(i)〉}〉

In addition to allowing agents to carry out C-TÆMS meth-
ods, we also allow them to execute “wait” pseudo-actions,
but we will not discuss those further here. Recall that we
do not generate states at every tick in the system clock.
Instead, we only generate states for “interesting” times, at
which methods start or finish.

Unrolling the state space. Our techniques “unroll” the
state space for the MDP from its initial state (〈0, ∅〉) for-
ward.From the initial state, the algorithms identify ev-
ery possible method that could be executed, and for each

1This is actually a slight oversimplification. For some NLEs we
need to know the exact quality of the tail node, for others we need
only know whether that quality is non-zero.

2Note that the quality of nodes is a montonically non-
decreasing function of time.

3In practice, the setM is most efficiently implemented as a
vector.

Q=1

A1

A2

Q=0

Q=100

Q=0
B1

B2
Q=100

80%

20%

Figure 2: Without coordination, the agents build locally-
optimal policies that do not coordinate well, and
achieve poor results overall for the team.

method every possible combination of duration-and-quality
outcomes, generating a new state for each of these possible
method-duration-quality outcomes. Each state is then fur-
ther expanded into each possible successor state, and so on.
For states where no methods can apply, a “wait-method” is
generated that leads to a later state where some non-wait
method has been enabled (or the scenario has ended). The
unrolling process ends at leaf states whose time index is
the end of scenario. The code for performing this unrolling
was adapted from previous state-space unrollers developed
at SIFT for applications in optimal cockpit task allocation
(Miller, Goldman, & Funk 2003).

Even with aggressive pruning, we are unable to fully enu-
merate the state spaces of even a single agent’s MDP. In-
stead, we must use heuristic search to generate a subprob-
lem; we discuss this elsewhere (for example, see (Wu &
Durfee 2007)). For this paper, it is sufficient to know that the
state spaces of the individual agents are prohibitively large;
we will see that this leads us to use methods that serve to
reduce the state space while coordinating the activities of
multiple agents.

Example in Detail
We now return to the example in Figure 1 for a more detailed
analysis. In this highly-simplified problem, each agent has
one decision with three possible choices: execute Method-
A1 (resp. -B1), Method-A2 (B2), or no method. This results
in nine possible joint executions, some with uncertain out-
comes.

This is not quite the same as saying that each agent has
three possible localpolicies, resulting in nine joint policies.
Roughly speaking, the number of possible joint policies is
exponential in the number of agents, with a base that is
the cross-product of action choices and locally-discernable
states for each agent. As the agents are granted more in-
formation about each other, and as the length of decision
sequences grows, that base will grow extremely quickly.

One way to reduce the combinatorics of the problem is to
generate a policy for each agent based only on local infor-
mation, combining these local policies into a global policy.

In the example in Figure 1, if each agent formulates its
local policy, Agent A will quickly converge on doing A2,
maximizing its local expected utility. Agent B, with no in-
formation regarding whether Agent A will execute A1, as-
sumes not and similarly decides to execute B2, resulting in
a joint policy as shown in Figure 2, achieving a total reward
of 200. If, however, Agent A and Agent B have some way to
agree that Agent A will execute A1, thus enabling B1, then
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the optimal joint policy (executing A1 and B1) results in a
64% chance of a reward of 10001, a 16% chance of a reward
of 1, and a 20% chance of a reward of 0, for a total expected
reward of 6400.8.

If the agents have some capability for communicating at
run-time, they can do better still. Despite agreeing to the en-
ablement, Agent A may try and fail to achieve it. If Agent B
can know the outcome of Agent A’s attempt at A1beforeit
begins executing its own method, then Agent B’s policy can
branch on the uncertain outcomes of A1. If A1 fails, then
Agent B should execute B2, otherwise B1. This improved
policy raises the agents’ expected reward from 6400.8 to
6420.8, and ensures that the team will always get a reward.

Biasing Policy Generation Using
Commitments

In this section, we describe the implemented mechanisms
whereby agents are “encouraged” to construct local policies
that favor cooperative behavior. The enforcement mecha-
nism that we use to guide policy generation in this way has
two parts, one for the agent using a commitment, and one
for the committed agent.

Consuming commitments.
An agent that has received a commitment from another agent
should build a policy that exploits that commitment. In our
example,B has a commitment fromA that A will executeA1
to enable B’sA2 by timeTime-1. We need B to build an
MDP that recognizes thatA2 is not enabled beforeTime-1,
but is expected to be enabled afterwards. One simple ap-
proach would be to unroll the MDP from a modified model
in which the target method is not considered executable until
the enablement is expected.

However, this precludes any explicit representation of the
fact that A may not succeed with the enablement, either be-
cause it chooses not to executeA1 or becauseA1 does not
achieve any quality. So, we need a means to represent within
the local MDP the possibility that the enablement might fail.
To accomplish this, the MDP-generating code builds “proxy
methods” that correspond to other agents’ commitments.

This ensures that the agent consuming the commitment
will find the appropriate methods enabled at the appropri-
ate time. When unrolling the MDP out of the task model
description, the unroller inserts the expected quality for the
proxy methods at the appropriate times. The result is that
the local MDP policy will take advantage of the expected
inter-agent enablement commitment if it is the “right thing
to do”— that is, if it maximizes the local expected quality.
As an immediate consequence, if A fails in the enablement
and B is notified, B should instead choose to executeB2 dur-
ing that time slot. Figure 3 shows the optimal policies for the
model including a proxy method.

Keeping commitments.
The commitments madeby an agent are handled by a dif-
ferent mechanism, akin to that used by model-checking sys-
tems for program verification. We may describe the commit-
ments made by our agents in terms of temporal logic formu-

las. In particular, for enablement commitments, an agent is
promising to complete a method before a certain time. Such
a proposition may readily be checked by walking over the
state space of the MDP — at any state this assertion is either
satisfied, violated, or is still pending. Note that no additional
traversal of the state space is necessary: the checking can be
done as the task model is unrolled into an MDP state space.
Should the agent satisfy a commitment, it receives a reward
to its local MDP and if the agent violates a commitment, it
is penalized.

One problematic issue is how to assign reward (resp.,
penalty) to commitment satisfaction (violation). It is not suf-
ficient to simply impose a penalty on a commitment failure
proportional to the payoff of the method whose enablement
has failed. The problem with this approach is that the follow-
on effects can be arbitrarily bad, because of chains of enable-
ment. Worse, the agents focus their policy-finding efforts on
parts of the state space in which the commitments are kept.
If too many commitments are violated, or if a single critical
commitment is violated, then agents may find themselves in
a part of the state space for which they have no policy com-
puted. Accordingly, we heavily reward (penalize) the agents
for fulfilling (violating) their commitments.

Generalizing Commitments
For the purposes of clarity and brevity, the discussion in
this paper is limited to commitments involving actions en-
abling other actions. The implemented system described
in (Muslineret al. 2007) includes support for commitments
between agents covering a variety of other relations between
actions, includingdisablement(“don’t do your action until
after I start my action”),facilitation, andhindering. Com-
mitments are also used to allocate responsibility forshared
tasks.

More Complicated Example
Figure 4 illustrates a modified version of our earlier exam-
ple domain, where theA tasks are identical butB has two
new methods which run in the earlier time window, with
time available to run only one of them. The newB3 can
be used to enableB2, or B4 can be used to achieve higher
local quality but not enableB2. The interesting feature of
this domain is thatB must decide whether to executeB3 or
B4, before finding out whetherA1 has been executed and
generated positive quality, thus enablingB1.

Figure 5 shows the globally-optimal policy forB for this
example (A’s policy is unchanged: executeA1). The under-
lined labels represent action choices appearing in the opti-
mal policy. Note that some of the policy branches depend
on the “outcome” of a proxy method forA1.

Choosing Commitments
In this section, we turn to the question of how agents can
choose good commitments, and how they can reach agree-
ment on a consistent set of such commitments. We continue
to assume that global optimality is unrealistic computation-
ally, because it can require an exhaustive search over the
space of all possible combinations of commitments for all
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Q=10000

B1

B2

Q=0

Q=100
Proxy-
A1

Q=0
B1

B2
Q=100

Q=1001

A1

A2

Q=0

Q=100

80%

20%

20%

80%

80%

20%

Figure 3: With proxy methods and commitment rewards biasing the MDPs towards the commitment, the agents build and
execute these (optimal) policies.

Agent-B 
tasks

Method-B4
Q: 10 100%

Method-B3
Q: 1 100%

Method-B1
Q: 10000 80% 0 20%

Method-B2
Q: 100 100%

enables

Agent-A 
tasks

Method-A1
Q: 1 80%, 0 20%

Method-A2
Q: 100 100%

enables

Figure 4: A task model with a more complex tradeoff.

potential agent interactions. We thus focus on developing
local search techniques for converging on “good enough”
commitments.

In the rest of this section, we present the different pieces
of the commitment negotiation process. First, we show how
agents identify the space of possible opportunities for coor-
dination. Then, we discuss the process by which the agents
can converge on consistent agreements, cast as a distributed
constraint local optimization process. Finally, we describe
how this process can be used as part of an iterative, hill-
climbing local search for agreements over combinations of
commitments.

Schematically, the process is as follows:

• Identify opportunities for coordination

• Initialize tentative commitments

• Perform distributed hill-climbing search

– exchange commitments
– make local and received commitments consistent
– build local (quick-and-dirty) policy given consistent

commitments

Q=10010

B1

B2

Q=10

Q=10

Proxy-
A1 Q=10B1

B2
Q=1020%

80%

80%

20%

B4

B3

Q=10001

B1

B2

Q=1

Q=101

Q=1B1

B2
Q=10120%

80%

80%

20%

Proxy-
A1

Figure 5: B’s coordinated MDP policy for the domain in
Figure 4 shows how it trades off near-term lo-
cal reward to instead enable the potential reward
available if the coordination fails.
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– extract new commitments from policies
– loop back to passing commitments around
– terminate when no improvement, or timeout

Coordination Opportunities
Each agent begins to reason about commitments by first
identifying the possible interactions it can have with other
agents, and treating each of these as acoordination opportu-
nity. To identify coordination opportunities, each agent ana-
lyzes its task model to find incoming and outgoing relation-
ships such as enablement. We assume that this information
is captured explicitly in the task model, if it is not it can be
derived through an exchange of information between agents
about the preconditions and effects of their various actions
(Clement, Durfee, & Barrett 2007).

A single coordination opportunity such as an enablement
can potentially involve an arbitrary number of agents de-
pending on where in the task model the enablement occurs.
For example, in Figure 1, had the top-level “Team Task”
itself been the source of an enablement (if this team ofA
andB were working together to enable some other team of
agents), then bothA andB would model the coordination
opportunity.

Agents may also interact because of how their local tasks
combine into collective reward. For example, in Figure 1,
the agents interact by both contributing to the top-level task,
which sums their indvidual qualities. Had the top-level task
instead accrued quality by taking theminimumquality of
Agent A and Agent B, then a better coordinated response by
the agents would have been to each take their local actions.

Initial Commitments
Commitment negotiations must be an “anytime” process,
because the amount of time available to negotiate might fall
short of what would be needed to systematically ensure an
optimal solution. Our approach is to conduct a local search,
beginning with a set of tentative commitments, and then to
iteratively improve those commitments until they cannot be
improved further, or until time runs out, at which point we
use the current best set of commitments.

This approach requires an initial set of commitments for
the coordination opportunities as a starting point. Each of
our agents analyzes the possible state or states that it ex-
pects to reach once all of its tasks have been performed. Be-
cause the state representation captures the history of what
methods the agent executed, at what times, and with what
outcomes, the agent can look at such a state to determine
which coordination opportunities would have had to have
been successfully achieved to have reached that state. We
say that the agent extracts the implied commitments from
the state. It can then initialize its commitments to the values
of these implied commitments, where coordination opportu-
nities that were not implied to be satisfied can be initialized
to null-commitments.

This begs the question of where these final states would
come from. One possible source is a nominal schedule of ac-
tivities that the agent is planning to pursue. This pre-existing
schedule of intended activities can be used by the agent to

project out to the state that it would achieve, and commit-
ments can be extracted from that state. If the agents in the
multiagent system had coordinated these pre-existing sched-
ules (as in the COORDINATORS scenarios), then the com-
mitments that each extracts from its local schedule are very
likely compatible with the commitments extracted by others.

Another source for initial commitments uses the same
idea as basing them off of a pre-existing schedule, but in-
stead uses a pre-existing or proposed policy. Because a pol-
icy represents alternative possible branches, it does not lead
to a specific expected final state. Thus, an agent that is ex-
tracting commitments from a policy can forward-simulate
through the policy probabilistically to find a set of possible
final states and a probability distribution over these states.
Utilizing the same techniques as before, the agent can ex-
tract commitments from these alternative states, and use the
probabilities to assess the probability that a commitment will
be achieved by the policy. By using suitable probability
thresholds, the agent can determine which commitments are
likely enough to occur, and can explicitly adopt these as its
initial commitments.

Commitment Consistency
Inconsistent beliefs about inter-agent commitments gener-
ally lead to poorly coordinated behavior and lower collective
reward. For example, in Figure 1 (if we ignore do-nothing
policies) there are four possible joint policies. Two are co-
ordinated: either the two agents agree thatA will enable
B, or they agree that the enablement will not happen. The
other two combinations are not coordinated, and both lead to
worse expected reward than either of the coordinated combi-
nations. In one combination,A is enablingB, butB is doing
its local method, wastingA’s effort. In the other combina-
tion, A is doing its local method, butB executes (and fails)
its enablement-requiring method because it is expecting to
be enabled.

We achieve consistent sets of commitments using proce-
dures that take as input a set of tentative commitments to
a particular coordination opportunity, and return a modified
set of commitments that is assured to be consistent. For ex-
ample, in the case of an enablement coordination opportu-
nity, if the agent that is the source of the enablement has
proposed a null-commitment while the target has proposed a
positive commitment to the enablement, the procedure turns
both commitments into null-commitments (because if the
source will not make the commitment, the target better not
assume it). On the other hand, if the source proposes a com-
mitment while the target did not assume it would be enabled,
then the procedure converges on having both agents assume
the commitment (because if the source is doing the enable-
ment anyway, the target might as well model it to see if it
could benefit). Finally, even if both agents assume a pos-
itive commitment for the enablement, they might disagree
on when the source will be assured of finishing the enabling
task and when the target can safely begin the enabled task.
The procedure then assigns a heuristically-chosen consistent
time for both the source and target commitments.

Agents following this procedure are assured to resolve in-
consistencies in the same way. Thus, if each agent sends its
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initial commitments to other agents and the agents all apply
these procedures, they will all find the same set of consistent
commitment agreements.

Commitment Improvement

The process described above ensures consistency in the
agents’ commitments. But it does not ensure that those com-
mitments are as good as they could be, or even feasible. By
feasible, we mean that agents might reach a set of commit-
ment agreements that turn out to be impossible for one or
more agents to fulfill. For example, in Figure 1, suppose that
A2 also provided an enablement for a task of some agentC.
One possible set of commitments could involveA commit-
ting to enableB and alsoC, whereB andC each expect to be
enabled. Of course, while these agreements are individually
consistent, they are collectively infeasible.

Agents should attempt to improve their commitment
agreements to at least achieve feasibility. To do this we use
an iterative, hill-climbing process based on some of the same
intuitions as Nairet al.(2003)’s approach to bottom-up con-
vergence on joint policies, but avoiding the heavy computa-
tional load of his approach because our agents coordinate at
the level of commitments rather than exchanging policies.

It turns out that a reasonable set of commitments can be
extracted using the (vastly simpler) solution to an MDP con-
structed using deterministic approximations to actions with
uncertain outcomes. The policy generated from this “quick
and dirty” model is then used to generate a probabilistic dis-
tribution of final states, extracting a set of initial commit-
ments from that distribution. This allows an agent to iden-
tify not only commitments that are not likely to be kept in a
full policy, but also commitments that might not have been
promised but that turn out to be feasible.

The agents iteratively improve their commitments using
a distributed constraint optimization protocol. After each
agent has formed consistent agreements about its commit-
ments, it uses the quick-and-dirty model, biasing that model
based on the initial commitments, to generate a quick-and-
dirty policy. It then extracts the commitments implied by
this policy. It compares these commitments with the com-
mitments that it used in building the policy, counting the
number of differences between the two commitment sets.

The agents exchange their new commitments, and broad-
cast their counts of differences. If the total number of differ-
ences across all agents is zero, then the agents have con-
verged on a set of commitments that no agent wants to
change, and so the process terminates. Otherwise, the agents
compare this total count to the total count from the prior
round of this iterative protocol. If the total has not decreased
for some user-specified number of iterations, then the agents
have reached a local optimum, and the protocol terminates.
If the total count has decreased, the agents repeat the pro-
cess, generating consistent agreements and then individually
checking these with their quick-and-dirty models as before.

Once this iterative process terminates or times out, the
agents adopt the final sets of commitments as their negoti-
ated agreements.

Anytime Commitment Search
The distributed hill-climbing process for commitment im-
provement described above can itself serve as the inner loop
of a more thorough search through the commitment space.
Hill-climbing search techniques can be improved by in-
troducing the notion of random restart, restarting the hill-
climbing process from a different initial state, in the hopes
of finding a different local maximum This approach works
with the negotiation process described above, as well.

The local maximum in one iteration is compared with the
best local maximum from previous local searches, and the
best of these commitment sets is saved. This comparison
must be made globally the agents collectively need to de-
cide which set of commitments is better, since if different
agents adopt different commitment sets we suffer from the
problems of inconsistency all over again.

This process of reinitializing the commitments and then
hill-climbing from there can be repeated as often as time
permits. Our implementation supports this iterative-restart
hill-climbing process, though for most of our experiments
in the COORDINATORs application domain we turned this
off, because in that problem domain our agents always be-
gan with initial schedules, so the initial commitment values
tended TO start the hill-climbing in a good place.

Experiments
We conclude this section with an analysis of how the tech-
niques we have just presented perform on simple problems
where the “right” answers can be identified, to allow com-
parison. These techniques have been extensively used in
COORDINATORs problems involving dozens of agents and
hundreds of tasks, scaling well in both handling large num-
bers of agents and complex local state spaces.

All of the example problems described in this section have
been represented in the task modeling language our code
uses, and the behavior reported in terms of what commit-
ments the agents converge to corresponds to what happens
in execution of our code, unless otherwise noted.

Let us begin with the simplest problem, from Figure 1. If
the agents are initialized with schedules such thatA plans to
have achieved the enablement, then the agents will converge
to agreement over enablement, and achieve their maximum
expected reward. This holds true even ifB’s initial commit-
ment for enablement was null.

If A andB had both begun with null-commitments (be-
cause, for example, they did not have any initial schedules
from which to extract commitments), then they would stay
with these: they are consistent, and neither would bene-
fit from a unilateral change. Similarly, ifA had a null-
commitment andB had an enables commitment, the consis-
tency procedures would haveB revert to a null-commitment,
and the agents would again be in agreement. These last ex-
amples illustrate how, even for this simple problem, hill-
climbing can reach one of two local optima. Finding the
global optimum can require a perturbation from the initial
commitments to put the agents into a more favorable basin
of attraction in the hill-climbing search.

As a second example, consider the variation of the prob-
lem in Figure 1 where Method-A2 also enables a method for
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C. A quick-and-dirty policy cannot be generated that reaches
final states satisfying both commitments, and so the com-
mitments extracted from the policy will revert one of the
commitments to a null-commitment (which one is reverted
depends on the relative rewards and probabilities associated
with the methods). In the subsequent round of distributed
hill-climbing, the null-commitment byA (the source) will
cause the agent at the target end of the null-commitment
to change to a null-commitment, and the three agents will
converge to commitments where one of the enablements is
committed to and the other is not.

As a final example, Figure 6 shows a problem that is like
Figure 1, except betweenA andB there is aC, creating an
enablement chain fromA to C to B. As before, each agent
also has a local task competing with its task in the chain.
Further, let’s assume that the expected quality of Method-
A1 for A and Method-C1 forC is higher than for Method-
A2 and Method-C2, respectively. Finally, assume that there
is no initial schedule.

In this case,A andC recognize the first coordination op-
portunity, andC andB recognize the second. Lacking an
initial schedule, the agents initialize their commitments for
the coordination opportunities to null-commitments. They
exchange these, and find that they are all consistent, and so
could represent a valid set of agreements.

However, when the agents formulate their quick-and-dirty
local policies and extract commitments,A determines that
it actually plans to perform its enablement action. (Note
that the null-commitment to the enablement does not bias
A away from this action, but rather just does not bias it to-
ward this action. Since Method-A1 is the best choice for
purely local reasons,A plans to execute it.) Therefore, when
the agents exchange their potentially-revised commitments,
A announces that it has indeed changed one of its commit-
ments.

As a result, the agents iterate by making the new commit-
ments consistent. This in turn causesC to change its null-
commitment for the enablement opportunity withA into a
enablement commitment. The agents then once again for-
mulate policies using quick-and-dirty models, and extract
commitments from these. Now,C has changed a commit-
ment, because it has found that it serendipitously is now
doing the enablement source forB. The commitments are
exchanged, along with the information that some agent has
changed a commitment. This ultimately leads the agents to
finish the enablement chain: even though the agents began
with consistent commitments to not help each other at all,
the distributed hill-climbing procedure has reached the opti-
mum set of commitments corresponding to each link in the
chain of enablements being done.

Conclusion and Future Directions
In this paper, we have described an approach to coordinat-
ing the activities of multiple agents that works in stochas-
tic problem domains by combining high-level agreements
over inter-agent commitments with detailed local policy for-
mulation by each of the agents. The result is an approach
that gives agents individual flexibility to optimize their lo-
cal performance, while biasing their local policies to fulfill

the commitments to other agents to which they have agreed.
This allows the problems of making coordination commit-
ments and of formulating local policies to be largely decou-
pled, allowing each to be solved much more quickly than
solving them together by formulating a full joint policy. A
major contribution of this paper is in describing a process for
casting commitments into the local MDP models of agents
to achieve this kind of bias. While we illustrated this ap-
proach in the context of biasing agents to act so as to enable
actions for others, we have applied the same principles in
this paper to a variety of other kinds of interactions, includ-
ing commitmentsnot to disable the possible actions of oth-
ers, and syncrhonization. We also require agents to be able
to choose commitments without examining in detail every
possible combination of policies that they could adopt. As
we have shown, agents that agree on commitments tend to
do better than agents that disagree, even if the agreed-upon
commitments are not the best possible. So, at the core of
the agents’ coordination protocol is the process of ensuring
agreement over consistent sets of commitments. Another
contribution is demonstrating how the problem of converg-
ing on commitments can be solved by interleaving making
tentative agreements with using quick-and-dirty task models
to assess feasibility and desirability of the agreements.

The techniques that we have described have all been im-
plemented as part of a larger effort under the DARPA CO-
ORDINATORs program. These techniques have been ap-
plied to problems ranging up to nearly 100 agents, where
each agent can have dozens of methods and methods have
uncertainty in durations and outcomes that lead to huge state
spaces. Applying MDP techniques to these problems has
only been possible due to the techniques that we describe
here.

We see a number of directions in which these techniques
could be improved. One is to develop more principled tech-
niques for assigning rewards to bias agents. One thread
of related research has looked at other ways of biasing the
policy formulation process by imposing constraints on the
policy itself rather than modifying the states (Witwicki &
Durfee 2007). Another direction is to exploit other ideas
for choosing initial commitment values. A third direction
is improving the heuristics for estimating the global value
of particular commitment combinations based on local ex-
pected utility. We would also like to consider the dynamics
of the commitments themselves, allowing agents to revisit
commitment decisions as circumstances unfold.
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Agent-C 
tasks

Agent-B 
tasks

Method-C1
Q: 100 80%, 0 20%

Method-C2
Q: 10 100%

Method-B1
Q: 10000 80% 0 20%

Method-B2
Q: 10 100%

enables

Agent-A 
tasks

Method-A1
Q: 100 80%, 0 20%

Method-A2
Q: 10 100%

enables

Figure 6: This simple 3-agent additive task model represents a problem where there is a multi-link enablement chain, and
where each agent would prefer doing its method in the chain if it knows that that action is enabled.
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