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ABSTRACT
Opportunistic routing protocols tackle the problem of effi-
cient data collection in dynamic wireless sensor networks,
where the radio is duty-cycled to save energy and the topol-
ogy changes unpredictably due to node mobility and/or link
dynamics. Unlike protocols that maintain a routing struc-
ture, in opportunistic protocols nodes forward packets to
any neighbor that wakes up first, reducing latency and en-
ergy costs and increasing the resilience to network dynamics.

We claim the performance of existing opportunistic rout-
ing protocols can be improved while retaining their resilience
by harnessing the synergy between duty cycling and op-
portunistic forwarding. To prove this claim, we present
Staffetta, the first practical duty-cycle adaptation scheme
for opportunistic low-power wireless protocols. Staffetta dy-
namically adapts each node’s wake-up frequency to its cur-
rent forwarding cost, so nodes closer to the sink become more
active than nodes farther away. In this way, Staffetta biases
the forwarding choices toward the sink as the neighbor wak-
ing up first is also likely to offer high routing progress. Ex-
periments on two testbeds with four different opportunistic
routing mechanisms demonstrate that Staffetta achieves sev-
eralfold performance improvements compared with a fixed
wake-up frequency. As a case a point, Staffetta enables
ORW, the state-of-the-art opportunistic routing protocol,
to reduce end-to-end packet latency by 79–452× and energy
consumption by 2.75–9× while increasing packet delivery
ratio compared with ORW’s default link-layer settings.
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•Networks→ Network protocol design; Transport pro-
tocols;
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1. INTRODUCTION
Data collection is a solved problem—that is, from the

packet-reception perspective, with protocols reported to col-
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lect more than 99.9 % of all data. However, data collection
is still a challenge from the real-world perspective where la-
tency and network lifetime are major concerns. In that light,
ORW is the first protocol to effectively employ opportunistic
routing in wireless sensor networks [20]. ORW shows that
compared to traditional routing schemes, such as CTP [15],
opportunistic forwarding decisions can significantly improve
data collection performance in asynchronously duty-cycled
networks in terms of end-to-end packet latency and energy
efficiency, while being more resilient to topology changes.

The idea of opportunistic routing is simple: instead of
first making the forwarding decision and then waiting for
the destination to wake up, nodes forward packets oppor-
tunistically to the neighbor that wakes up first and offers
enough routing progress toward the sink. The more poten-
tial forwarders a node has, the shorter the time it needs to
wait on average before sending, and hence the more efficient
it can operate [20]. Moreover, the more forwarding choices
a node has, the more resilient it is to link fluctuations and
other network dynamics.

Problem. Despite the many benefits over traditional rout-
ing schemes, existing opportunistic routing protocols run on
top of duty-cycled link layers wherein all nodes have the
same wake-up frequency. As a result, all nodes have the
same forwarding costs with regard to latency and energy
consumption. But nodes play different roles. The closer a
node is to the sink, the more packets it has to forward, and
hence, the lower its forwarding costs should be. The wake-
up frequencies should match the role of each node. This
is indeed the idea of various adaptive, duty-cycled link lay-
ers. However, those targeting opportunistic data collection
protocols have only been studied analytically [17, 18], thus
lacking validation against the real-world dynamics of low-
power wireless, or have been designed for static networks
and traditional tree-based routing schemes on top of the
unicast primitive [16, 24, 31].

Contribution. We close this gap by presenting Staffetta,
the first practical duty-cycle adaptation scheme for oppor-
tunistic low-power wireless protocols. Staffetta adapts the
wake-up frequency of each individual node to its current for-
warding costs. As a result, nodes closer to the sink are more
active (wake up more often) than nodes at the edge of the
network. This activity gradient automatically steers packets
in the right direction: the probability of finding an awake
neighbor is highest in the direction of the sink. This way,
Staffetta improves the performance of opportunistic proto-
cols while retaining their resilience to network dynamics.



A key advantage of our approach is that it can be eas-
ily incorporated into existing duty-cycled link layers while
incurring a minimal overhead. As such, Staffetta executes
seamlessly underneath existing opportunistic protocols such
as ORW. Moreover, due to its fully distributed and localized
operation, Staffetta scales well to large and dense networks,
and readily supports scenarios with mobile nodes.

We implement Staffetta atop the X-MAC [?] implemen-
tation in Contiki. In addition, we further implement four
different opportunistic routing schemes, two of which are di-
rectly inspired by state-of-the-art protocols: ORW [20] and
the Backpressure Collection Protocol (BCP) [25]. This al-
lows us to quantify and compare the performance gains due
to Staffetta across different opportunistic schemes irrespec-
tive of varying operating systems, protocol stacks, and other
implementation details of the original protocols. Neverthe-
less, we also perform a head-to-head comparison against the
original TinyOS-based implementation of ORW.

To this end, we run experiments on the FlockLab [22] and
Indriya [7] testbeds with 28–139 TelosB nodes and different
network diameters and node densities. For example, we find
that compared to using a fixed wake-up frequency, Staffetta
achieves superior performance in all metrics and across all
opportunistic schemes and scenarios we consider. A case in
point is the significant improvement Staffetta achieves com-
pared to the original ORW with default link layer: 79–452×
shorter median end-to-end packet latencies, 2.75–9× lower
median energy consumption, and higher packet delivery ra-
tios. Moreover, experiments with a mobile sink demonstrate
that Staffetta further improves the high resilience of oppor-
tunistic protocols, delivering packets more reliably and con-
sistently two orders of magnitude faster in the face of drastic
network topology changes. These performance gains come
with a negligible overhead in terms of memory and process-
ing. From a broader perspective, we show that Staffetta’s ac-
tivity gradient can also be used as an implicit routing metric
by itself, achieving performance similar or better than other
mechanisms empowered by Staffetta, but without the need
for maintaining up-to-date routing state for each neighbor.

In summary, this paper contributes the following:

• We present Staffetta, the first practical duty-cycle adap-
tation scheme for opportunistic wireless protocols. By
analyzing the interplay between duty cycling and op-
portunistic forwarding, we explain how Staffetta can
reduce latency while extending network lifetime.
• We demonstrate how to efficiently implement and com-

bine Staffetta with existing opportunistic protocols.
• We perform extensive experiments and systematic com-

parisons on two testbeds, and show that Staffetta sig-
nificantly improves the performance of opportunistic
routing protocols while further helping their resilience.

2. PROBLEM STATEMENT
In duty-cycled networks, two main metrics determine the

efficiency of data collection. First, the time until a packet
is collected at the sink, known as packet latency. Second,
the routing overhead, which accounts for the resources (e.g.,
energy, time) consumed by each node to forward messages.
The goal of many data collection protocols (and their rout-
ing metric) is to minimize the packet latency ∆ with the
least possible amount of additional resources. More for-
mally, consider a collection protocol and denote by P =

Table 1: Mathematical notations

Description Symbol
Energy budget DCmax

Number of forwarders n
Wake-up frequency ω
Hop distance to sink h
Forwarding delay δF
Rendezvous time δR
Transmission time δtx
When appropriate symbols will be indexed by
node number (i) or hop distance from the sink (h).

{u0, u1, . . . , uh} the sequence of nodes forming the path of
length h (in hops) from node u0 to the sink uh. In an asyn-
chronous duty-cycled network, the packet latency over path
P is given by

∆P =

h−1∑
i=0

δF (i), (1)

where the forwarding delay δF (i) is the time node ui needs
to send a packet to ui+1 (refer to Table 1 for an overview of
the notation we use). This delay can be subdivided into two
different components: the time node ui waits for its desti-
nation to wake up, the rendezvous time δR(i), and the time
required to forward the packet, the transmission time δtx:

δF (i) = δR(i) + δtx. (2)

When δR and δtx are constant across all nodes, which is
the case for most tree-based unicast data collection protocols
with fixed wake-up frequency, the efficiency of data collec-
tion is improved by minimizing the path length h. However,
this is not the case for opportunistic routing, where δR(i)
can vary significantly across nodes depending on the num-
ber of potential forwarders ni and their wake-up frequen-
cies. The more forwarders a node has, the sooner one of
them will wake up. This is because in opportunistic rout-
ing, messages are routed dynamically to the first available
neighbor that provides enough progress for the given rout-
ing metric1. Concretely, when all potential forwarders have
the same wake-up frequency ω, it is known [2, 14] that the
rendezvous time δR(i) has an expected value of

E [δR(i)] =
1

(ni + 1)ω
. (3)

This rendezvous process suffers from two key problems.
First, the following trade off arises: increasing the number
of forwarders ni reduces the expected δR(i), but increases
the path length because of sub-optimal routing paths. On
the other hand, with few forwarders the path length is re-
duced, at the cost of longer forwarding delays. Therefore,
finding the right number of forwarders is a complex bal-
ancing act [8], yet key to efficient data collection using op-
portunistic protocols.2 Second, the expected rendezvous is

1Not all routing metrics are strictly correlated with the hop-
distance to the sink. Thus, it is possible that messages are
forwarded to nodes whose hop-distance is equal or greater
than the forwarding node. This is the case of EDC (cf. Sec-
tion 4.3), which prefers faster paths to shorter ones.
2For example, Landsiedel et al. empirically found that the
best trade-off in ORW is achieved with five potential for-
warders [20].
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Figure 1: Opportunistic routing of a packet from
node (C) to sink (S) – topology on the left, routing
metric on the right (the lower, the better). By let-
ting the node closer to the sink (A) wake up twice as
often, the rendezvous times (in grey) and the num-
ber of hops are reduced.

load-agnostic cf. eq. 3. A node close to the sink has the same
rendezvous cost as a leaf node, but it needs to rendezvous
way more often because of its higher traffic load. Having the
same expected rendezvous time across the whole network is
like designing a city using only normal streets, without av-
enues or highways: latency and energy consumption increase
unnecessarily.

To solve these two problems, we propose Staffetta, a low-
overhead and fully distributed duty-cycle adaptation scheme
that adjusts at runtime the rendezvous time of each node to
its current local needs. The basic idea behind our solution is
very simple. Instead of setting a constant wake up frequency
for all nodes, we set a constant energy budget. All nodes
will die at the same time. This means that nodes need to
make local decisions regarding their use of power: if their
observed rendezvous time is long (short), they should wake
up less (more) often. As we shall see, this adaptive scheme
is general enough to run underneath various opportunistic
routing methods, and improves the performance of these
methods on all fronts: the delivery rate is maintained or
even improved, the network lifetime is increased, and the
latency is reduced.

3. STAFFETTA
Staffetta builds upon the intuition that, by letting nodes

closer to the sink wake up more frequently than those farther
away, one can drastically shorten the forwarding delay while
reducing the average path length. As an example, Figure 1
compares an opportunistic collection mechanism with fixed
wake-up frequency (a) against one where the node closer to
the sink (node A) wakes up twice as frequently (b). Since
in Figure 1(b) A increases its activity, it wakes up before B
and gets selected as forwarder by C. This not only reduces
the forwarding delay of C, but also decreases the number of
hops needed to deliver C’s message to the sink.

In opportunistic routing, the forwarding choices of nodes
depend on two aspects: i) the rendezvous time, and ii) the
routing metric. A node forwards a packet to the neighbor
that wakes up first and provides enough routing progress
with respect to some metric, trading good routing choices
for lower forwarding delays. Thus, by making nodes closer
to the sink wake up more often, it is possible to improve
opportunistic data collection in two ways: rendezvous with
nodes closer to the sink becomes both more probable and
more efficient.

3.1 Activity Gradient
Staffetta adjusts the wake-up frequency of nodes to their

current forwarding costs. This creates an activity gradient,
where nodes closer to the sink wake up more often than those
farther away. Staffetta achieves this in a distributed fashion
and with minimal runtime overhead, as explained next.

i) Fix an energy budget. Given a desired network lifetime
as determined by the application requirements, Staffetta im-
poses a maximum duty cycle DCmax, 0 < DCmax < 1, that
is equal for all nodes in the network. This value determines
the maximum fraction of time each node can keep its radio
on. Since the radio is often the most power-hungry compo-
nent on a typical low-power sensor node, DCmax effectively
ensures that nodes stay within a fixed energy budget.

ii) Adjust the wake-up frequency to stay within the energy

budget. Given the forwarding delay δ̂F (i) measured by each
node at runtime, a node computes its wake-up frequency as

ωi =

{
∞ if it is the always-on sink

DCmax / δ̂F (i) otherwise.
(4)

Note that unlike the analytical expression in eq. (2), δ̂F
is based on each node’s runtime observations, thus it takes
into account implementation-specific delays, such as packet
retransmission and channel sensing. Whenever the observed
δ̂F changes, a node updates its wake-up frequency.

How does this policy create an activity gradient? In the
presence of an always-on sink, the activity gradient emerges
as follows. All nodes start with a fixed wake-up frequency,
as in traditional opportunistic routing. However, since the
sink does not duty-cycle its radio, its direct neighbors within
radio range experience extremely short forwarding delays
that are approximately equal to δtx—the rendezvous with
the sink is almost instantaneous. Thus, any node that is a
1-hop neighbor of the sink adapts its wake-up frequency to

ω1 ≈ DCmax / δtx. (5)

The higher activity of the sink’s 1-hop neighbors, in turn,
reduces the forwarding delay of the 2-hop neighbors, which
then increase their wake-up frequency. This cascading effect
propagates (with a decaying factor) throughout the network,
creating what we call the activity gradient of Staffetta.

3.2 Analysis
While the behavior of a single node (e.g., adjusting the

wake-up frequency) is fairly easy to describe and under-
stand, the emergent behavior of the system (e.g., the re-
sulting activity gradient) is more complex and difficult to
predict. To gain a further understanding about Staffetta’s
gradient formation, we now present a numerical evaluation
and a simple model. This analysis is not meant to define
the assumptions or guidelines used for the practical imple-
mentation of Stafetta, but to provide a clean setup for under-
standing Staffetta’s macro properties. A detailed description
of Staffetta’s practical implementation is presented in Sec-
tion 4.

Figure 2 depicts a numerical simulation of opportunistic
routing with and without Staffetta. The simulation is based
on the topology shown at the bottom. Except for the sink’s
1-hop neighbors, a node has 3 forwarders, an initial wake-up
frequency ω = 5 Hz, a data rate of 1 Hz, and DCmax = 15 %.

Without Staffetta, the wake-up frequency, shown at the
top, is constant across all nodes, and so is the forwarding de-



lay as shown below and captured by eq. (3). With Staffetta,
the short rendezvous of the sink’s 1-hop neighbors leads to a
high wake-up frequency, as stipulated by eq. (4). The sink’s
2-hop neighbors observe a higher forwarding delay than the
1-hop neighbors and adjust their wake-up frequency accord-
ingly. This process further propagates throughout the net-
work and has two important consequences. First, end-to-end
packet latency is reduced significantly, because this metric is
determined by the sum of forwarding delays on all hops, as
captured by eq. (2). Moreover, the node’s duty cycle, shown
in the chart right above the topology, is also reduced dras-
tically, because the nodes with the highest load spend less
time and energy forwarding packets (the duty cycle can be
roughly estimated as the forwarding delay times the load).

Note that, often, Staffetta nodes consume less energy than
what it is in their budget. This is because Staffetta schedules
the wake-up frequency assuming there is always a packet to
forward (worst-case budget allocation). In case no packet
needs to be forwarded, a node will only wake up for listening,
thus saving the energy of the rendezvous process.

Another important observation is that the activity gradi-
ent of wake-up frequencies decreases exponentially, as visible
in the top chart in Figure 2. We now derive a simple model
to understand how the gradient’s shape and steepness are
controlled by the network topology (width and depth) and
the energy budget. For mathematical tractability, we as-
sume that i) no collisions or message retransmissions occur,
and ii) all nodes have the same number of forwarders n.
Given that the forwarding delay perceived by nodes at h
hops from the sink is E [δR(h)] + δtx, we can describe their
activity gradient as

ωh ≈
DCmax

E [δR(h)] + δtx
=

DCmax

1/((n+ 1)ωh-1) + δtx
. (6)

Since usually in duty-cycled networks δR � δtx, we can
further simplify the above expression by setting δtx = 0 for
all nodes with h > 1. Thus, we obtain

ωh ≈ DCmax(n+ 1)ωh-1 = (DCmax(n+ 1))h-1ω1. (7)

Even though the resulting model is a simple approxima-
tion it captures the characteristics of the wake-up gradient.

According to this model, the activity gradient attains the
maximum frequency at the sink’s 1-hop neighbors (ω1) and
decreases with geometric rate DCmax(n+ 1). This geomet-
ric rate maps the trend that can be observed in Figure 2. In
summary, eq. (7) conveys two important points: i) smaller
energy budgets DCmax result in steeper activity gradients,
and ii) increasing the number of forwarders n flattens the
gradient.

In practice, this means that in dense and wide networks,
where the number of forwarders increases, we could lower
the energy budget DCmax without affecting the resulting
activity gradient. Lowering the energy budget DCmax will
extend the overall network lifetime, since in Staffetta the
energy budget determines an upper bound on the maximum
energy consumption of all nodes, as clearly visible in Fig-
ure 2. On the contrary, in deep networks (networks with
a large diameter), DCmax should be increased so that the
gradient could extend to the nodes furthest from the sink.

3.3 Explaining Staffetta’s Performance Gains
Next, we analyze in more detail the benefits of Staffetta’s

activity gradient on packet latency, routing overhead, and
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Figure 2: Numerical simulation of opportunistic
routing with and without Staffetta. With Staffetta,
the closer nodes are to the sink (left side), the higher their
wake-up frequency, and thus, the smaller their forwarding
delay. This leads to lower latencies and duty cycles. The
energy budget DCmax is an upper bound on the duty cycle of
every node.

network lifetime, the three key metrics of data collection
applications [15].

Packet latency. The end-to-end latency depends on the
forwarding delays and the path length between source and
sink. Previously, we noted that by drastically reducing the
forwarding delay of nodes closer to the sink, the overall end-
to-end latency is also reduced, cf. eq. (2). Now we will dis-
cuss how Staffetta further reduces end-to-end latency by im-
plicitly choosing short paths and exploiting temporal links.

While traditional collection protocols minimize latency
by routing along a shortest-path routing tree, opportunistic
protocols reduce the forwarding delay by selecting the first
available node among a set of candidates that improve the
routing metric over a certain threshold. Therefore, the wake-
up frequency plays an important role in reducing packet la-
tency of opportunistic mechanisms. First, it affects the for-
warding delay of nodes; the higher the frequency, the lower
the delay cf. eq. (3). Second, it biases the forwarding choices
of nodes. In particular, given a node i with ni forwarders,
each with wake-up frequency ω1 . . . ωni , the probability of
selecting node j as a forwarder is

Pij =
ωj

ω1 + · · ·+ ωni

. (8)

When forwarders wake up with a fixed frequency, they have
the same probability of being selected. Thus, as mentioned
in Section 2, the size of the set of potential forwarders set
must be chosen carefully. Too many forwarders and the
performance will be similar to a random walk (long paths,
but short forwarding delays); too few forwarders and the
mechanism will resemble deterministic routing (short paths,
but long forwarding delays).



With Staffetta, on the other hand, the number of for-
warders becomes a secondary concern: forwarding choices
are inherently biased towards the nodes that are closer to
the sink i.e., the ones that wake up more often cf. eq. (7) and
(8). Therefore, Staffetta improves opportunistic protocols by
biasing the forwarding choices towards the candidate nodes
that provide the highest routing progress, effectively reducing
the path length of messages.

Even if a “bad” node (i.e., a forwarder that offers little
progress and long forwarding delays) is included in the for-
warding set, the selection probability will be low as the wake-
up frequency decreases with the distance to the sink. The
effect is that Staffetta “routes” along paths whose length is
comparable to mechanisms based on shortest-path routing
trees, while maintaining the benefits of opportunistic proto-
cols, namely, shorter forwarding delays, better load balanc-
ing, and exploitation of temporal links, that is, short-lived,
long-distance links [28].

The exploitation of temporal-links is particularly interest-
ing, because in Staffetta temporal links that provide better
progress towards the sink, will have a higher probability of
being selected. Consider for example node 8 in Figure 2,
with three forwarders (nodes 4, 5 and 6) each waking up at
frequency ω4 = ω5 = ω6 = 11 Hz. According to eq. (8), the
forwarding probabilities are P84 = P85 = P86 = 0.3̄. Now
assume that, for a short period of time, node 8 is able to com-
municate with node 2, waking up at frequency ω2 = 27 Hz.
The forwarding probabilities are now heavily biased towards
the temporally-available new node, with P82 = 0.45, and
P84 = P85 = P86 = 0.183̄. Note that, with a constant wake-
up frequency (i.e., no Staffetta) the forwarding probabilities
will be P82 = P84 = P85 = P86 = 0.25, almost halving the
probability of exploiting the temporal link between nodes 8
and 2. Therefore, Staffetta is able to drastically increase the
probability of exploiting temporal links.

Routing overhead. In static networks, routing overhead
is usually a minor problem. Since nodes must build the
routing structure only once, they can spend a significant
amount of resources (energy, bandwidth) and amortize the
costs over time. Unfortunately, in practice it is difficult to
have real static conditions. Even if nodes do not physically
move, the topology continuously changes due to link-quality
fluctuations and uncontrolled sources of interference [4].

When the topology changes more often, nodes must con-
stantly update their routing structures. Amortizing the
overhead over time becomes less and less possible, up to the
point that the mechanism is continuously using part of the
channel bandwidth to maintain the routing structure. This
itself limits the data rate of collection mechanisms, increases
the chances of packet collisions, and incurs high energy over-
head.

Staffetta overcomes these limitations as follows. First,
Staffetta introduces only a minimal overhead to the exist-
ing protocol stack. Staffetta’s mechanism requires just local
observations (of the forwarding delay). The overhead thus
consists of a few bytes of memory for storing the latest ob-
servations and trivial computations to determine the wake-
up frequency, whereas it utilizes no additional bandwidth at
all. Therefore, empowering collection protocols with Staffetta
comes with negligible overhead.

Second, Staffetta allows data collection protocols to re-
duce their own overhead. Since Staffetta’s activity gra-

dient biases the opportunistic selection of a forwarder al-
ready towards the sink, it is possible to exploit Staffetta in
a cross-layer fashion. In particular, the continuous neigh-
bor discovery, needed by collection protocols to maintain
their routing structure, can be avoided and substituted with
the biased opportunistic forwarders provided by Staffetta.
For example, to select the best forwarders in ORW [20],
nodes must keep an up-to-date list of their neighbors’ rout-
ing metric. While the current metric can often be piggy-
backed (e.g., on beacons and acknowledgments), link dy-
namics could force nodes to actively request their neighbors
for updated metric information, increasing the routing over-
head. Using Staffetta, the best forwarders are often the ones
that wake up first, so nodes can avoid maintaining their
neighbor’s routing metric and simply select the first node
provided by the opportunistic mechanism, which is simpler
and more efficient.

Network lifetime. Network lifetime, often defined as the
time until the first node (or critical group of nodes) in the
network depletes its battery, is a very important metric for
real-word deployments. This metric depends on the battery
capacity of nodes and the average power consumption of the
most energy-demanding node, the one that will deplete its
energy first. To this end, it is more rewarding to reduce the
maximum energy consumption among all nodes rather than
the average energy consumption in the network. This is
precisely what Staffetta achieves by imposing a fixed energy
budget. However, note that although all nodes run with the
same budget, they spend it differently. Nodes next to the
sink can forward messages without any rendezvous delay,
and spend the saved energy on waking up more frequently;
nodes at the edge of the network do not need to forward any
data and can spend their complete budget on rendezvous
with parent nodes that wake up at a low frequency.

4. IMPLEMENTATION
We implement Staffetta within the default protocol stack

in the Contiki operating system. As shown in Figure 3, our
implementation of Staffetta and the protocols we compare it
against has three layers. First, a duty cycle layer that uses ei-
ther a fixed wake-up frequency or the adaptive Staffetta ap-
proach. Second, a baseline implementation of opportunistic
communication that is inspired by the state-of-art ORW, but
contains several enhancements to make opportunistic rout-
ing robust to packet duplicates, which is a common problem
of opportunistic schemes. Third, we describe our implemen-
tations of three routing metrics, two of which are at the core
of well-known protocols, namely ORW [20] and BCP [25].

The protocols, from which we take inspiration, are de-
signed for different operating systems and platforms, with
many implementation details that may hide the real ben-
efits of their core mechanism, which is in our opinion the
routing metric. Using a common implementation of the op-
portunistic data collection mechanism (baseline) allows us
to perform a fair, controlled comparison, where differences
in performance are solely due to the routing metric and the
Staffetta mechanism. Our goal is not to state that Staffetta
is better than the state of the art, but rather that it makes
the state of the art better. That said, our implementations
provide comparable or better performance than the original
protocols. In the following, we describe the implementation
of the three layers in Figure 3 in more detail.
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Figure 3: Our implementation consists of three dis-
tinct layers based on the default protocol stack in
Contiki.

4.1 Staffetta
Staffetta’s mechanism consists of adapting the wake-up

frequency of nodes based on the observed forwarding delay
δ̂F . Thus, implementing Staffetta is rather straightforward.

Measuring the forwarding delay. We empirically mea-
sure the fixed communication delays δtx. For the base-
line mechanism, depicted in Figure 4, δtx includes the time
needed to listen to the channel to check if it is clear for trans-
mission (δl), and the time needed to transmit the selection
packet (δs).

To quantify the actual rendezvous time (δ̂R), each node
measures the period between the first beacon sent and the
first acknowledgment received. Due to the stochastic nature
of the rendezvous delay, our implementation averages the
last 20 measurement using a simple moving average (SMA)
to produce a stable, yet reasonably agile activity gradient
that is robust to small disturbances such as fast link fluctu-
ations.

Computing the wake-up frequency. Once δtx and δ̂R
are determined, the wake up frequency is computed accord-
ing to equation (4). In particular, after each successful mes-
sage exchange, our implementation of Staffetta updates the
average rendezvous time and the wake-up frequency ω, and
schedules the next wake-up in 1/ω seconds.

However, setting the wake-up frequency based on local
information could lead to some complications. Different
from traditional duty-cycling techniques, in which the ac-
tivity rate depends on the application’s traffic requirements,
Staffetta bases the wake-up frequency solely on the forward-
ing delay, which depends on the network topology. In ef-
fect, the wake-up frequency is a function of the distance to
the sink and the (average) number of forwarders at each
hop. This could be problematic in case of weakly connected
nodes, located at the edge of a large network. For these
nodes, communication could be so expensive (due to long
rendezvous times) that maintaining the required data rate
will make the node consume more energy than budgeted.
There are two approaches to handling this issue.

i) Give priority to the application requirements. A so-
lution to this problem is capping the minimum frequency
to the data rate of the application. Capping the minimum
wake-up frequency has the consequence that equation (4)
could be violated, causing the energy budget to be exceeded
as more data could be sent than can be afforded (given the
long rendezvous time with the forwarders). This effect is
exacerbated by a poor selection of forwarders, as the gradi-
ent is effectively flattened (negligible bias), leading to longer
paths and extra traffic, hence, raising energy consumption
even more.

ii) Give priority to the energy budget. Using this ap-
proach, nodes can adapt their wake-up frequency to a value
that is lower than the application requirements. The ob-
vious consequence is that packets will be queued at the
source, leading to longer latencies and eventually packet
drops, likely violating latency and delivery requirements.
However, if the application is delay-tolerant, the problem
can be mitigated by aggregating packets at the source as
the energy costs are mostly dictated by the rendezvous costs.
An even more important observation is that only the nodes
at the edge of the network suffer from this; most nodes will
run on a higher wake-up frequency serving application data
at the right pace.

In our implementation we decided to test Staffetta un-
der the most stringent conditions, that of violating our core
principle: equation (4). Thus, we adopt the first approach
and use a minimum frequency (0.1 Hz by default), which can
be set by the application.

4.2 Baseline
Inspired by opportunistic routing protocols such as ORW,

our baseline mechanism is based on low-power listening [26]
and opportunistic anycast, and works as follows (see Fig-
ure 4): Given a wake-up frequency as decided by the duty
cycling mechanism, nodes wake up periodically to listen for
incoming messages (listening). If no message is received
(channel is clear), nodes start probing the channel with bea-
cons (B) until a viable forwarder wakes up (forwarding).
Each beacon contains the source’s routing metric so that,
whenever a node receives a beacon, it can compare the re-
ceived metric with its own and send an acknowledgement (A)
only in case of routing progress towards the sink. In case of
multiple colliding ACKs, which is a known problem of op-
portunistic mechanisms [20], nodes may be able to decode
only the stronger ACK due to power capture [30]. If capture
does not occur, all receivers would forward the data packet,
causing duplicates. To ameliorate this problem, ORW relies
on overhearing and a probabilistic back-off (P = 0.5) that
potential forwarders follow when retransmitting an ACK.

Even with these mechanisms, ORW suffers from dupli-
cate packets, in particular in scenarios with high data rates
and high densities. In the worst case the duplicates get
duplicated themselves en route to the sink, leading to an
exponential growth in the number of duplicates and posing
serious scaling limitations. Considering that Staffetta works
by (smartly) increasing the activity of nodes in the network,
the ‘duplicated packets’ problem is expected to be exacer-
bated. To increase the resilience of our baseline protocol
to packet duplicates, we implement a 3-way handshake. A
third ‘selection’ packet (S) is added during the rendezvous
process. If the sender cannot decode a single ACK, it does
not send S. Potential forwarders will then re-transmit their
ACKs but with a back off probability of 0.5. Upon decod-
ing an ACK, the sender transmits S. As long as a selection
packet is received, the duplication problem is completely
avoided. If a selection packet is lost, the nodes that sent an
ACK can proceed in two ways: i) they discard the received
beacon containing the data payload, or ii) they proceed for-
warding the packet. In the first case, a data packet is lost;
in the second case, a duplicate is created. We observed that
the number of duplicates due to a lost S was not that high,
thus, to maintain a high delivery ratio, our implementation
follows the second approach. Note that the 3-way handshake
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Figure 4: Baseline opportunistic mechanism with
timing delays for listening (δl), rendezvousing (δR),
and transfer of the select packet (δs).

(beacon-ack-select) is also useful to implicitly filter out low-
quality links without the need for a link-quality estimator.

4.3 Routing Metrics
Routing metrics are at the core of data collection proto-

cols and, together with the MAC protocol used, largely de-
termine their performance. For this reason, we implemented
three routing metrics from the state-of-the-art protocols on
top of our baseline mechanism (see Figure 3).

Expected Duty Cycle (EDC). First proposed in ORW [20],
EDC adapts ETX [6] to opportunistic, duty-cycled networks.
In essence, EDC describes the expected duration until a
packet reaches its intended destination (i.e., the packet la-
tency) by summing the expected forwarding delays at each
hop. In ORW, the forwarding delay (i.e., single-hop EDC)
of a node i is computed as the inverse of the sum of the link
quality of the forwarders plus a weight δtx that reflects the
transmission costs

EDCi = (1/
∑

qij) + δtx.

EDCi approximates the expected forwarding delay of node i [14]
by (partially) using probes. In our implementation, we avoid
the overhead of neighbor discovery and link quality estima-
tion and compute this metric directly using the average of
the last observed delays

EDCi = δ̂F = δ̂R + δtx,

where δ̂R is computed by averaging the last 20 observed
rendezvous times.

Queue Backlog (QB). QB is the metric used by the Back-
pressure Collection Protocol (BCP) [25]. In BCP, nodes
select the neighbor with the shortest queue backlog as the
forwarder. Considering that the sink absorbs all packets,
this simple mechanism leads to a gradient that decreases the
size of nodes’ queues towards the sink and can be used to
make per-packet forwarding decisions. As demonstrated in
the original paper, this agile metric shows superior delivery
performance especially in dynamic networks experiences ex-
ternal interference or featuring a mobile sink. Different from
the implementation in BCP, where the metric is mixed with
ETX, our implementation solely uses the queue backlog for
the opportunistic forwarding decisions. Specifically, unlike
BCP, where the packet is forwarded to the neighbor with
the shortest queue, we forward the packet to the neighbor
that wake up first and has a queue backlog that is smaller
than its own. Low-quality links, which in the original im-
plementation are discarded by ETX, are filtered out by the
baseline’s 3-way handshake.

Table 2: Testbed characteristics and settings
Testbed FlockLab Indriya
Number of nodes 28 139
Tx power [dBm] 0 0
Network diameter [hops] 5 5
Node degree 8.5 22
Radio channel 26 26
Node ID of sink 1 2

Random Walk (RW). Using RW, nodes choose their for-
warders randomly, independently of their routing progress.
Since no routing metric is used, random walk mechanisms
are lightweight and perform great in highly dynamic net-
works, where the overhead of maintaining routes is too high.
On the other hand, in static networks, random walk mech-
anisms are too dispersive and suffer from long path lengths.
Our implementation of RW takes inspiration from the op-
portunistic and duty-cycled method presented in [3]. In that
mechanism, all nodes wake up with the same frequency, and
thus have the same probability of being opportunistically se-
lected. With Staffetta underneath, this probability will not
be uniform anymore, but biased towards the better links.

Note that, for the first two routing metrics (EDC and QB),
nodes forward their information to the first neighbor that
wakes up and provides routing progress. For RW, instead,
nodes forward their message to the first neighbor that wakes
up, independently of its distance to the sink.

5. EVALUATION
In this section, we use measurements from two testbeds to

evaluate the performance of Staffetta and the effectiveness of
using the activity gradient to guide the forwarding decisions.

5.1 Methodology
Testbeds. We use the FlockLab [22] and Indriya [7] testbeds.
Out of the 28 TelosB on FlockLab, 25 nodes are deployed in
several offices and hallways on one floor, while three nodes
are deployed outside on the rooftop of an adjacent build-
ing. The resulting network is quite sparse: each node has
on average 8.5 neighbors, and the diameter is 5 hops. The
139 TelosB on Indriya are spread across three floors in an
office building. With 22 neighbors on average, the network
is much denser than FlockLab; the diameter is 5 hops. In
all experiments, nodes transmit at the highest power setting
of 0 dBm, using channel 26 to limit the impact of external
interference from co-located Wi-Fi networks. Table 2 lists
all testbed settings, including the node ID of the sink.

Compared schemes. We compare the following schemes:

• ORW: This is the original TinyOS-based implemen-
tation of ORW [20], the current state-of-the-art oppor-
tunistic routing protocol for low-power wireless. ORW
runs on top of the standard LPL layer in TinyOS with
a wake-up frequency of 0.5 Hz, which matches the con-
figuration used by Landsiedel et al. [20].
• EDC, QB, RW: These are implementations of differ-

ent opportunistic schemes built on top of the baseline
mechanism described in Section 4.2. The schemes are
named after the specific routing metric they employ:
Expected Duty Cycle (EDC), Queue Backlog (QB),



ORW ST.EDC ORW ST.EDC ORW ST.EDC

0

50

100

150

200

250

300
Rate 1/30 Hz Rate 1/60 Hz Rate 1/240 Hz

(a) Latency [s] - FlockLab
ORW ST.EDC ORW ST.EDC ORW ST.EDC

0.8

0.85

0.9

0.95

1.0
Rate 1/30 Hz Rate 1/60 Hz Rate 1/240 Hz

(b) Delivery Ratio - FlockLab
ORW ST.EDC ORW ST.EDC ORW ST.EDC

0

1

2

3

4

5

6
Rate 1/30 Hz Rate 1/60 Hz Rate 1/240 Hz

(c) Duty Cycle [%] - FlockLab

Figure 5: Latency, delivery ratio, and duty cycle of ST.EDC and ORW for different data rates. Using Staffetta’s
dynamic duty-cycle adaption, ST.EDC outperforms ORW in all metrics, achieving several-fold improvements in latency and
duty cycle.

and Random Walk (RW). As detailed in Section 4.3,
EDC is the metric underlying ORW [20], and QB is
similar to the metric used by BCP [25], which is the
state-of-the-art routing protocol for mobile sink set-
tings. All three schemes run on top of the default
LPL layer and opportunistic anycast in Contiki with a
wake-up frequency of 1 Hz.
• ST.EDC, ST.QB, ST.RW: These schemes are the

same as EDC, QB, and RW above except that instead
of using a fixed wake-up frequency Staffetta’s dynamic
duty-cycle mechanism is employed to adjust the wake-
up frequency at runtime, as described in Sections 3
and 4.1.
• DIRECT: This scheme, implemented atop the base-

line mechanism, fully exploits Staffetta by using the
activity gradient directly as a “routing metric:” a node
forwards a packet to the neighbor that wakes up first
and has a wake-up frequency higher than itself. In
other words, instead of using an explicit routing met-
ric, such as EDC or QB, to decide whether a neighbor
provides routing progress, DIRECT makes this deci-
sion using the gradient of wake-up frequencies inherent
in Staffetta.

Energy budget. When Staffetta is enabled, we set the
energy budget DCmax to 7.5 % on FlockLab and to 6 % on
Indriya.

Metrics. Our evaluation uses the following three key per-
formance metrics of real-world applications [4, 5]:

• Latency: The time between when a packet is generated
by the source node and when that packet is successfully
received by the sink. To measure latency, we leverage
the time synchronization among nodes on FlockLab
and the serial logging of Indriya to timestamp both the
generation and the successful reception of each packet.
• Duty cycle: The fraction of time the radio is turned

on. We measure duty cycle in software using Contiki’s
accurate energy profiler [9].
• Delivery ratio: The fraction of packets generated by

the source nodes that is delivered to the sink. We
determine delivery ratio based on the unique sequence
numbers of packets successfully received at the sink.

We also measure path length, the number of times a message
is relayed before reaching the sink, to explain the behavior
and performance of a given routing scheme. We compute
these metrics based on three independent runs with the ex-
act same settings. To allow each protocol to bootstrap its
operation, we start measuring all metrics after an initial de-
lay of 1 minute. We also give each protocol sufficient time

(i.e., 1–5 minutes) to empty their packet queues before the
end of each run. Unless stated otherwise, we report the re-
sults as median, 25th and 75th percentiles, and minimum
and maximum values across all nodes in a testbed using box
plots; statistical outliers are represented by crosses.

5.2 Comparison against the State of the Art
We begin by comparing ST.EDC against ORW to quantify

the performance gains of Staffetta over the state of the art.

Settings. We perform 1-hour experiments on FlockLab.
All nodes except the sink generate packets at the same rate.
We test three different data rates in different runs: 1 mes-
sage every 30 seconds (1/30 Hz), 1 message every minute
(1/60 Hz), and 1 message every 4 minutes (1/240 Hz). The
latter equals the data rate used in the ORW paper [20].
Nodes are given 5 minutes to empty their message queues
at the end of a run.

Results. Figure 5 shows latency, delivery ratio, and duty
cycle of ST.EDC and ORW for different data rates. We ob-
serve that ST.EDC outperforms ORW across all metrics re-
gardless of the data rate. Using Staffetta to adapt the nodes’
wake-up frequencies, ST.EDC delivers packets on average
79–452× faster than ORW, while achieving a 2.75–9× lower
duty cycle. ST.EDC also provides a higher delivery ratio,
especially as the traffic load increases. Moreover, ST.EDC
reduces the variance in all metrics across nodes compared
with ORW.

The results demonstrate the significant performance gains
enabled by Staffetta’s dynamic duty-cycle adaption. The
basic mechanism is conceptually simple and lightweight to
implement, but also highly effective in practice. The next
section investigates the reasons for these improvements.

5.3 Benefits across Diverse Routing Metrics
We now explore in detail the benefits of Staffetta in terms

of performance for different well-known routing metrics.

Settings. To this end, we conduct a set of 10-minute ex-
periments on FlockLab and Indriya with EDC and ST.EDC,
QB and ST.QB, RW and ST.RW. Except the sink, all nodes
generate packets at the same fixed rate. We test two data
rates: 1 packet every 10 seconds (1/10 Hz) on FlockLab and
1 packet every 30 seconds (1/30 Hz) on Indriya. Nodes have
1 minute to flush their packet queues at the end of each
experiment.

Results. Figure 6 depicts for each scheme the measured
performance and path length. Using Staffetta, instead of
a fixed wake-up frequency, results in superior performance
across the board, while reducing the variance among nodes.
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Figure 6: Performance metrics and path length with and without Staffetta for different routing metrics on
the FlockLab and Indriya testbeds. Using Staffetta significantly boosts performance in all metrics compared with a fixed
wake-up frequency.

Table 3 lists the significant improvements in median per-
formance enabled by Staffetta. Looking at both testbeds
and all routing metrics, Staffetta reduces latency by 12.2–
75.0× and increases delivery ratio by 1.0–1.5×, while reduc-
ing the energy costs, measured in terms of duty cycle, by
1.6–3.1×.

The improvements are generally higher on FlockLab than
on Indriya. The reason is that opportunistic routing schemes
naturally benefit from a higher node density: the larger
number of potential forwarders on Indriya leads to, for exam-
ple, a better load balancing and reduced forwarding delays.
Thus, Staffetta is particularly beneficial in networks that are
fairly sparse in general or contain low-density node clusters
through which the bulk of the traffic must be funneled.

But how does Staffetta achieve these performance gains?
The key lies in the activity gradient. By letting each node
dynamically adapt its wake-up frequency to the observed
forwarding delay, nodes closer to the sink are more active
than those at the fringe of the network. This is visible in
Figure 7, which plots the average wake-up frequency of nodes
against their hop distance from the sink on both testbeds.
We clearly see the geometrical decay for increasing hop dis-
tance. This way, the bottleneck typically found in duty-
cycled networks around the sink is largely eliminated, al-
lowing for faster and more reliable packet delivery. At the
same time, the nodes’ wake-up frequencies are proportional
to their respective traffic loads, which results in a more ef-
fective use of energy. We now take a closer look at each
performance metric.

Understanding lower latencies with Staffetta. La-
tency is mainly determined by three factors: forwarding de-
lay, path length, and message backlog (i.e., the accumulation
of packets in a node’s queue). As discussed below, Staffetta
reduces all of them, which explains the overall reduction in
latency.

Looking at Figures 6(c) and 6(g), we can observe the
reduction in path length for the different routing metrics.
RW and QB tend to select diverse paths that are not neces-
sarily directed towards the sink, whereas EDC chooses for-
warders that definitely provide high routing progress. Thus,
Staffetta reduces the path length significantly for RW and
QB, while EDC leaves little room for further shortening the
paths.

Table 3: Performance gains of Staffetta (cf. Figure 6)
Testbed Latency Delivery Radio Duty Cycle

FlockLab 37.5–75.0× 1.3–1.5× 2.4–3.1×
Indriya 12.2–20.1× 1.0–1.2× 1.6–2.2×
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Figure 7: Activity gradient on FlockLab and In-
driya.

As stipulated by eq. (3), the higher the wake-up frequency
of forwarders, the lower the forwarding delay. Figure 8 shows
the wake-up frequency of nodes on both testbeds for all rout-
ing metrics. We see, for example, that the median wake-up
frequency with Staffetta is consistently above the fixed wake-
up frequency of 1 Hz. This indicates that Staffetta reduces
the forwarding delay for more than half of the nodes on the
testbeds. A few nodes experience a higher forwarding delay
due to a lower wake-up frequency, but this has a negligible
impact on latency since these nodes are located at the fringe
of the network and hence carry only very little traffic.

Finally, we note that the major reason for the high latency
when using a fixed wake-up frequency is message backlog.
This is because most packets are funneled through a small
set of nodes actually delivering them to the sink. These
nodes are effectively a bottleneck whenever the fixed wake-
up frequency (here 1 Hz) is too low to sustain the aggre-
gate load load around the sink (2.7 pkts/s on FlockLab and
4.5 pkts/s on Indriya). As a result, packets are backlogged
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testbeds.

at these bottleneck nodes, severely increasing latency. By
contrast, with Staffetta nodes close to the sink are highly
active, which increases the capacity and removes the bottle-
neck completely.

Understanding higher delivery ratios with Staffetta.
Delivery ratio is affected by packets lost en route and pack-
ets stuck indefinitely in some node’s queue. We tackle the
former by the beacon-ack-select handshake of the baseline
protocol, which ensures that a link is only used when com-
munication (temporarily) succeeds in both directions. This
3-way handshake not only reduces packet loss, it also serves
to keep packet duplicates under control, which is a com-
mon problem in opportunistic protocols. However, without
Staffetta, duplicates still fill the nodes’ queues, thereby de-
laying other packets. This is also confirmed by comparing
latency in Figures 6(a) and 6(e) with delivery ratio in Fig-
ures 6(b) and 6(f): the longer the latency, the lower the
delivery ratio. Staffetta, instead, reduces the message back-
log, which improves delivery ratio except for a few badly
connected nodes.

Understanding lower duty cycles with Staffetta. In
a nutshell, Staffetta increases the activity of nodes where
needed, while it reduces the energy consumption wherever
possible. Figures 6(d) and 6(h) indicate that Staffetta re-
duces the duty cycle significantly, but also reduces the vari-
ance. This shows that Staffetta sets an appropriate wake-up
frequency for every node. As mentioned in Section 3.2, the
worst-case budget allocation of Staffetta cause nodes to over-
estimate their energy consumption and, thus, consume less
than DCmax. This policy is beneficial in scenarios where all
nodes need to be operational and lifetime is determined by
the first node depleting its battery. Staffetta significantly
boosts the network lifetime in these scenarios.

5.4 Adaptiveness to Mobile Sink Dynamics
Support for mobile sinks is a key requirement in partici-

patory sensing and Internet of Things (IoT) applications [1].
We evaluate Staffetta’s performance and ability to cope with
the highly dynamic network topology in such scenarios.

Settings. To enable repeatable mobility patterns, we emu-
late a mobile sink that wanders about the FlockLab testbed
area. Specifically, we select a sequence of three nodes, la-
beled 1, 2, and 3 in Figure 9, that passes through several
offices, hallways, and even several buildings. One node at a
time acts as the sink for 200 seconds. Every change in the
sink designation triggers a drastic change in the forwarding
decisions. We repeat the experiment multiple times, using
different routing metrics both with and without Staffetta in
different runs.

1

2

3

Nodes close to 1
Nodes close to 2
Nodes close to 3

Figure 9: Nodes 1, 2, and 3 acting as a sink on
FlockLab in the experiments of Section 5.4, and the
corresponding clusters of nodes in their vicinity used
to plot Figure 10.

Results. Figure 10 demonstrates that Staffetta adapts the
activity gradient promptly and correctly as the sink desig-
nation changes. The figure charts the wake-up frequencies
of nodes over time using ST.RW, grouped into three disjoint
clusters: nodes in the vicinity of sink 1 (top), in the vicin-
ity of sink 2 (middle), and in the vicinity of sink 3 (bot-
tom). The results for the other Staffetta-enabled schemes
are very similar. We see that Staffetta creates a distinct ac-
tivity gradient with respect to the current sink designation.
Depending on a node’s hop distance to the preceding sink,
it takes 5–30 seconds to adapt its wake-up frequency after
a change. Staffetta quickly forms a new gradient, driving
messages toward the new sink.

The net result is an improved resilience against network
dynamics. This is confirmed by looking at Figures 11 and 12,
which display latency and throughput (packets received per
second) at the current sink with (ST.RW) and without (RW)
Staffetta as the sink designation changes from 1 to 2. Despite
a significant reduction in latency with Staffetta, we note
that Staffetta provides a consistent and high throughput,
whereas without Staffetta the throughput fluctuates widely,
especially after the change in sink destination at time 200
seconds. The spikes are due to nodes with a considerable
backlog that suddenly become neighbors of the (new) sink
and hence get the chance to empty their queues. In contrast
to this, due to its prompt and correct adaptation decisions,
Staffetta does not suffer from this problem, delivering pack-
ets reliably and consistently two orders of magnitude faster
as the sink moves.

5.5 Using Staffetta’s Activity Gradient for
Efficient Zero-overhead Routing

To forward messages efficiently and reliably, nodes typi-
cally maintain a list of their neighbors’ routing costs with
respect to some metric (e.g., ETX [6], EDC [20], or QB [25]).
Keeping this state up to date requires to execute tasks such
as neighbor discovery and information sharing via periodic
beaconing that cost energy, bandwidth, and time. We show
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Figure 10: Wake-up frequency of nodes running
ST.RW with an emulated mobile sink on FlockLab
(cf. Figure 9). Staffetta quickly adapts the activity gradi-
ent, which helps deliver messages efficiently and reliably as
the sink moves.

in the following that Staffetta avoids this overhead by using
its inherent activity gradient to effectively guide the forward-
ing decisions without maintaining explicit neighbor tables.

Settings. We run another set of experiments with DI-
RECT, ST.EDC, ST.QB, and ST.RW on FlockLab. How-
ever, unlike previous experiments, we use a bursty traf-
fic pattern typical of applications that respond to external
events [11]. To this end, we initially let each node accumu-
late 20 packets in its local queue before transmitting. After-
wards, we measure until all nodes have transmitted their 20
packets, plus 1 minute to allow route-thru packets to leave
the network. This results in a throughput of 2.4–4.6 packets
per second at the sink.

Results. Figure 13 shows for each scheme the measured
performance and path length. We see that DIRECT achieves
a performance that is comparable or even superior to the
other three schemes. This occurs without the additional
overhead with regards to implementation complexity and re-
source usage incurred in maintaining an explicit routing met-
ric. Using DIRECT, a node simply forwards to the neighbor
that wakes up first and has a wake-up frequency higher than
itself. In this way, packets essentially “surf on Staffetta’s ac-
tivity gradient,” which is both efficient and highly effective.

6. RELATED WORK
The amount of work related to energy-efficient communi-

cation protocols that duty cycle the radio is vast. In this
section, we focus on the two categories that are most re-
lated to our work on Staffetta: protocols for data collection
over duty-cycled networks, and mechanisms that dynami-
cally schedule the duty cycle to improve performance.

Data collection protocols. The first generation of data
collection protocols for sensor networks saw duty-cycling as
an issue that had to be overcome. The Collection Tree Pro-
tocol (CTP) [15], for example, was built on top of the fact
that broadcast is a primitive that should be used rarely, be-
cause it consumes a lot of energy under duty-cycling tech-
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Figure 11: Latency and throughput when Staffetta
is enabled as the sink designation changes from 1 to
2 (cf. Figure 10). Staffetta reduces latency by two orders of
magnitude, while providing a consistently, high throughput.
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Figure 12: Latency and throughput without
Staffetta as the sink designation changes from 1 to
2 (cf. Figure 10).

niques. Therefore, CTP uses unicast for all data trans-
missions and broadcast only for route discovery [21]. The
Broadcast Free Collection protocol [27] took this strategy
one step further, and avoids the use of broadcast altogether;
routes are discovered by eavesdropping unicast transmis-
sions of neighboring nodes. Although this approach saves
significant amounts of energy, the price of overhearing in
duty-cycled networks is rather high leaving room for further
improvements.

Glossy [13] and Low-power Wireless Bus (LWB) [12] re-
move the need for route discovery by using an efficient flood-
ing mechanism based on constructive interference. Every
message can be received by every node in the network, mak-
ing data collection trivial. Duty cycling happens between
synchronized active periods, in which every node uses its
radio. The downsides are the need of a central network co-
ordinator and the dependency on tight time synchronization.

Opportunistic protocols such as ORPL [10], ORW [20],
and ORiNoCo [29] enhance the efficiency of routing in duty-
cycled networks by exploiting opportunistic anycast to re-
duce forwarding delays, balance load more evenly, and take
advantage of temporal links. As demonstrated in the pre-
vious section, Staffetta improves the performance of these
kind of protocols by biasing the forwarder selection to nodes
closer to the sink. Staffetta can also be regarded as a gen-
eralization of SOFA [3], the first protocol to exploit oppor-
tunistic anycast for efficient random walks in duty cycled
networks. In this case, Staffetta allows SOFA to perform
biased random walks that are directed towards a sink.
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Figure 13: Performance metrics and path length with Staffetta for DIRECT and different explicit routing
metrics on the FlockLab. DIRECT uses Staffetta’s activity gradient to effectively guide its forwarding decisions without
the additional overhead in term of implementation complexity and resource usage incurrent when maintaining explicit routing
costs.

Finally, a long body of literature explores the problem of
route-aware sleep scheduling. DMAC [19], for example, was
the first to explore the use of a phased duty-cycled schedule,
in which forwarders wake up one after the other to reduce the
overall forwarding delay. Contrary to Staffetta, DMAC re-
quires explicit notifications (”more-to-send” packets) to cope
with dynamic traffic and involves an initial overhead that
can be considered negligible only for quasi-static networks.

Dynamic duty-cycling mechanisms. No matter how
efficient data collection protocols strive to be, their perfor-
mance will always be bounded by the intermittent activity of
the radio underneath, usually with a fixed frequency. There-
fore, several works adapt the duty cycle to values that still
meet the requirements of (traditional) data collection.

Theoretical works [17, 18], for example, have analyzed op-
timal duty-cycling parameters (like the link-layer wake-up
frequency) to minimize the packet latency of opportunistic
collection protocols in energy-constrained networks. How-
ever, the results are derived based on assumptions that are
made more for mathematical tractability than to resemble
typical WSN settings (e.g., Poisson arrivals vs. strict peri-
odic reporting), thereby ignoring the intricacies and over-
heads of practical implementations.

As a more realistic approach, pTunes [31] models commu-
nication efficiency as an optimization problem with multi-
ple application-level objectives, such as end-to-end latency,
network lifetime, and end-to-end reliability. Through an ef-
ficient network dissemination technique (based on Glossy),
pTunes periodically collects (centrally) network information
and, based on the application requirements, computes the
optimal duty-cycling parameters and disseminates them to
the nodes. Staffetta complements this centralized approach
by providing a good but sub-optimal solution that is fully
distributed, has minimal overhead, and addresses the unique
characteristics of opportunistic protocols.

Similarly, ZeroCal [24] balances the energy consumption
of nodes by adapting their wake-up frequency. Compared to
ZeroCal, we believe that Staffetta has three main differences.
First, ZeroCal requires radio and data traffic parameters to
solve a distributed optimization problem, while Staffetta re-
quires only one parameter (the energy budget) and a simple
operation to adapt the wake-up frequency locally. Second,
ZeroCal incurs a higher overhead since it requires to monitor
the state of nodes’ children, while Staffetta does not require
any such explicit input. Furthermore, ZeroCal focuses on
the unicast primitive, while Staffetta addresses opportunis-
tic protocols and their anycast primitive. Finally, Staffetta’s
energy budget is similar in spirit to TinyDB’s“lifetime-based

query” [23], which automatically sets the sampling rate to
match a given lifetime requirement.

7. CONCLUSIONS
In this paper we addressed the fundamental issue of effi-

cient data collection in wireless sensor networks, where pro-
tocol designers must balance communication performance
and energy efficiency. While opportunistic collection proto-
cols successfully trade off these two antithetical goals, they
do not exploit the full potential of the network. We have
demonstrated that, instead of coping with the challenges of
low-power communication, collection protocols can tame the
duty-cycle mechanism and use it to their advantage, raising
performance and reducing (average) energy consumption at
the same time.

Our low-level Staffetta mechanism sets the wake-up fre-
quency according to the forwarding latency observed by the
nodes; the less time is spent on forwarding, the more time
can be spent on servicing incoming traffic (i.e. waking up
more frequently). The net effect is that Staffetta sets up a
gradient with nodes close to the sink waking up more fre-
quently than nodes at the edge of the network. This gradient
automatically steers opportunistic anycast traffic towards
the sink as the probability of finding an awake neighbor is
highest in the direction of the sink.

We implemented Staffetta in Contiki, and evaluated it
with three opportunistic collection protocols on two differ-
ent testbeds. The extensive set of experiments showed that
Staffetta significantly reduces both packet latency and en-
ergy consumption, while maintaining high – or even improv-
ing – packet delivery ratios. As Staffetta does not need
to maintain complicated routing metrics spanning the en-
tire network, it can also handle network dynamics like link-
quality fluctuations and node mobility really well. We found
that Staffetta adapts its gradient in just a matter of sec-
onds.
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