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Abstract

Mobile robots are increasingly being deployed in different ap-
plications as a result of progress in sensor technology and the
development of state of the art algorithms for processing sen-
sory inputs. A key challenge to the widespread deployment
of robots is the ability to autonomously tailor sensing and in-
formation processing to the task at hand. In this paper, we
describe on-going work towards such general-purpose pro-
cessing of visual input. We pose visual processing manage-
ment as an instance of probabilistic sequential decision mak-
ing, and specifically as a three-layered hierarchical partially
observable Markov decision process (POMDP). We use a
two-layered POMDP hierarchy to enable a robot to plan a se-
quence of visual operators in order to reliably and efficiently
analyze the state of the world represented by salient regions
of interest in images (Sridharan, Wyatt, and Dearden 2008;
2009). We then incorporate scene analysis as the highest
layer, where the goal is to maximize the known information
about the environment. The POMDP models at the different
layers are tailored to the task at hand by enabling the robot
to learn the model parameters and trade-off computational
efficiency and reliability. The proposed approach is tested
on robots and simulated agents in human robot interaction
scenarios. Keywords: Scene analysis, Processing manage-
ment, Hierarchical POMDPs, Human robot interaction.

Motivation
In recent times, high-fidelity sensors have become avail-
able at moderate costs (Hokuyo 2008; Videre Design 2010),
and sophisticated algorithms have been developed to process
sensory inputs. Mobile robots equipped with multiple sen-
sors are hence being used in applications such as disaster
rescue. navigation and medicine (Casper and Murphy 2003;
Pineau and Thrun 2002; Thrun 2006). However, the abil-
ity to accurately sense the environment and interact reliably
with other robots and humans remains an open challenge.
The following features and requirements characterize mo-
bile robots operating in dynamic environments:
• Features:
• Non-deterministic actions: robot sensing and actuation

are unreliable.
• Partial observability: the robot cannot directly observe

the state of the world. It can only update its belief of
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the state of the world by applying operators on sensory
inputs and observing the outcomes.

• Computationally intensive: algorithms processing sen-
sory inputs are often computationally expensive.

• Requirements:
• Performance: robots interacting with a dynamic envi-

ronment have to respond in real-time.
• Reliability: though individual actions are unreliable,

high overall reliability is required.
These features and requirements make it all the more chal-
lenging to process images from a camera, which constitute a
rich and high-bandwidth source of information in compari-
son to other popular sensors such as range finders. However,
visual input is more sensitive to environmental changes such
as illumination, and operators (i.e. algorithms) that process
visual input are typically computationally expensive. In ad-
dition, a robot can process the images using a variety of al-
gorithms, each with a different level of uncertainty and com-
putational complexity. One appealing solution is to retain
operators to support many tasks and then tailor the sensing
and processing to the task at hand i.e. use a subset of opera-
tors that can accomplish the task reliably and efficiently.

An approach based on probabilistic sequential decision
making, or more specifically partially observable Markov
decision processes (POMDPs) (Kaelbling, Littman, and
Cassandra 1998), elegantly captures the non-determinism
and the partial observability of robot domains. However,
POMDP formulations of many practical problems have
a state space that increases exponentially, and the worst
case time complexity of POMDPs is exponential in the
state space dimensions. Even state of the art approxi-
mate POMDP solvers (Smith and Simmons 2005; Ross et
al. 2008) are computationally expensive for robots de-
ployed in dynamic domains. Promising results have been
obtained by introducing a hierarchy in the state or action
spaces of the POMDP formulation (Pineau and Thrun 2002;
Foka and Trahanias 2005). However, many such methods
require manual supervision for creating the hierarchy or the
corresponding POMDP models.

This paper builds on our prior work on hierarchical im-
age processing (Sridharan, Wyatt, and Dearden 2008) to de-
scribe a three-layered hierarchy for scene analysis. The top
layer determines where to look i.e. which scene of the 3D
space to focus on; the intermediate layer determines what to



process i.e. which regions of images of the chosen scene to
analyze; and the bottom layer focuses on how to process i.e.
what visual operators to apply on the chosen image regions.
This paper therefore makes the following contributions:
• It proposes a functional hierarchical decomposition for

visual processing, which (partially) ameliorates the com-
putational complexity challenge and enables the robot to
better exploit the visual input.

• It enables the robot to automatically create the POMDP
models required at the different levels, which are then
solved to generate the overall policy.

The remainder of this paper is organized as follows. We be-
gin with a brief review of some related work, followed by
a description of the overall goal and the specific task ad-
dressed in this paper. We then present the proposed lay-
ered POMDP hierarchy. Finally, we present some proof-of-
concept evaluation results on physical robots and simulated
agents in human-robot interaction scenarios.

Related Work
Computer vision research has produced several methods for
using a user-specified high-level goal to plan a pipeline of
visual operators. However, many of these methods use de-
terministic action models, with the action pre-conditions and
effects being propositions that are required to be true a pri-
ori, or are made true by the application of the operator. Un-
satisfactory results are handled by re-planning the operator
sequence or modifying operator parameters (Clouard et al.
1999). However, the state of the system is not directly ob-
servable in robot domains and actions are unreliable.

Recent research in AI planning has focused on relaxing
the limitations of classical planners to make them suitable
for practical domains. The PKS planner (Petrick and Bac-
chus 2004) uses a first-order language to describe actions
in terms of their effect on the agent’s knowledge, rather
than their effect on the world. The model is hence non-
deterministic because the true state of the world is deter-
mined uniquely by the actions performed, but the agent’s
knowledge of that state is not. PKS captures the initial state
uncertainty and constructs conditional plans based on the
agent’s knowledge. The Continual Planner (CP) (Brenner
and Nebel 2008), on the other hand, interleaves planning,
plan execution and monitoring, in order to postpone reason-
ing about uncertain states until more information is avail-
able. CP asserts that action preconditions will be met when
that point is reached during plan execution. If the precondi-
tions are not met during execution, or are met earlier, replan-
ning is triggered. In robot domains, it may be necessary to
accumulate evidence by applying operators more than once,
which cannot be done using PKS or CP.

Unlike the approaches based on classical planners, Li et
al. (2003) modeled image interpretation as a Markov Deci-
sion Process (MDP). Human-annotated images are used to
determine the reward structure, explore the state space and
compute value functions that are extrapolated to the entire
state space. Online operation involves action choices that
maximize the value of the learned functions. Darrell (1997)
used manual feedback, memory-based reinforcement learn-
ing and POMDPs to learn what foveation actions to execute,

and when to execute the terminal recognition action, in order
to foveate salient body parts in an active gesture recognition
system. Manual feedback and extensive training trials are
however infeasible in many mobile robot domains.

The POMDP formulation is appropriate for domains with
partially observable state and unreliable actions. However,
a POMDP formulation is intractable for many practical do-
mains. Pineau and Thrun (2002) proposed an elegant hierar-
chical POMDP approach for behavior control of a robot as-
sistant. In their hierarchy, the top level action is a collection
of simpler actions that are represented by smaller POMDPs
and solved completely; planning is done in a bottom-up
manner, combining individual policies to provide the total
policy. All model parameters are defined over the same state
space, but the relevant space is abstracted for each POMDP
using a dynamic belief network. Similar approaches have
been used for robot navigation (Foka and Trahanias 2005)
but a significant amount of data for the hierarchy and model
creation is hand-coded. POMDPs have also be used for
visual search based on models of the human visual sys-
tem (Butko and Movellan 2008). In parallel, faster solution
methods (Ross et al. 2008) and schemes for hierarchy dis-
covery in POMDPs have been developed (Hansen and Zhou
2003; Toussaint, Charlin, and Poupart 2008). POMDPs have
also been used on robots that sense and interact in spe-
cific real-world tasks such as grasping (Hsiao, Kaelbling,
and Lozano-Perez 2007; Saxena, Driemeyer, and Ng 2008).
However, most of these methods are computationally expen-
sive for applications with large state spaces. Instead, we pro-
pose a three-layered hierarchy for visual scene analysis, with
the model parameters being learned by the robot.

Domain Description
Figure 1(a) describes the long-term goal of the on-going
project: reliable and autonomous human-robot interaction in
indoor scenarios. Achieving this goal requires, among other
things, autonomous learning and processing management.
Here, we focus on autonomous visual processing manage-
ment. Consider, for instance, the task of finding a red bowl
i.e. addressing the query: “where is the red bowl?” or com-
mand: “fetch the red bowl”. Ideally, the robot should focus
on a suitable scene of the environment as shown in the top
right of Figure 1(a), resulting in images such as Figure 1(b).

The images can be processed to obtain salient regions of
interest (ROIs). The robot can process such image ROIs us-
ing one or more of a large set of visual operators, for tasks
such as segmentation, object recognition and scene recon-
struction. However, only a small subset of these operators
are appropriate for any specific task—in the current exam-
ple, we need operators to identify a ROI that is red and
contains a bowl. In this paper, we model sensing and in-
formation processing operators as actions and use the terms
“operators”, “routines” and “actions” interchangeably. We
focus on tasks that require a sequence of visual operators to
be applied on specific images of specific scenes, so that a
human and a robot can converse about (text-based and not
language-based) objects of interest.

The experimental platforms include a humanoid robot:
Aldebaran Nao (Nao 2008) and a wheeled robot: Videre



(a) Overall scenario. (b) Example image of a desk. (c) Robot platforms.

Figure 1: Visual processing management: (a) Overall scenario; (b) Example image of a portion of the scene with regions-of-interest (ROIs)
bounded by rectangles; (c) Robot platforms.

Design ERA-Mobi (Videre Design 2010), as shown in Fig-
ure 1(c). The Nao is 58cm tall and equipped with color
cameras, ultrasound sensors and touch sensors. The ERA-
Mobi is quipped with stereo and monocular cameras, and
laser range finders. These platforms have on-board process-
ing (500MHz, 2.2GHz) and wi-fi capabilities, in addition
to algorithms for extracting different types of information
from the sensory inputs. Next, we describe the hierarchical
POMDP formulation for scene analysis.

Hierarchical POMDP Formulation
The proposed hierarchical POMDP formulation has three
layers to match the functional and cognitive requirements
of visual scene analysis. The goal here is not to create a
POMDP solver but to enable reliable and efficient visual
processing using operators that are individually unreliable.
As shown in Figure 2(a), the top layer of the hierarchy is
the high-level POMDP (“HL-POMDP”) that addresses the
question: where to look? i.e. it determines the specific
scene of the 3D space under consideration that is to be ana-
lyzed next. The intermediate layer (“IL-POMDP”) analyzes
images of the chosen scene by determining the image re-
gions to be processed next (what to process?). Finally, each
salient image region (i.e. ROI) is analyzed using a lower-
level POMDP (“LL-POMDP”) that determines how to pro-
cess? i.e. the sequence of visual operators to be applied in
order to address the specific task (e.g. finding the red bowl).
The layers of the hierarchy are described below.

Each LL-POMDP operates on a specific image ROI (i.e.
salient region) and computes a sequence of visual operators
that would identify the desired object reliably and efficiently.
Without loss of generality, consider the specific task of lo-
cating all red bowls i.e. addressing the query: where are
the red bowls? In addition, assume that the robot can use
the following operators: a color operator (based on color
histograms) that classifies the dominant color of the ROI, a
shape operator (based on shape moments) that classifies the
dominant shape within the ROI, and a sift operator (based
on the SIFT features (Lowe 2004)) that detects the presence
of one of the previously trained object models.

Since the true state of the system cannot be observed, the
robot maintains a probability distribution over the underly-
ing state (belief state). Each action considers the true under-
lying state to be composed of the class labels (e.g. red(R),

green(G), blue(B) for color; circle(C), triangle(T), square(S)
for shape; bowl, box, book for sift), a label to denote the ab-
sence of any valid object class—empty (φ), and a label to
denote the presence of multiple classes (M ). The model for
each action’s outcomes provides a probability distribution
over the set composed of the corresponding class labels, the
label empty (φ) which implies that the match probability cor-
responding to the class labels is very low, and unknown (U )
which means that multiple class labels are equally likely. U
is an observation whereas M is part of the state: though they
are correlated they are not the same.

Since visual operators only update belief states, we in-
clude task-specific “special actions” that indicate the pres-
ence or absence of the target object, or identify which un-
derlying state is most likely to be the true state. Such actions
cause a transition to a terminal state where no further actions
are applied. Below, without loss of generality and for ease
of explanation , consider two operators: color and shape
denoted by subscripts c, s respectively; other operators are
included in the experiments. States and observations are de-
noted by superscripts a, o respectively. The POMDP tuple
〈S,A, T ,Z,O,R〉 for a single image ROI is:
• S : Sc × Ss ∪ term, the set of states, is a Cartesian

product of the variables describing different aspects of
the underlying state (e.g. color, shape). It also includes
a terminal state (term). Sc : {φa

c , Ra
c , Ga

c , Ba
c ,Mc},

Ss : {φa
s , Ca

s , T a
s , Sa

s ,Ms}.
• A : {color, shape, AS} is the set of actions. The

first two entries are the visual operators. The rest are
special actions. For a query such as: “is there a cir-
cle in the scene?”, AS = {sFound, sNotFound} de-
scribes the presence/absence of the target object, while
the query: “what is the color of the ROI?” has AS =
{sRed, sGreen, sBlue}. Special actions lead to term.

• T : S × A × S ′ → [0, 1] represents the state transition
function. For e.g. it is an identity matrix for visual opera-
tors that do not change the state, such as color and shape.
For special actions it represents a transition to term.

• Z : {φo
c , R

o
c , G

o
c , B

o
c , Uc, φ

o
s, C

o
s , T o

s , So
s , Us} is the set of

observations of all operators.
• O : S × A × Z → [0, 1] is the observation function. It

is learned by the robot for the visual actions and it is a
uniform distribution for the special actions.

• R : S × A → <, specifies the reward, a mapping from



the state-action space to real numbers.
∀s ∈ S, R(s, operators) = −β · f(ROI size) (1)

R(s, special actions) = ±100 · α
For visual operators, the cost depends on the ROI-size
and the relative computational complexity (β for color
is twice that for shape). Special actions are assigned a
large positive (negative) reward for giving the correct (in-
correct) answer. Parameter α trades-off computation and
reliability. Values for α, β are tuned experimentally.

Given the belief state (i.e. a probability distribution over the
underlying state) at time t, Bt, the belief update proceeds as:

Bt+1(s′) =
O(s′, at, ot+1)

∑
s∈S T (s, at, s

′) ·Bt(s)
P (ot+1|at, bt)

(2)

The visual planning for a single ROI involves solving this
POMDP to find a policy (π : Bt 7→ at+1) that maximizes
reward over a range of belief states. Plan execution corre-
sponds to using the policy to repeatedly choose the action
with the highest value at the current belief state, and updat-
ing the belief after executing that action and getting an ob-
servation. However, for a single ROI with m features (color,
shape etc.) each with n values (e.g. R, G, B for color), the
POMDP has an underlying space of nm + 1; for k ROIs it
is: nmk + 1. For instance, with three ROIs and two actions
we get ≈ 15000 states i.e. the planning task soon becomes
intractable, even with sophisticated approximate solvers.

The proposed approach therefore models each ROI with
a lower-level (LL) POMDP as described above, and intro-
duces a IL-POMDP that chooses, at each step, the ROI
whose policy (generated by solving the corresponding LL-
POMDP) is to be executed. The overall problem is then de-
composed into one POMDP with state space 2k + 1, and
k POMDPs with state space nm + 1. Without loss of gen-
erality, consider an input image with two ROIs, whose IL-
POMDP is given by the tuple 〈SI ,AI , T I ,ZI ,OI ,RI〉:
• SI = {R1 ∧ ¬R2,¬R1 ∧ R2,¬R1 ∧ ¬R2, R1 ∧ R2} ∪

termI is the set of states. It represents the presence or
absence of the object in one or more of the ROIs, and
includes a terminal state (termI ).

• AI = {u1, u2, A
I
S} are the actions, where (ui) denotes

the choice of executing LL ROI Ri’s policy. For queries
such as “is there a circle in the scene?”, the special ac-
tion set AI

S = {sFoundI , sNotFoundI}. However, for
queries such as “where is the circle?”, AI

S represents the
fact that one of the entries of SI is the answer. All special
actions lead to termI .

• T I is the state transition function that leads to termI for
special actions and is an identity matrix otherwise.

• ZI = {FR1,¬FR1, FR2,¬FR2} is the set of observa-
tions, which represents finding or not-finding the desired
object when each ROI’s policy is executed.

• OI : SI ×AI ×ZI → [0, 1], the observation function, is
a uniform matrix for special actions. For other actions, it
is learned from the LL-POMDP policy trees.

• RI is the reward specification. For a special action, it
is a large positive (negative) value if it predicts the state
correctly (incorrectly). For other actions, it is a “cost”
computed from the LL policy trees.

The required LL observation functions and rewards are
learned in an initial training phase (see the next section).
Given a task (i.e. query) and images of the scene, the robot
creates a LL-POMDP for each ROI based on the available
visual operators. These POMDPs are created in the format
used by the ZMDP package (ZMDP Code 2008) and solved
using a point-based solver in the package (Smith and Sim-
mons 2005). The LL policy trees and the query are used to
compute the appropriate observation functions and rewards
for the IL-POMDP model at run-time. The IL-POMDP is
then solved to generate the policy that operates on the entire
image, and analyzes relevant ROIs using the corresponding
LL policies, in order to identify the target object. More de-
tails on the automatic belief propagation between layers can
be found in (Sridharan, Wyatt, and Dearden 2008).

Images of real-world scenes contain overlapping objects
that would be considered as a single ROI. Such situations
can be handled using operators that split an existing ROI
based on one of more underlying features such as color or
shape. However, planning with such operators is difficult
because they change the perceptual state of the system by
creating new ROIs. Our approach plans the effects of such
ROI-splitting operators by replacing the solution of several
new POMDPs with one in which we compute the likelihood
that one of the resultant ROIs has the desired feature value.
During execution, we replan with a new POMDP after a
split. Details are not provided here due to space limitations
but are available in (Sridharan, Wyatt, and Dearden 2009)—
an execution example is provided below.

In practical settings, the target object can exist in different
locations in the room or even in different rooms. The robot
may need to move and analyze different scenes to locate the
desired target. We therefore introduce a HL-POMDP as the
topmost layer of the hierarchy. The HL-POMDP is based
on recent work by Butko and Movellan (2008), where visual
search was posed as the task of maximizing information gain
i.e. reducing the entropy in the belief state. We represent the
3D area under consideration using a discrete 2D occupancy
grid—Figure 2(b). Each grid cell is associated with a proba-
bility that represents the likelihood of occurrence of the tar-
get object(s). For a grid with N cells, the definition of the
HL-POMDP tuple 〈SI ,AH , T H ,ZH ,OH ,RH〉 is:
• SH : si, i ∈ [1, N ] is the state vector, where entry si

corresponds to the event that a target is in grid cell i.
• AH : ai, i ∈ [1, N ] is the set of actions, where entry ai

corresponds to the event that the robot analyzes the scene
corresponding to grid cell i.

• T H : SH × AH × S ′H → [0, 1] is the state transition
function. For the actions that only observe the state, it
is an identity matrix. It can be extended to actions that
change the state.

• ZH : {present, absent} is the set of observations that in-
dicates the presence or absence of the target object in the
grid cell being analyzed.

• OH : SH × AH × ZH → [0, 1] is the observation func-
tion. It is determined automatically as given below.

Such a formulation can represent uniform initial belief and
also situations when some prior knowledge of object loca-
tion is available. The key difference is that the action utili-



(a) Three-layered hierarchy. (b) HL scenario and observation models. (c) Example image with two ROIs.

Figure 2: Visual processing management: (a) Proposed hierarchical decomposition; (b) HL grid cells and observation Gaussians; and (c)
Example image with three objects enveloped in two ROIs.

ties (i.e. rewards) are based on the information likely to be
gained by executing that action. For the belief state Bt at
time t, we use an approach similar to (Butko and Movellan
2008) to define reward RH as the InfoMax objective func-
tion i.e. the negative entropy of the belief:

RH(Bt) := −
∑

i

Bi
tlog(Bi

t) (3)

The goal then is to learn a policy: π : Bt 7→ at+1 that de-
creases the entropy in Bt over a planning horizon of T steps.
The other major feature is the observation function specifica-
tion. We set it to be a function of the expected performance
of the lower levels of the hierarchy:

OH(zi, sj , ak) = p(zi|sj , ak) ∼ N (µ, σ2) (4)

µ = fµ(sj , ak), σ2 = fσ2(O,OI |sj , ak)

where the probability of obtaining a specific observation zi

given the state sj (i.e. desired target is in grid cell j) and
action ak (i.e. focus on grid cell k) is given by a Gaussian
distribution. The mean of the Gaussian depends on the target
location, the grid cell being examined and the camera’s field
of view. The variance of the Gaussian denotes the likelihood
that the IL-POMDP and the LL-POMDPs will identify the
target: it is hence a function of the corresponding observa-
tion functions. Figure 2(b) is a pictorial representation of
targets and observation Gaussians in a 7× 7 grid.

In such a HL-POMDP representation, the number of grid
cells can be large for a practical application domain, mak-
ing it challenging to find policies. We currently use an ex-
isting implementation of policy gradient algorithms (Buffet
and Aberdeen 2009) to solve the HL-POMDP. The overall
operation then involves using the HL policy to choose an
appropriate portion of the environment for analysis. Images
of the specific scene are analyzed using the IL-POMDP and
LL-POMDPs that are created at run-time. The result of this
analysis updates the beliefs in the HL, resulting in the choice
of a grid cell for subsequent analysis. The key contributions
are: (a) the extension of the existing hierarchical approach
for image analysis to complex scenes; (b) the incorporation
of high-level scene analysis to maximize information gain;
and (c) the automatic belief propagation between layers that
operate over different state spaces. The proposed hierarchi-
cal approach is hence called: I-HiPPo.

Experimental Setup and Results
In this section, we describe the learning of the LL-POMDP
components, followed by the experimental results.

The model creation in the LL-POMDPs requires observa-
tion and reward functions. Unlike other POMDP-based ap-
plications, we enable the robot to explicitly model the uncer-
tainty in the operators. Objects with known labels (e.g. “red
book“, “blue square box”) are placed at positions known to
the robot. The robot executes different visual operators on
images of the scenes to collect statistics of various action
outcomes. These statistics are used to generate the observa-
tion functions, assuming the observations are mutually in-
dependent and produced by different actions. The LL ac-
tion costs are a function of the relative run-time complexity
of the operators and the size of the ROI (Equation 1). The
run-time complexity is experimentally determined based on
the statistics collected during observation function learning.
The effect of ROI-size is modeled as a polynomial function:

f(r) = a0 +
N∑

k=1

ak · rk (5)

where r is the ROI-size in pixels. The polynomial degree
and coefficients are estimated such that they best fit the
performance statistics collected during observation function
learning (N = 1, 3, 4 for shape, color, sift respectively).
An existing saliency operator (Itti, Koch, and Niebur 1998)
is used to determine the ROIs. For simple scenes, the system
can use background subtraction to extract the ROIs.

We conducted several experiments on robot platforms to
evaluate our algorithm. First, we evaluated the ability of
the lower and intermediate layers of the proposed hierar-
chy (i.e. IL-POMDP and LL-POMDPs) on images of ob-
jects on a desk. Consider the execution example that an-
swers the query: “where are the red bowls?” on the image
shown in Figure 3(a)—this is a pictorial representation of
an actual image captured by the robot. We include the ac-
tions: color, shape, sift in addition to the region-splitting
actions that split input ROIs based on these features i.e.
rSplitcolor, rSplitshape, rSplitsift. As stated earlier, such
splitting actions would result in a modified state space for
the IL-POMDP. In Figure 3(a) two of the three objects over-
lap, resulting in two ROIs. Since both ROIs are equally



(a) Input image. (b) Execution Step 1. (c) Execution Step 2.

(d) Execution Step 3. (e) Execution Step 4. (f) Execution Step 5.

Figure 3: Example query: “Where are the red bowls?” Pictorial representation of actual execution on a robot. Region-split operators enable
separation of overlapping objects.

likely target locations, the IL-POMDP chooses to exam-
ine the smaller ROI R2 first, because of its smaller action
costs—action u2 in Figure 3(b). The corresponding LL-
POMDP runs the color operator on the ROI, leading to the
outcome of green. This outcome significantly reduces the
likelihood of finding a red bowl, and a terminal action is
chosen as the best action in the next step: sNotFound. The
IL-POMDP receives the input that the target object was not
found in R2, leading to a belief update and subsequent ac-
tion selection—action u1 in Figure 3(c). The LL policy of
R1 is invoked, causing color and sift to be applied in turn
on the ROI. Both operators come up with outcomes of un-
known because the ROI has two different colors and objects.
At this point, rSplitsift is chosen as the best action and R1

is split into R1 and R3 on the basis of the sift (i.e. local
gradient) features within the ROI—Figure 3(d). Our system
includes other algorithms that can be invoked to split a ROI
on the basis of color histograms or shape contours. The ex-
ecution of rSplitsift is followed by the application of sift
on each sub-region, leading to the observations: book and
bowl in R1 and R3 respectively—Figure 3(c). The current
beliefs are used to create and solve a new IL-POMDP for
three ROIs. The subsequent action selection in the IL (u3)
results in the execution of the LL-policy of R3, whose ini-
tial belief reflects the previous application of sift. Hence,
color and sift are applied just once before a terminal action
(sFound) is chosen—Figure 3(e). The subsequent belief up-
date and action choice in the IL leads to the processing of
R1 since the goal is locate all red bowls. The terminal ac-
tion sNotFound for R1 results in the action s¬R1∧¬R2∧R3

in the IL—Figure 3(f).

As seen in the example above, some actions are applied
more than once on a ROI to accumulate evidence. In such
cases, conditional independence of the observations is en-
sured by taking a new image of the scene before repeating
the action. Though the images are not strictly independent,
the independence assumption is required for the belief up-
date (Equation 2) and works in practice to account for small
changes in factors such as illumination.

Similar to our prior work, we compared our approach
against a non-deterministic planner that has been used suc-
cessfully in human-robot interaction domains: Continual
Planning (CP) (Brenner and Nebel 2008). We also consid-
ered the case where all operators were applied on the im-
age ROIs (“no planning”) until the target was found or all
ROIs were analyzed. We considered a range of queries on
scene properties, object occurrence, object location and ob-
ject properties. For each query category, experiments were
run on 20 different scenes, with 20 trials for each query. The
queries represent combinations of object properties (colors,
shapes, sift features). A subset of these experiments (on an-
other robot platform) were reported in (Sridharan, Wyatt,
and Dearden 2008; 2009).

Figure 4(a) shows that the “joint POMDP” that operates in
the space of all ROIs and actions soon becomes intractable.
The plot includes several trials on simulated scenes (with
different number of ROIs of varying sizes) in addition to the
robot experiments. The efficiency may be improved using
faster POMDP solvers but the intractability would still be
observed. The hierarchical approach significantly reduces
the planning time—though the computed policies are not
optimal the performance is reliable. Next, Figure 4(b) com-



(a) HiPPo vs. joint POMDP. Joint
POMDP soon becomes intractable.

(b) Planning times of HiPPo vs. CP.
Policy-caching makes results comparable.

(c) Planning+execution times of HiPPo,
CP vs. No planning.

Figure 4: Experimental Results: comparing planning and execution times of I-HiPPo and CP against no planning, on specific scenes. I-HiPPo
and CP reduce processing time.

pares the planning times of the hierarchical approach and
CP as a function of the number of ROIs. The default hi-
erarchical approach needs to compute policies for all ROIs
(LL-POMDPs) and is hence more expensive than CP. How-
ever, if no prior information is available regarding the con-
tents of the different ROIs, the LL-POMDPs only differ in
the action costs. The ROI-sizes are hence discretized, and
the policies of ROIs within specific size ranges are cached
and reused. Though this policy caching results in planning
times comparable to CP, it introduces value estimation er-
rors. We estimate these errors to trade-off reliability and
efficiency (Sridharan, Wyatt, and Dearden 2009).

Figure 4(c) compares the planning approaches against the
no-planning approach in terms of the combined planning
and execution times. Planning provides benefits even on
scenes with just two ROIs, and the benefits are much more
significant as the number of ROIs and visual operators in-
crease. In these experiments the robot had modules oper-
ating in parallel to analyze the sensory inputs. Therefore,
though the individual operators are optimized for perfor-
mance, the parallelism results in the times reported above.

As mentioned earlier, the goal is not to create a POMDP
solver but to provide a hierarchy that sequences available
operators to achieve reliable and efficient visual process-
ing. Table 1 summarizes the reliability performance over
the range of tasks, with the ground truth provided manually.
With no planning, the average reliability (i.e. classification
accuracy) is 76.67% i.e. the visual operators provide incor-
rect results approximately once every four trials. Though
CP is very efficient, it does not model the action outcomes
and hence cannot achieve higher reliability than the naive
approach of applying all available operators. Our approach
explicitly models the uncertainty and accumulates evidence
to provide higher reliability.

Approach % Reliability
No planning 76.67
CP 76.67
I-HiPPo 90.75

Table 1: Reliability of visual processing
Finally, we ran experiments to evaluate the HL-POMDP’s

capabilities. The robot’s environment was discretized into

grid cells, and the robot had to locate specific objects (e.g.
soccer ball, bowl). Since running extensive trials on a phys-
ical robot is infeasible, we also ran experiments in a simu-
lated domain that mimicked the robot’s sensing capabilities
(based on the computed observation functions). The simu-
lated grid currently includes the locations of certain known
obstacles (e.g. walls) and objects (e.g. tables) though this can
also be learned by the robot, using existing methods (Thrun,
Burgard, and Fox 2005). The different grid sizes correspond
to the different regions over which the evaluation was con-
ducted. The size of each cell in the grid is set based on the
field of view of the robot’s camera (e.g. 60cm, 100cm).

Grid size % Accuracy
5× 5 88
7× 7 90
10× 10 92

Table 2: Accuracy of visual search for different grid resolutions.
Table 2 summarizes the results, including ≈ 1000 trials

(for each grid size) in the simulated domain. In a training
phase, the robot learns the LL observation functions and a
HL policy for visual search. Then, the policy is evaluated
by placing target objects in different grid cells. A trial is
deemed to be successful if the policy results in identifying
the location of the target in the correct cell. In Table 2, most
failures correspond to cases where the target object is identi-
fied but its estimated location is no more than one cell-width
away from the actual location. Such errors are due to the grid
cell resolution or the errors in robot sensing and motion. In
addition, the policy performs significantly better than a ran-
dom selection of target grid cells, converging quickly after
the cell with the target is analyzed once. The planning time
does vary from a few minutes to a few hours based on the
size of the grid being analyzed. We are currently investi-
gating the use of other POMDP solvers and convolutional
policies to speed up the planning process.

Conclusions
Mobile robot environments are characterized by partial ob-
servability, non-determinism and computational complex-
ity. Though POMDP formulations elegantly encapsulate all
these factors, they are intractable for all but the most sim-



ple problems. In this paper, we have summarized our recent
work on using a three-layered hierarchical POMDPs for vi-
sual scene analysis. We have presented evaluation results of
our approach on physical robot platforms and simulated do-
mains. We are currently in the process of fully integrating
the different components of the proposed approach on mul-
tiple robot platforms, in order to extensively evaluate our ap-
proach in challenging indoor scenarios. We are also working
on including several additional visual operators, which may
require that we factor the state and action spaces. Further-
more, we aim to incorporate actions that change the physical
state of the system (e.g. move an object), in order to reason
about action affordances.

Our goal here is to enable a robot to fully utilize the rich
information encoded in camera images. Our approach is not
a POMDP solver but a scheme to sequence a subset of ex-
isting (unreliable) operators to achieve reliable and efficient
visual processing for the task at hand. Our ultimate aim is
to enable robots to collaborate autonomously, reliably and
efficiently with humans in dynamic scenarios.

Acknowledgments
This work was sponsored in part by the ONR award
N00014-09-1-0658.

References
Brenner, M., and Nebel, B. 2008. Continual Planning and
Acting in Dynamic Multiagent Environments. Journal of
Autonomous Agents and Multiagent Systems.
Buffet, O., and Aberdeen, D. 2009. The Factored Policy-
Gradient Planner. Artificial Intelligence 173(5-6):722–747.
Butko, N. J., and Movellan, J. R. 2008. I-POMDP: An
Infomax Model of Eye Movement. In The IEEE Interna-
tional Conference on Development and Learning (ICDL).
Casper, J., and Murphy, R. R. 2003. Human-robot In-
teractions during Urban Search and Rescue at the WTC.
Transactions on SMC.
Clouard, R.; Elmoataz, A.; Porquet, C.; and Revenu, M.
1999. Borg: A Knowledge-Based System for Automatic
Generation of Image Processing Programs. IEEE Trans. on
Pattern Analysis and Machine Intelligence 21(2):128–144.
Darrell, T. 1997. Reinforcement Learning of Active
Recognition Behaviors. Technical report, Interval Research
Technical Report 1997-045.
Foka, A. F., and Trahanias, P. E. 2005. Real-time Hierar-
chical POMDPs for Autonomous Robot Navigation. In IJ-
CAI Workshop on Reasoning with Uncertainty in Robotics.
Hansen, E. A., and Zhou, R. 2003. Synthesis of Hier-
archical Finite-State Controllers for POMDPs. In ICAPS,
113–122.
Hokuyo. 2008. Hokuyo Laser. http://www.
hokuyo-aut.jp/products/.
Hsiao, K.; Kaelbling, L. P.; and Lozano-Perez, T. 2007.
Grasping POMDPs. In IEEE International Conference on
Robotics and Automation (ICRA).
Itti, L.; Koch, C.; and Niebur, E. 1998. A Model of
Saliency-Based Visual Attention for Rapid Scene Analy-
sis. PAMI 20(11):1254–1259.

Kaelbling, L.; Littman, M.; and Cassandra, A. 1998. Plan-
ning and Acting in Partially Observable Stochastic Do-
mains. Artificial Intelligence 101:99–134.
Li, L.; Bulitko, V.; Greiner, R.; and Levner, I. 2003.
Improving an Adaptive Image Interpretation System by
Leveraging. In Australian and New Zealand Conference
on Intelligent Information Systems.
Lowe, D. 2004. Distinctive Image Features from Scale-
Invariant Keypoints. International Journal of Computer
Vision (IJCV) 60(2):91–110.
Nao. 2008. The Aldebaran Nao Robots. http://www.
aldebaran-robotics.com/.
Petrick, R., and Bacchus, F. 2004. Extending the
Knowledge-Based approach to Planning with Incomplete
Information and Sensing. In ICAPS, 2–11.
Pineau, J., and Thrun, S. 2002. High-level Robot Behavior
Control using POMDPs. In AAAI.
Ross, S.; Pineau, J.; Paquet, S.; and Chaib-draa, B. 2008.
Online Planning Algorithms for POMDPs. Journal of Ar-
tificial Intelligence Research 32:663–704.
Saxena, A.; Driemeyer, J.; and Ng, A. Y. 2008. Robotic
Grasping of Novel Objects using Vision. International
Journal of Robotics Research 27(2):157–173.
Smith, T., and Simmons, R. 2005. Point-based POMDP
Algorithms: Improved Analysis and Implementation. In
UAI.
Sridharan, M.; Wyatt, J.; and Dearden, R. 2008. HiPPo:
Hierarchical POMDPs for Planning Information Process-
ing and Sensing Actions on a Robot. In ICAPS.
Sridharan, M.; Wyatt, J.; and Dearden, R. 2009. POMDP-
based Planning for Visual Processing Management on a
Mobile Robot. In Cognitive Vision Workshop at IROS.
Thrun, S.; Burgard, W.; and Fox, D. 2005. Probabilistic
Robotics. Cambridge, USA: MIT Press.
Thrun, S. 2006. Stanley: The Robot that Won the DARPA
Grand Challenge. Field Robotics 23(9):661–692.
Toussaint, M.; Charlin, L.; and Poupart, P. 2008. Hierarchi-
cal POMDP Controller Optimization by Likelihood Maxi-
mization. In Uncertainty in AI (UAI).
Videre Design. 2010. Videre Design Robots.
http://www.videredesign.com/robots/
era mobi.htm.
2008. ZMDP Planning Code. http://www.cs.cmu.
edu/∼trey/zmdp/.


