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Abstract

Partially-Observable Markov Decision Processes (POMDPs)
are typically solved by finding an approximate global solu-
tion to a corresponding belief-MDP. In this paper, we offer a
new method to solve POMDPs with continuous state, action
and observation spaces. Since such domains have an inher-
ent notion of locality, we can find an approximate solution
using local optimization methods. We parameterize the be-
lief distribution as a Gaussian mixture, and use the Extended
Kalman Filter (EKF) to approximate the belief update. Since
the EKF is a first-order filter, we can marginalize over the
observations analytically. For domains with unilateral con-
straints, we use the equations of truncated normal distribu-
tions to analytically approximate the belief update. Our re-
sults demonstrate the scalability of this approach, and include
a simulated hand-eye coordination domain with 16 continu-
ous state dimensions and 6 continuous action dimensions.

Introduction
Partially-Observable Markov Decision Processes
(POMDPs) offer a framework for studying decision
making under uncertainty. The optimal behavior in a
POMDP domain is expected to strike a balance between
exploring the partially-observable world and acting in a
goal-directed manner. Most of the POMDP literature is
concerned with discrete domains, but in the past few years,
as POMDP tools become more powerful, there is growing
interest in tackling continuous domains.

The standard approach to solving POMDPs is to find an
approximate solution to the fully-observable belief -MDP,
whose states are probability distributions over the state space
of the original POMDP. In the discrete case, the resulting
belief space is continuous but finite-dimensional, and belief
update can be carried out exactly. However, the belief space
of a continuous POMDP is infinite-dimensional, and must
be approximated (Thrun, 2000).

The optimal value function of belief-MDPs is piecewise-
linear and convex in the discrete case (Sondik, 1971), and
this also holds for some cases of continuous state (Porta
et al., 2006), as long as the observations and actions are
discrete. This result was used to tackle domains with con-
tinuous hybrid-linear dynamics by Brunskill et al. (2008).
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Other combinations of the discrete and the continuous do-
mains were also considered (Hoey & Poupart, 2005; Spaan
& Vlassis, 2005). The richest domain tackled by continuous
POMDPs is probably outdoor navigation (Brooks, 2009).

However, in all the examples mentioned above, the belief
domain is solved through global optimization, as the MDP
formalism offers no inherent notion of locality. Since the
volume of state space grows exponentially with the num-
ber of state dimensions, it is unrealistic to seek a globally-
optimal solution in domains above a certain size. Some stud-
ies (e.g., Feng & Zilberstein, 2004) try to avoid some of the
computational burden by finding parts of belief space that
can safely be ignored, but the fundamental problem of expo-
nential scaling remains.

However, continuous domains naturally admit a notion of
distance, which opens the door for using local optimization
methods to approximately solve such domains. Since such
methods allow us to focus the computational effort only on
the most relevant parts of belief space, they offer greater
scalability than the global, belief-MDP-based approach.

We present a method for approximating a locally-optimal
solution to a POMDP in which state, action and observation
space are continuous. We approximate the belief space with
a parametric distribution, specifically a Gaussian mixture,
and use the Extended Kalman Filter (EKF) for belief update.
By virtue of the EKF being a first-order filter, we can ana-
lytically marginalize the belief update over the observations,
resulting in a deterministic update scheme (section ).

The EKF equations maintain Gaussian beliefs for dynam-
ics without discontinuities. However, POMDPs are often
used to tackle domains with unilateral constraints, such as
contacts (e.g., Hsiao et al., 2007). In such cases the true be-
lief can be far from Gaussian, since the distribution is trun-
cated by a constraint manifold. We approximate the prob-
ability mass that aggregates on the manifold with a Gaus-
sian of lower rank (section ). We analytically account for
the flow of probability mass between the two Gaussians by
using the equations of truncated normal distributions (sec-
tion ). These approximations allow us to cast the infinite-
dimensional, stochastic belief domain in terms of a finite-
dimensional optimal control problem, which can be solved
using continuous methods of local optimization.

The optimal policy for the POMDP is approximated by
linear feedback around a locally-optimal trajectory in belief



space (section ), which is found using Differential Dynamic
Programming (section ). Since planning takes place in be-
lief space, the resulting policy allows the agent to respond to
changes in the estimation uncertainty during policy execu-
tion. Finally, the belief approximations mentioned above en-
able efficient planning, but they can be replaced by more ac-
curate state estimation (e.g., particle filter) during policy ex-
ecution (i.e., forward simulation or real-world interaction).

Definitions
We consider a discrete-time POMDP defined by a tuple
〈S,A,Z, T,Ω, R,N〉, where: S,A and Z are the state
space, action space and observation space, respectively;
T (s′, s, a) = Pr(s′|s, a) is a transition function describing
the probability of the next state given the current state and
action; Ω(z, s, a) = Pr(z|s, a) is the observation function,
describing the probability of an observation given the cur-
rent state and action; and R is a time-dependent reward func-
tion Ri(s, a), with a terminal reward RN (s). In this paper
we consider an undiscounted optimality criterion, where the
agent’s goal is to maximize the expected cumulative reward
within a fixed time horizon N . This formulation is a devi-
ation from the common focus on discounted horizons, and
we adopt it because it is useful for the local optimal control
algorithm we employ (section ).

The Stochastic Belief Domain
The belief state b ∈ B is a probability distribution over S,
where bi(s) is the likelihood of the true state being s at time i
given the history of a particular trial (which consists of i− 1
observation-action pairs). In order to construct the belief
domain of a given POMDP, we need to find a representation
for b, and define the reward function and dynamics (belief
update) over this space.

The reward associated with a belief is simply the expected
value over this state distribution:

Ri(b, a) = E
s∼b

[
Ri(s, a)

]
. (1)

Given the current belief b, an action a and observation z,
the updated belief b′ can be calculated by applying Bayes’s
rule. In the discrete case, the belief is fully represented by
a normalized vector of size |S|, representing the likelihood
of every state in S, and the distribution of the expected next
state is:

b′(s′) ∝
∑
s

b(s)T (s′, s, a)Ω(z, s, a)

which is readily computable. However, in the continuous
case B is infinite-dimensional, and the belief update is an
integral:

b′(s′) ∝
∫
s

b(s)T (s′, s, a)Ω(z, s, a)ds.

In order to make this function computationally tractable, we
must employ some approximation b̂ to the true belief b, and
commit to some state estimation filter to update the approx-
imated belief.

Since our optimality criterion employs a finite-horizon,
our optimization focuses on the time-dependent policy
π(b̂, i), mapping beliefs and time to actions. The optimal
policy maximizes the cumulative reward:

π∗ = argmax
π

E
[ N∑
i=1

Ri(bi, π(bi, i))
]
. (2)

The Deterministic Belief Domain
In this paper we propose an alternative construction of the
belief domain. During planning, we employ two approxima-
tion steps: first, we approximate B as a Gaussian mixture.
Second, we update the belief deterministically by analyti-
cally marginalizing over the observation z. It is important
to note that these approximations facilitate planning using
local methods, but during policy execution they can be re-
placed by any other estimation process (see section ).

Smooth Dynamics
In this section, we focus on nonlinear stochastic dynamics
of the form:

ds = f(s, a)dt+ q(s, a)dξ, (3)

where ξ is a Wiener process. For a given state s and action a,
integrating these dynamics over a small time-step τ results
in a normal distribution over the next state s′:

T (s′, s, a) = N (s′|F (s, a), Q(s, a)), (4)

where the mean is propagated with the Euler integration

F = s+ τf(s, a), (5)

and the covariance Q = τqTq is a time-scaling of the con-
tinuous process qdξ. Similarly, we focus on observation dis-
tributions of the form:

Ω(z, s, a) = N (z|w(s),W (s, a)), (6)

where w deterministically maps states to observations, and
W describes how the current state and action affect the ob-
servation noise.

Given a Gaussian prior on the initial state, we approxi-
mate the infinite-dimensional b by a single Gaussian:

b̂(s) = N (s|ŝ,Σ),

and denote its parameterization by:

ν = {ŝ,Σ} (7)

where the covariance Σ belongs to the space of symmetric,
positive-semidefinite matricesM ⊂ Rn×n. Therefore, the
belief space B̂ is parameterized in this case by the product
space ν ∈ S×M. In the limit of τ → 0, this approximation
is accurate.

In order to approximate the belief update, we use the
Extended Kalman Filter (EKF). Given the current belief
b̂ = {ŝ,Σ}, action a and observation z, we calculate the par-
tial derivatives around ŝ : ws = ∂w/∂s, Fs = ∂F/∂s. We
find the uncorrected estimation uncertainty H = FsΣF

T
s +
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Figure 1: (a) A visualization of a truncated distribution, with
probability mass aggregating on the constraint manifold. (b)
A two-Gaussian mixture approximation of this distribution.
Since a Gaussian has infinite support, some probability mass
appears below the constraint.

Q(ŝ, a) and calculate the new mean ŝ′ by the innovation pro-
cess:

ŝ′ = F (ŝ, a)−K(z − w(ŝ)). (8)
where K = Hws(w

T
sHws + W (ŝ, a))−1 is the Kalman

gain. Finally, the new covariance Σ′ is given by:

Ψ(ŝ,Σ, a) = H−Hws(wT
sHws+W (ŝ, a))−1wT

sH
T. (9)

The deterministic belief update is obtained by marginal-
izing equations (8) and (9) over the observation z. Equa-
tion (8) is linear in z, and so we can take the expectation
by simply replacing z with its mean w(ŝ). The second term
of equation (8) vanishes, and so the mean follows (5). By
virtue of the EKF being a first-order filter, the calculation in
(9) is independent of z. In summary, the deterministic belief
update is formed by the combination of (5) and (9):

b̂′ = {F (ŝ, a),Ψ(ŝ,Σ, a)}. (10)

Dynamics with Unilateral Constraints
The assumptions that T and Ω are Gaussian is too restrictive
for some domains. In particular, it excludes discontinuous
dynamics that occur due to unilateral constraints. Since this
category includes interesting domains of disambiguation by
contact, object manipulation and locomotion, we extend our
method to handle the non-Gaussian belief that come about
in such cases.

In this section we consider domains with non-penetration
constraints Γ:

ds = f(s, a)dt+Q(s, a)dξ,

Γ(s) ≥ 0. (11)

In the general case, the reaction forces that enforce these
constraints can be calculated using complementarity meth-
ods (Stewart, 2000) or penalty methods (Drumwright, 2008).
When Γ(s) = 0, we say that the constraint is active. In this
paper, we consider domains where at most one constraint is
active at any one time, and so we may focus on cases where
Γ(s) is scalar.

The resulting belief b can no longer be described by a sim-
ple normal distribution: Γ describes an (n− 1)-dimensional

constraint manifold, and the belief distribution is truncated
at this manifold, with some probability mass aggregating on
it (figure 1(a)). We approximate this truncated distribution
with a weighted mixture of two Gaussians (figure 1(b)): one
describing the belief distribution in the unconstrained vol-
ume, and the other describing the aggregated belief on the
constraint (hence degenerate in the direction locally perpen-
dicular to the manifold). Using ν to parameteize a single
Gaussian as in (7), We denote the parameterized belief

b̂(s) = αN (s|ŝ1,Σ1) + (1− α)N (s|ŝ2,Σ2)

by the shorthand
b̂ = {ν1, ν2, α},

where the weight α ∈ [0, 1]. This is not an exact represen-
tation of the true belief; a Gaussian has infinite support, and
therefore the unconstrained Gaussian has non-zero probabil-
ity mass beyond the constraint. However, this mass is small
enough that, in practice, it has had no noticeable effect on
our results.

Belief update is done in two stages (as outlined in algo-
rithm 1). In the first stage, we update the belief of each
Gaussian independently using (10). Assuming that there is
noise in the direction locally-perpendicular to the constraint,
the second Gaussian is now full-rank. In the second stage,
we re-approximate this two-Gaussian mixture, ensuring that
the resulting mixture maintains the form described above —
the probability mass above the constraint manifold is ap-
proximated with one Gaussian, and the belief that lies be-
low the constraint is approximated with a second, degener-
ate Gaussian that lies on the manifold. The details of the
computations required for the second stage are detailed in
the next two subsections.

Truncation In order to re-adjust the belief to the con-
straint, we linearize the constraint function Γ ≈ Js+ e ≥ 0
around the mean of each Gaussian. We compute the distribu-
tions on either side of the constraint analytically by consid-
ering truncated normal distributions (Toussaint, 2009). We
can linearly rotate and re-scale the state space so as to en-
sure that the constraint manifold is locally perpendicular to
the kth dimension of s, and that the uncertainty in this di-
mension is independent of the others. Therefore, we can
focus our analysis on the one-dimensional case, assuming
without loss of generality that the constraint does not affect
any dimension but k.

Let x ∼ N (µ, σ2). When bound to an interval x ∈ [l, u],
its distribution becomes:

Pr(x) ∝ 1√
2πσ2

exp
(
− (x− µ)2

2σ2

)
Θ(x− l)Θ(u− x),

where Θ is the Heaviside function. The first two moments
of the resulting distribution are:

E(X | l < X < u) = µ+ σ
φ(l̄)− φ(ū)

Φ(ū)− Φ(l̄)
(12a)

Var(X | l < X < u) =

σ2

[
1 +

l̄φ(l̄)− ūφ(ū)

Φ(ū)− Φ(l̄)
−
(
φ(l̄)− φ(ū)

Φ(ū)− Φ(l̄)

)2
]

(12b)



Algorithm 1 Deterministic Belief Update with Unilateral
Constraints

Input: b̂ = {ν1, ν2, α}, action a
for i = 1, 2 do

Marginalized EKF: Calculate ν′i by (10).
Truncation: Calculate {νui , νli , αui } by (12).

end for
Reduction: Calculate ν′′1 , ν

′′
2 by (13).

Adjustment: Project ν′′2 onto constraint by (14).
Weight update: Calculate α′ by (15).
Output: b̂′ = {ν′′1 , ν′′2 , α′}.

where l̄ = l−µ
σ , ū = u−µ

σ , and φ(x̄), Φ(x̄) are the PDF
and CDF of the normal distribution with zero mean and unit
variance. The probability masses that aggregate on the con-
straints are Φ(l̄) and 1−Φ(ū). We are interested in distribu-
tions over one-sided intervals, so either l = −∞ or u =∞,
which further simplifies (12).

Mixture Reduction We use the truncation procedure de-
scribed above to split each Gaussian in two, across the con-
straint. In order to maintain our form (one Gaussian un-
constrained, one Gaussian on the constraint manifold), we
reduce this four-Gaussian mixture back to two, and project
the second Gaussian onto the constraint.

Reducing a mixture of two Gaussians {ν1, ν2, α} results
in a single Gaussian whose mean ŝ and covariance Σ are:

ŝ = αŝ1 + (1− α)ŝ2, (13a)

Σ = αΣ1+(1−α)Σ2+α(1−α)(ŝ1−ŝ2)(ŝ1−ŝ2)T (13b)

Using these equations, we combine the two Gaussians above
the constraint into a single Gaussian ν′′1 , and the two Gaus-
sians below the constraint into ν′′2 . Assuming that the
constraint is locally perpendicular to the kth dimension as
above, we project ν′′2 onto the constraint by setting:

(ŝ′′2)k = Γ(ŝ′′2), and (Σ′′2)k,k = 0. (14)

Finally, the weight of the unconstrained Gaussian in the ad-
justed mixture is:

α′ = ααu1 + (1− α)αu2 . (15)

Policy parametrization
Since a policy for a continuous POMDP is infinite-
dimensional, it also needs to be parameterized. In this paper
we focus on policies that are locally-linear:

π(b̂, i) = āi + Li(b̂− b̄i) (16)

for some parameterized belief states b̄1:N , actions ā1:N−1
and feedback gain matrices L1:N−1. The optimal values for
these parameters can be found using a variety of local op-
timization techniques, and in this paper we use Differential
Dynamic Programming, as described in the next section.

During policy execution, we can use a more accurate filter
(e.g., particle filter) for state approximation, using a differ-
ent representation b̃. In order to combine an arbitrary filter

with the above parameterization, we follow Brooks (2009,
ch. 6) and define a distance function D(b̃, b̂) between the
runtime beliefs and planned beliefs. This allows us to use
the points of the planned trajectory b̄1:N as nodes for nearest-
neighbor control. The time-dependence of the policy can be
integrated into this framework by including the time as an-
other dimension of b̂ and b̃ when calculating the distance D.

Differential Dynamic Programming
The combination of (1) and the belief update schemes of the
previous section define a problem of optimal control in a
high-dimensional continuous space, with non-linear dynam-
ics and non-quadratic reward. To find a locally-optimal so-
lution, we turn to a local optimization scheme called Differ-
ential Dynamic Programming (DDP), an algorithm that has
been successfully applied to real-world high-dimensional,
non-linear control domains (e.g., Abbeel & Ng, 2005). Here,
we only provide an overview of DDP; the interested reader
may find an in-depth description of the algorithm in Jacob-
son & Mayne (1970).

DDP finds a locally-optimal trajectory emanating from a
fixed starting point. The algorithm makes iterative improve-
ments to a nominal trajectory of length N , until a local min-
imum is found. DDP forms a quadratic approximation, and
so it has Newton-method-like convergence properties. Af-
ter convergence, DDP outputs the locally-optimal trajectory,
the open-loop action sequence which realizes this trajectory,
and a sequence of linear feedback gain matrices. These pa-
rameterize the policy (16) to create a near-optimal policy for
the original POMDP.

Results
We apply our method to three example domains, of increas-
ing dimensionality. The first is a simple one-dimensional
navigation problem, considered by Brunskill et al. (2008)
and Porta et al. (2006). The second is a two-dimensional
navigation domain, similar to those considered by Brooks
(2009). Finally, we solve a 16-dimensional problem, pre-
sented by Erez & Smart (2009).

One-Dimensional Navigation
In this problem, a robot must locate a power socket in a one-
dimensional corridor, blocked at either end. The robot can-
not sense the plug nor its own position. In Brunskill et al.
(2008), the robot can move left or right in discrete steps,
while we consider continuous actuation.

The solution of Brunskill et al. has the robot drive to one
of the walls (to localize itself), and then back up to the lo-
cation of the power supply. Our solution is qualitatively the
same (figure 2): as the robot drives towards the wall, the
variance of the approximated position collapses, indicating
that the robot now has a good idea of where it is. It then
backtracks to the location of the target using odometry.

We cannot compare the performance of our method with
Brunskill et al.’s directly, because of our use of continuous
actions. However, we note that their method is reported to
take approximately 40 minutes to find an optimal solution,
while ours takes ∼5 seconds.
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Figure 2: The 1D corridor. The robot begins with high esti-
mation uncertainty (error bars show one standard deviation).
As the robot approaches the wall (at time-step 32), the un-
certainty vanishes. Certain of its position, the robot can now
steer to the target at zero using odometry alone.

(a) (b)

Figure 3: 2D navigation. (a) The robot (black line) localizes
itself by approaching the wall (dashed blue) while avoiding
the obstacles (X) and reaching the target (triangle). Blue
ellipses depict the covariance. (b) An optimal solution that
interacts with the curved part of the constraint manifold.

Planar Navigation

In this problem, a robot must move in a closed room from a
start point to a target while avoiding obstacles.

As before, the robot cannot sense its position, but may lo-
calize itself by making contact with the walls. The resulting
optimal behavior (figure 3(a))is found in less than a minute:
the robot avoids the obstacles by approaching the side wall,
and then “cut” the corner on its way to the target at the target
at the bottom wall. This behavior can be seen as a precur-
sor of coastal navigation (Roy & Thrun, 1999), a technique
long-used by roboticists.

In order to study the effect of linearizing the constraint,
we tested a case where the agent interacts with the curved
segment of the constraint. As figure 3(b) shows, the optimal
path in this case follows the round corner without difficulty.

A direct comparison with the results of Brooks (2009) is
not possible, but we note that the calculation times reported
there range between 7 and 25 minutes, while our method
finds a solution in less than one minute.

Hand-eye coordination
This domain simulates the problem of an agent coordinating
two “hands” and an “eye”. The task requires the agent to
bring the hands from their starting positions to a target point
at a specific time, while avoiding four obstacles in the pla-
nar scene. State transitions are subject to a fixed Gaussian
process noise. The obstacles are in a fixed position during a
single trial, but can move between trials, so the agent must
observe and estimate their positions. Our results are best un-
derstood by watching the movie submitted as supplemental
material.

The planar scene is illustrated in figure 4(a). The state is
defined in terms of the following variables: se is the eye’s
two-dimensional position, sh1 and sh2 are the positions of
the hands, st is the target’s position, and {sli , i = 1 . . . 4}
are the positions of four obstacles. Therefore, the state space
has 16 continuous dimensions. Every state s is a concatena-
tion of the 8 planar positions above. The action space A
is 6-dimensional, specifying planar velocities for the hands
and eye.
Z, the observation space, is identical to the state space.

The observation noise covariance W is diagonal, allowing
independent observation of each scene element. W is state-
and action-dependent: the eye has the capacity to produce
unambiguous observations in a small region around its cur-
rent position, conceptually modelling foveated vision. The
eye’s gaze locally reduces the observation noise:

W?(s, a) = 1− e−‖se−s?‖
2/2η + 0.01aTe ae (17)

where ? stands for one of the scene elements: h1, h2, t, or
any of the obstacles li, the parameter η determines the size
of the fovea, and ae is the current actuation of the eye. The
last RHS term in (17) models visual inhibition during sac-
cadic eye movement, effectively eliminating the eye’s effect
during high-velocity eye movements. Thus, the eye can dis-
ambiguate the state only when it is close to an object, and
moving slowly.

The reward function in Erez & Smart (2009) penalizes for
distance between the hands and the target at the final time
step, and for proximity between the hands and the obstacles
at all other time steps, and action incurs a quadratic cost.

The covariance of the process noise Q is a constant diag-
onal matrix, where the noise in the X- and Y-direction are
equal for every scene element. The process noise that af-
fects the eye, obstacles and target is negligibly small, and
kept away from zero only enough to prevent singularities in
equation (9). From the agent’s perspective, this means that
once observed, the positions of the target and obstacles can
be trusted to remain unmoved, allowing the eye’s position
to provide grounding for locating all other elements of the
scene. Since process noise is uncorrelated between state di-
mensions and symmetric in both planar directions, the belief
covariance can be decomposed and succinctly represented
by 8 numbers1, denoting the “planar uncertainty” of each of
the scene’s elements. In all, B̂ has 24 dimensions.

1Formally speaking, the covariance is an 8-by-8 block matrix of
2-by-2 matrices, where the 8 diagonal blocks are multiples of the
identity matrix, and all other blocks are zero.
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Figure 4: Hand-eye coordination. (a) A schematic of the
scene. The hands (red and blue diamonds) aim for the target
(green triangle) while avoiding the obstacles whose position
is uncertain (black blurs), assisted by the eye (middle). (b)
An illustration of the learned optimal trajectory. The size
of the eye’s fovea can be seen as a black circle around its
starting place (center of the figure). The uncertainty in the
hands’ positions are depicted as a series of circles. The eye’s
trajectory alternates between following the hands in smooth
pursuit (thick black line) and saccadic motion (thin dashed
line) between the hands and the obstacles. This behavior is
better illustrated by the movie, attached as supplementary
material.

The locally-optimal solution for this problem was found
through the use of shaping techniques. Initially, the size of
the notional fovea is large (η = 10), allowing a relatively
unambiguous view of the entire scene. As learning pro-
gresses, the size of the foveal region is gradually reduced,
making the eye movements more important. Every new
problem instance is solved using the previous solution as a
starting point. This process repeats for decreasing fovea ra-
dius (η = [1, 0.3, 0.05]) until we generate a solution to the
final desired problem instance.

Figure 4(b) shows the resulting locally-optimal trajecto-
ries for both hands and the eye. Notice how the eye tracks
each hand in turn as it passes close the obstacles, and how
the eye alternates between saccadic motion and smooth pur-
suit. This behavior is best illustrated by a video which is
included as supplementary material, and we encourage the
reader to see it.

This domain was not cast as a POMDP originally, and the
authors do not report time estimates for convergence, mak-
ing direct comparison impossible. The shaping sequence re-
quired running DDP to convergence 4 times, yet the optimal
solution for this 16-dimensional domain was found in less
than 3 minutes of MATLAB running on a single-core desk-
top computer.

Discussion
This paper offers a new perspective on solving continuous
POMDPs. Instead of using global approximation in a belief-
MDP, we cast the belief domain in terms of optimal control.
This allows us to use computationally efficient methods de-
veloped in control theory. While this paper offers only an
initial exploration of this approach, our experiments try to
highlight its merits in terms of scalability.

POMDPs are challenging because the domain inherently
couples estimation and control. Our method realizes this
coupling by incorporating the continuous dynamics and the
EKF equations into a single dynamical system, and perform-
ing optimal control in this augmented domain. This EKF-
based coupling has been studied in the context of control
theory (e.g., Tse et al., 1973) and robotics (Prentice & Roy,
2009), but not for POMDPs.

While this method scales very well with state dimension-
ality, we chose to focus on domains where only one con-
straint is active at a time. Such cases are amenable to ana-
lytic manipulation using truncated normal distributions, as
described above. If we extended this type of analysis to
cases where more than one constraint may be active at once,
we would be assigning a Gaussian to every combination of
active constraints, and accounting for the flow of probability
mass between all of them. This would introduce yet another
set of approximations, and be computationally reasonable
only for a small number of jointly-active constraints.

One natural extension of this work could employ local op-
timization from multiple starting points, creating a controller
that uses a trajectory library (Stolle & Atkeson, 2006). In
particular, a multi-modal prior can be handled by finding the
optimal behavior for each of the modes, and using state esti-
mation during policy execution to choose the relevant case.

In many real-life cases, an active constraint results in fric-
tional forces, in addition to the reaction forces that maintain
non-penetration. This can be incorporated into our method
by using a different dynamical model for the initial belief
update of the constrained Gaussian ν2, in particular one that
incorporates friction. In cases where making contact (i.e.,
collision) is associated with a non-negligible impact dynam-
ics of other degrees of freedom beyond the constrained one
(e.g., foot-ground impact, or ball-racket impact), these im-
pulses can be considered as we project the Gaussian that
lies below the constraint manifold onto the linearized hy-
perplane.
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