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Abstract—Localization based on visible light is gaining sig-
nificant attention. But most existing studies rely on a key
requirement: the object of interest needs to carry an optical
receiver (camera or photodiode). We remove this requirement
and investigate the possibility of achieving accurate localization
in a passive manner, that is, without requiring objects to carry
any optical receiver. To achieve this goal, we exploit the reflective
surfaces of objects and the unique propagation properties of LED
luminaires. We present geometric models, a testbed implemen-
tation, and empirical evaluations to showcase the opportunities
and challenges posed by this new type of localization. Overall,
we show that our method can track with high accuracy (few
centimeters) a subset of an object’s trajectory and it can also
identify passively the object’s ID.

I. INTRODUCTION

Thanks to advances in the area of Visible Light Communi-

cation (VLC), we now have the ability to piggyback wireless

communication on top of LED illumination. This technological

breakthrough is creating a new range of exciting applications:

localization [1], Internet connectivity via luminaires [2], and a

new generation of interactive toys [3], to name a few. Among

these applications, localization is arguably one of the areas

that is benefiting the most. This is due to the fact that visible

light waves have propagation properties that are well suited

for estimating range: they attenuate in a smooth and rather

deterministic manner. For example, when simple trilateration

methods are used with radio frequency signals such as WiFi

–which are notorious for having severe multipath effects–, the

localization accuracy is between 2 m and 6 m [4]. But the same

trilateration methods provide sub-meter accuracy when VLC-

enabled luminaires are used as anchor emitting beacons [5].

Research problem. Current localization methods based on

VLC [5], [6] provide high accuracy but share an important

constraint: they require objects to carry photosensors to decode

the beacons sent by luminaires. We remove this constraint and

investigate passive VLC-localization, that is, localization in

scenarios where the object of interest does not carry any photo-

sensor. The case we make to investigate passive localization is

simple: when objects do not carry photosensors, the only areas

that are constantly exposed to light are their external surfaces,

thus, it’s important to investigate the interaction between VLC

luminaires and the reflections coming from these external

surfaces to identify cues for localization. Considering this type

of scenarios, we want to understand under what conditions

would such a localization system work and what would the

expected accuracy be.

Fig. 1 captures the limitations of a naive implementation of

passive localization with visible light. Consider two luminaires
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Fig. 1. The concept of passive localization with smart lights.

that send periodic beacons L1 and L2. Each luminaire has a

photodiode (PD) attached to it. In general, the PDs co-located

with the luminaires may not be able to hear those beacons back

due to the low reflectivity of ground surfaces. But if a mobile

object with a high reflective surface passes by, the PDs will

receive their own (or a neighboring) beacon, and thus, be able

to detect the presence of the object. For example, if luminaire

L1 hears its own beacon, it will infer that an object is in region

A, and if it hears a beacon from luminaire L2, it will infer

that an object is in region B. But this basic configuration has

three drawbacks: poor coverage, few positions can be detected

(regions A, B and C in this case); coarse grained accuracy,

the exact location of the object cannot be determined because

we do not know the reflecting angles (shape) of the object; and

there is no identification, this system can only determine the

presence of an object but not its ID, if more than one object

is present, the objects cannot be distinguished.

Passive VLC localization could be applied to scenarios

where objects move on established paths in illuminated ar-

eas, e.g. mining tunnels or underground train and vehicular

systems. In those underground scenarios, radio-based solu-

tions face severe multipath effects, rendering most of those

approaches inaccurate.

Our contributions. We propose a novel passive localization

system to overcome the above described limitations. Our

contributions in this new area are listed below:

1) Geometric model for localization (Section II). We develop

a geometric model to identify guidelines for the proper

design of the transmitters (luminaires), improve the de-

tection coverage, and increase the localization accuracy.

2) Passive identification (Section III). To identify the objects

moving under the luminaires, we embed barcode-like IDs

onto the objects’ surfaces, and propose a novel framework

to decode these IDs via passive reflections.

3) Implementation (Section IV). We design and implement

a testbed to evaluate our system. To test short-range

scenarios, we modify an open platform. For medium-

range scenarios, we develop our own VLC transmitters

using standard off-the-shelf LED bulbs.



Fig. 2. The Lambertian model.
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Fig. 3. Capture of reflection effect.

4) Evaluation (Section V). We evaluate our system under

three different scenarios with increasing levels of com-

plexity. Our results show that we can pinpoint with cm

accuracy a subset of the object’s trajectory and we are

able to identify the object’s ID in a passive manner.

II. MODEL FOR PASSIVE LOCALIZATION

To gain a better understanding about the properties and lim-

itations of passive localization with visible light, we use two

models: the Lambertian source, which models the radiation

pattern of LED lights; and a geometric model based on the

laws of reflection. In the rest of this paper, we focus on one-

dimensional topologies and assume that (i) LED luminaires are

VLC transceivers (they can transmit information by modulat-

ing their light intensity and they have a photodiode to receive

VLC packets), and (ii) the reflective coefficient of objects is

higher than that of the surface where the object is moving on.

A. Detecting objects without line-of-sight

In VLC, angles play a major role on the received illumi-

nance power. Fig. 2 captures this behaviour. The wider the

irradiation angle φ and the wider the incidence angle ψ, the

lower the received illuminance. Also, depending on the LED’s

optical enclosure, the radiation beam can be long and narrow,

or broad and short. Formally, these relationships are captured

by the well known Lambertian model H . Denoting Pt as the

illuminance power of the LED, the received illuminance power

Pr at the photosensor is given by:

Pr = Pt ·H (1)

where

H =

{

(m+1)A
2πd2 cosm φT (ψ)g(ψ) cos(ψ), 0 ≤ ψ ≤ Ψc

0, ψ > Ψc

(2)

where m is the lambertian order determining the width and

length of the beam, a higher m leads to a longer and narrower

beam; d is the distance between the LED and the photosensor;

A is the detecting area of the photosensor; T (ψ) and g(ψ) are

the concentrator and filter gains at the photosensor; and Ψc is

the field-of-view of the receiver.

The Lambertian model however is meant for line-of-sight

communication. Passive localization relies on reflected beams

(no-line-of-sight). To capture the effect of reflections, we

modify the above equation based on two properties of the

reflective surface; its area As and its reflective coefficient ρ.

HNLOS = Hf(As)ρ (3)

TABLE I
MEASURED COMBINED COEFFICIENT ρ OF DIFFERENT MATERIALS

Material Mirror Aluminum White cardboard

Coefficient ρ 0.89 0.62 0.30

where f(As) is a linear function of As, as explained later. To

capture the effect of these two new parameters, we perform the

following experiment. First, we set a transmitter and a receiver

at a two-meter distance with line-of-sight, as shown in Fig. 3,

points A and B. Then we put a reflective surface at point I ,

one meter away from the LED, and move the receiver to point

C (mirror image of point B). In this experiment we change

the area (As) and the material (ρ) of the reflective surface.

Our results lead to a design guideline for passive localization.

Guideline 1: The reflective surface of the moving object As

should be at least the same size as the receiver’s area A. Fig. 4

depicts the effect of changing the area of the reflective surface.

For these experiments we use mirrors as the reflecting surface.

When the area is small, the received illuminance power is low.

Beyond a point however further increasing the area of the

reflective surface does not increase the received illuminance

power. This occurs because, with specular reflections, the

majority of reflections caused by larger areas do not reach

the receiver. Thus, a reflective surface that is smaller than the

photosensor’s surface affects coverage, because it reduces the

likelihood of detecting the object.

B. Achieving full coverage

The previous subsection indicates that an object only re-

quires a small reflective area to be localized. But this approach

only provides limited coverage. In the simplest case, consid-

ering N luminaires we would only be able to identify 2N −1
points. The N points under the luminaires and the N − 1
intermediate points. However, since the size of the reflective

surface can be small, an object can carry an array consisting

of many small reflecting surfaces but tilted at different angles.

The different angles will reflect beams towards the receiver

at different locations, improving coverage. Based on simple

geometry, we can make the following propositions.

Proposition 1. Given two neighboring luminaires i and j,
with an inter-distance d and height h from the ground; for

any given position x between the lights, there is a tilted angle

that will reflect light towards a neighboring transceiver:

αij =
arctan(d−x

h
)− arctan(x

h
)

2
where clockwise turns denote positive direction of angles.

Based on Proposition 1, we can get:

Proposition 2. For a given position x, there always exists a

tilted angle that can make the object reflect light back towards

the same transceiver:

αii = − arctan(
x

h
), αjj = arctan(

d− x

h
) (4)

Guideline 2: A small polyhedral-reflector can be added on

top of the object to provide constant coverage. Consider an

object with a reflective coefficient that is too low to reflect
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Fig. 4. Impact of the area of the reflec-
tive surface (used material is mirror).
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Fig. 5. The problem of unique signature when each transceiver has
a single beam (the object has many tiny reflective surfaces titled at

different angles (kind of ‘retro-reflector’) to improve the coverage)
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Fig. 6. A transmitter with m beams (here we

use a triangle instead of the Lambertian shape to

represent the coverage of an LED, for simplicity.)

a VLC message. Such an object could not be localized in

our system. To solve this problem, we can add polyhedral-

reflectors to provide better coverage. A polyhedral-reflector

can be created to reflect a wide incoming beam (cm2) into

many outgoing narrow beams (mm2) in different directions.

Note that even if an object has a high reflective coefficient,

a polyhedral-reflector can be still used to increase coverage,

since few objects have surfaces with multiple tilted angles.

C. Obtaining unique signatures

Until now, our guidelines have focused on the issue of

coverage (i.e. increase the number of detected points). But we

have not tackled the issue of obtaining a unique fingerprint

for each detected point. To highlight this problem, let us use

Fig. 5. Luminaire B receives the same beacon for the two

positions of the convex surface, and thus, it cannot pinpoint the

exact location. One way to discern two locations with the same

beacon-ID is to use the RSS. But due to the intricate relation

among the irradiation and incident angles, the lambertian order

m and the distance traveled d; we observed two problems.

First, except for a few points, most RSS values map to multiple

locations. Second, the sensitivity of simple photodiodes is not

sufficient to distinguish small changes in RSS.

Due to the limitations of RSS, we propose to use luminaires

with multiple beams, as shown in Fig. 6. Instead of having a

single wide beam with a low lambertian order, we propose

to use multiple narrow beams with higher lambertian order.

Notice that the overall power does not need to increase, since

each narrow beam requires less energy to attain the same range

as a wide beam. In our system, each beam emits a unique ID

tuple < L,B >, where L denotes the ID of the luminaire and

B the ID of the beam within that luminaire.

Guideline 3: Luminaires should be designed with multiple

beams, the more beams the better. It is important to highlight

that standard off-the-shelf LED lights already consist of mul-

tiple internal LED substrates. Many of these LED substrates

point to different directions. Designing VLC luminaires for

passive localization would entail adjusting the angles of some

of these beams and providing each beam with a unique ID B.

D. Localization algorithm

Assuming a set of luminaires and objects following our

guidelines, the localization algorithm works as follows.

Step 1: The algorithm requires as inputs: the inter-node dis-

tance d, the height of luminaires h, the FoV of the photosensor

ω, the number of beams at each luminaire b, a vector µ with

the directional angles of the beams, and a vector containing

the k tilted angles of the reflector (surface) {α1, . . . , αk}.

Step 2: Using Proposition 1, the transceiver calculates the

locations x̂i for all the tilted angles αi, i = 1, . . . , k. At this

point we have k possible locations for the moving object.

Step 3: Upon receiving a beacon from a neighboring light, or

from itself, the algorithm computes the region covered by that

beam: [x1
L.B, x

2
L.B] = [h tan(µL.B−ω/2), h tan(µL.B+ω/2)].

At this point we know the object is under the coverage of beam

< L.B >, but we do not know exactly where.

Step 4: The only valid locations x̂i (Step 2) are those that

fall in the range [x1
L.B, x

2
L.B] (Step 3). If only one estimation

x̂i falls in this range, x̂i is given as the object’s location.

If multiple estimations fall in the range, the algorithm either

returns the average as the location, or chooses one of the

estimations with higher probability if the direction and velocity

of the target can be estimated with prior points.

III. PASSIVE IDENTIFICATION

Localizing an object is not enough. We now introduce how

to further identify the object passively in our system.

Our approach is inspired by a recent work that leverages

ambient light for passive communication [7], which adopts the

patterns of distinctive reflecting surfaces to modulate ambient

light. In this paper, we use a similar method to label objects

with unique IDs attached to objects’ surface, as illustrated

in Fig. 7. We refer to this ‘barcode’ as object-ID. We use

materials with different reflection coefficients to build an

object-ID, e.g, aluminium (high) and black paper (low). To

decode an object-ID at the PD according to the light it reflects,

we have to tackle two challenges:

• Overlapping signals containing the beam-ID and object-

ID. As presented in Sec. II, each transmitter sends mod-

ulated light containing its beam-ID. At certain positions,

this modulated light can be reflected by the object’s surface

to the PD and be used to localize the object. But the

object-ID also modulates the impinging light, albeit at a

lower frequency. Thus, the PD will receive an overlapping

signal containing both the beam-ID and the object-ID, as

illustrated in Fig. 8. To identify the object, we need to

extract the signal that only contains the object-ID from

the overlapping signal.

• Inter-Symbol Interference (ISI). At some positions, dif-

ferent parts of the object-ID can reflect concurrently the
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Fig. 8. Illustration of the overlapped signal

light coming from two neighbouring beams. Therefore, the

light modulated by the object-ID may contain interference

caused by itself, namely, an ISI effect. As illustrated in

Fig. 10, the lights of beam-1 and beam-2 are modulated

by the third symbol (at point A) and the first symbol (at

point B) of the object-ID, respectively. This generates ISI

at the PD, as shown in Fig. 9. Assuming that the object

traverses point A first, then the signal modulated at point

B is actually an attenuated and delayed version of the

original modulated signal at point A. In the rest of this

paper, we refer to these two types of signals as attenuated

signal and original signal, respectively.

A. Decoupling of overlapping signals

We tackle this problem by proposing a downsampling-

based method motivated by the following observations: (i)

The signal containing the beam-ID is a high-frequency signal

(created by modulating LEDs at high speed) while the signal

containing the object-ID is a low-frequency signal (created by

the object’s movement); (ii) When the LED transmits OFF

symbols (namely, LED is off), there is a drop in the signal

intensity received at the PD, as shown in Fig. 8. However,

when transmitting ON symbols (namely, LED is on), no drop

exits. In other words, the overlapping signal only occurs when

OFF symbols are transmitted. Thus, we just need to remove

the OFF symbols from the overlapped signals.

The proposed down sampling method works as follows: (i)

Guarantee that there are no continuous OFF symbols in the

modulated data at the LEDs (this is a necessary requirement

to remove the OFF symbols in our method). To achieve this,

we use the following modulation at transceivers: use a symbol

sequence of OFF-ON to denote a bit 0, and symbol sequence

of OFF-ON-ON to denote a bit 1; (ii) Set the downsampling

interval slightly wider than the duration of an OFF symbol.

By doing this, we guarantee that each OFF symbol is sampled

at most once; (iii) Compare each two adjacent samples: if the

difference of two adjacent samples is higher than a threshold

(i.e., an abrupt drop occurs in the RSS), then we discard the

sample that has a lower value (i.e., remove the OFF symbol).

B. Remove the inter-symbol interference

To eliminate the effect of ISI, we propose a method to

remove the attenuated signal from the original one. To do

this, we need the following information: (1) the delay of the

attenuated signal with respect to the original signal; and (2)

the intensity of the attenuated signal. Next we present how to
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Fig. 9. Illustration of the inter-symbol
interference
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Fig. 10. Illustration of the geomet-
ric model used to remove the ISI

obtain these information and how to extract and decode the

original signal after that.

1) Obtaining the delay of the attenuated signal: Consider

the scenario in Fig. 10. As presented earlier in this section, the

ISI starts when the object reaches point B. At this position,

a symbol (e.g., the ith symbol) of the object-ID will generate

interference by modulating the light emitted by beam-2. Note

that this modulated light contains the ID of beam-2 and this

beam-ID can be decoded by the PD for localization. Moreover,

when reaching point A, this ith symbol has modulated the light

emitted by beam-1, and this modulated light carrying the ID

of beam-1 has been decoded by the PD as well.

Let t0 and t0+ τ be the time when for the first time the PD

decodes the IDs of beam-1 and beam-2, respectively. Since the

transceiver can modulate light at a very high speed (i.e., it can

transmit the frames that contain beam-IDs very frequently), we

can assume that t0 and t0 + τ are the time when the object

reaches point A and point B, respectively.

Therefore, the difference between t0 and t0 + τ , namely,

τ , is the delay of the attenuated signal. Note that t0 and

t0 + τ can be obtained easily in practice. Besides, at some

positions (as will be presented in Sec. V-C), τ can be a

negative value, meaning that the attenuated signal starts earlier

than the original signal.

2) Obtaining the intensity of the attenuated signal: To

derive this, we still use Fig. 10 as an illustration. Let hPD and

h2bulb denote the heights of the PD and bulb 2, respectively,

and let l be the horizontal distance between them. From the

geometric model in Fig. 10, we can derive the distance dAB

dAB = l · hPD/
(

hPD + h2bulb

)

(5)

Let θ and φ be the reflection angle at point B and irradiance

angle of bulb 2, respectively. We have θ = arctan dAB

hPD
and

φ = α + θ. Based on Eq. (1), we can obtain the intensity of

the attenuated signal modulated by the object-ID at point B:

PB
att =

ρPt(m+ 1)cosm(φ)

2πd4
T (θ)g(θ)cos(θ) (6)

Similarly, the intensity of the original signal modulated by the

object-ID at point A can be expressed as follows:

PA
orig =

ρPt(m+ 1)cosm(0)

2πh4PD

T (0)g(0)cos(0) (7)



In our model, we can assume that hPD ≈ h2bulb ≫ l. Then

we have the approximation: hPD ≈ d. Besides, there is no

optical filter or concentrator in our system. Thus, T (·) and g(·)
are constant in our model. Let η denote the attenuation ratio,

defined as the ratio between the intensity of the attenuated

signal and that of the original signal, then we have

η = PB
att/P

A
orig = cosm(φ)cos(θ) (8)

3) Extract and decode the original signal: To achieve this,

from now on we consider the continuous version of the signals.

Following convention, we use f(t) to denote a continuous

signal. Let forig(t) and fatt(t) be the continuous original signal

and the continuous attenuated signal, respectively. We have

fatt(t) = ηforig(t− τ) (9)

Let fsum(t) be the aggregated signal received at the PD, then

forig(t) =fsum(t)− fatt(t) = fsum(t)− ηforig(t− τ) (10)

As presented in Sec. III-B1, we can denote t0 as the time when

the object-ID reaches point A and t0+τ as the time when the

object-ID reaches point B where the ISI appears. Since there

is no ISI during the time slot [t0, t0 + τ), we have

forig(t) = fsum(t), ∀t ∈ [t0, t0 + τ) (11)

Based on Eq. (10) and Eq. (11), we can now obtain the

original signal forig(t) (without the ISI effect). To decode it,

we use a simple threshold-based decoding method (omitted

due to its simplicity, limited novelty, and the page limitation).

IV. TESTBED

A solid evaluation of passive localization with VLC requires

designing a system where multiple parameters can be adjusted.

Below we describe how we use our design guidelines to build

a comprehensive evaluation testbed.

A. Luminaire design

We design our luminaires based on the Shine platform [8].

We extend it largely in both the hardware and software to

build our testbed in three ways. First, we improve its reception

capabilities, a front-end we refer to as Shine+. Second, we

add more powerful LEDs to build another front-end referred

as Shine++. Third, we modify its software. The block diagram

of our new testbed is given in Fig. 11. Next, we present the

design details of both front-ends.

Coding / Decoding

(Microprocessor)

TX (Short/Long

range LEDs)
RX (PD)

Frontend #1

…

Localization Algorithm

GUI

Central Server

UART

Coding / Decoding

(Microprocessor)

Frontend #N

TX (Short/Long

range LEDs)
RX (PD)

Fig. 11. The function blocks of our redesigned testbed

θ θ (adjustable)

LED Lamp

Constantcurrent 
Driver

Control Pulse

Fig. 12. Our testbed with the
front-end Shine++

Fig. 13. The driver circuit for the
high-power LED bulb in Shine++

1) A short-range luminaire with multiple-beams – Shine+:

Shine has multiple narrow beams, which follows Guideline 3,

but it is designed for line-of-sight communication. Since we

rely on non-line-of-sight reflections, we must improve Shine’s

reception capabilities. To achieve this goal, we implement two

changes. First, we change the PD from SFH203P to SFH206K,

which extend the communication range by 165%. Second, we

add a low pass filter to improve the signal-to-noise ratio.

2) A medium-range luminaire with less-beams – Shine++:

To evaluate our sensing approach with longer ranges, we build

a new front-end with commercial LED bulbs, dubbed Shine++.

We choose the IKEA Ledare LED with a viewing angle of

36 °as the transmitters. Each LED consumes 3.5 W, thus we

design a new LED driver circuit to provide higher power, as

shown in Fig. 13. We use three LED bulbs, one placed in

the middle and the other two on the sides with adjustable

inclination angles, as shown in Fig. 12.

3) Software: Our SW implements the data transmission

and reception, the access control for the shared visible light

medium, the localization and object identification algorithms.

In our application we need accurate timing to schedule the

modulation of light beams. We connect all the nodes to a

central server (PC/laptop), where we run a Time Division

Multiple Access (TDMA) scheme. This scheme turns on all

LEDs, but modulates only one beam at a time. Adaptive de-

coding thresholds are implemented in our system to eliminate

interference from external light sources, including neighboring

LEDs that are on but not modulated. The MAC schedules

the LEDs ‘remotely’ through the interface with the micro-

controllers. Similarly, the data received from the PDs are

decoded at the micro-controllers and sent through the UART to

the central server. Upon receiving these frames, the server runs

the localization algorithm (cf. Section II-D) and calculates on-

the-fly the current position of the mobile object. The outcome

of the algorithm is demonstrated in a simple GUI (omitted due

to the space limitation).

B. Object design

For passive localization with VLC, the external surface of

the objects plays a key role. Three out of the four guidelines

in Section II pertain to the object’s surface. In this subsection

we describe the surfaces we use for our evaluation and the

reasoning behind selecting them.
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Fig. 14. Side view of the object with perfect

reflective coefficient
Fig. 15. Customized toy
car (standard reflector,

28cm×11cm×7cm)

bit 1bit 0

Fig. 16. The object-ID “10” that is attached to all the three parts of the object

1) A perfect reflector: As stated by our guidelines, the

ideal surface would use materials with very high reflective

coefficients and specular reflection to enable non-line-of-sight

communication, and would consist of small reflecting areas

(Guideline 1) tilted at different angles (Guideline 2) to increase

coverage. We use thin strips of flat mirrors to satisfy these

three guidelines. Fig. 14 presents a side view of the reflecting

object, which consists of five mirrors with inclined angles of

-18°, -9°, 0°, 9°, 18°, respectively. All the mirrors have the

same width of 5 mm.

2) A standard reflector: To evaluate the performance of

passive localization with more standard objects, we use a

customized toy car. Such an object relaxes the requirements

of our first three guidelines. The material is metal, whose

reflective coefficient is not as good as mirrors. Second, the

surfaces are big (relaxes Guideline 1). Third, it has few tilted

angles (relaxes Guideline 2). For our object, we consider three

parts of a car: the front windshield, the roof, and the back

windshield. After a thorough investigation of different cars’

shapes, we decide to customize a toy car with inclined angels

of -30°, 0°, 25°. The final customized car is shown in Fig. 15.

Note that we are aware of the fact that different parts of a real

car have different reflection coefficients, but we only use one

type of material for a single toy car in this work for simplicity.

We build two different toy cars, one with aluminum and the

other one with mirrors.

3) Design of object-ID: We label the objects in our system

with unique IDs consisting of certain patterns. We use 3cm-

width metal (high reflection coefficient) and 2cm-width black

tissue (low reflection coefficient) to represent a bit 1, and use

2cm-width of metal and 3cm-width of black tissue to represent

a bit 0. An object-ID for “10” is shown in Fig. 16 where it is

attached to all the three faces of the customized toy car.

V. EVALUATION

In this section, we evaluate our methods under increasingly

complex test cases. First we present the evaluation on local-

ization, followed by the evaluation on identification. Note that

our passive localization and identification methods can work

at the same time, as described in Sec. V-C.

Object

Transceiver BTransceiver A

Fig. 17. Experiment setup in the ideal case (height=15 cm, inter-node
distance=20 cm)

A. Localization: ideal case

For the ideal case we use the best possible setup: the

front-end with many beams (Shine+) together with the perfect

reflector. The experiment setup is shown in Fig. 17. We deploy

two nodes (denoted as A and B) at an inter-node distance of

20 cm, and at a height of 15 cm from a desktop. Shine+

can achieve reliable VLC at a distance of up to 50 cm. By

deploying the two nodes as described above, we can assure that

the distance travelled by the reflected signals is shorter than

the maximal communication distance (i.e., 50 cm). It is also

important to highlight that the angles of the perfect reflector

are designed based on Propositions 1 and 2 to guarantee that

every beam has at least one angle that will reflect the light to

a neighboring node or to itself. If these angles are not selected

carefully, the system may end up having beams without

reflections, and thus, no localization could be performed inside

the area covered by these beams. Different inter-node distances

or heights will lead to different tilted angles.

Results. The evaluation results are shown in Fig. 18. The red

dots represent the ground truth. The experiments were repeated

ten times and we did not observe any major variance, which is

expected due to the rather deterministic propagation properties

of light waves and the nearly specular reflection of mirrors. We

can observe that the results from our algorithm match well the

ground truth. Nearly half of the locations are localized with

almost perfect accuracy, while the other locations are detected

with errors up to 1.3 cm.

The detail on how these locations are detected is given in

Table. II. Now let us give some more insights on how our

algorithm (cf. II-D) leads to these results. The object moves

from left to right. The algorithm has all the inputs required

in Step 1. The first detected point R1 is a self reflection,

i.e., transceiver A receives the reflection of beam A.2. The

server calculates all the ground truth locations that the set of

self-reflecting angles {α1, . . . , αk} can have (Step 2). Then

it calculates the valid region for this beam A.2 (Step 3). The

algorithm detects that only one point falls in the valid region,

and hence, reports that point as the estimated location. The

true location is ≈1 cm to the right. The next two estimated

locations, R2 and R3, are also self-reflections. The fourth

estimated location R4 is due to the communication between

transceivers A and B (inter-node reflection). Notice that in

this case, two locations are within the valid region of beam
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Fig. 18. Evaluation results in the ideal case

TABLE II
DETAILS OF THE LOCALIZED POSITIONS FROM OUR ALGORITHM

(No.: the detected locations; TX: transmitter; RX: receiver)

No. R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11

TX A.2 A.3 A.4 A.4 A.5 A.5 B.1 B.2 B.2 B.3 B.4

RX A A A B B B A A B B B

A.4: R3 and R4. But the fact that R3 is a self reflection

while R4 is not, helps with distinguishing them. Note that

R4 does not need to be under the coverage of transceiver B to

achieve inter-node reflection. This is because the photodiodes

used in our experiments have a wide field of view (90o).

A more challenging case occurs with the next two locations

(R5, R6). These two locations are within the valid region of

beam A.5, and both are the result of inter-node reflection. As

stated in Step 4 of our algorithm, we can either average them

out at the cost of increasing the error, or exploit speed and

direction information from prior data to select the most likely

location. We implement a very simple mechanism to exploit

direction information. Every time we detect a new point we

set it as the origin, prior data are given negative values based

on their distance to this last point, and new data are given

positive values. If two or more positive points are estimated as

locations, we select the closest one (point R5 in this case). The

remainder half of the path is symmetrical to the first half, and

thus, the estimation is similar to what has just been described.

We don’t have any location estimations for beams A.1 and B.5,

because there are no self-reflecting angles for these regions.

If transceiver A would have a neighbour to its left, then beam

A.1 would have two potential locations (similar to R6 and R7).

Regarding the errors in our estimations, we found that they

are due to two main reasons. First, misalignment of the angles

in the moving object, e.g. our calculations in the algorithm are

done assuming the tilted angles of the object are 9o, 18o, etc.,

while in practice there are certain errors. Second, we assume

that luminaires are single-LED sources, while in practice they

have multiple LEDs (5 LED sources in the case of Shine+).

This difference changes the incidence angles, which in turn

affects the estimated location. This latter point is why our

errors are more pronounced at the boundaries of two beams

and more accurate at the center of beams.

Finally, it is important to note that passive localization with

VLC operates in a fundamentally different manner compared

Transceiver B
Transceiver A

Fig. 19. Experiment setup in the realistic case
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Fig. 20. Evaluation results in the realistic case (height=1.5 m, distance=2.5 m)

TABLE III
EVALUATION RESULTS (HEIGHT=1 M, INTER-NODE DISTANCE=2 M)

No. R1 R2 R3 R4 R5

Algorithm 0 m 0.577 m 1 m 1.534 m 2 m

Mirror -0.02∼0.02 0.63∼0.66 0.99∼1.01 1.48∼1.51 1.98∼2.02

Aluminum -0.02∼0.02 0.62∼0.65 0.99∼1.01 1.47∼1.5 1.98∼2.02

to most localization methods. Traditionally, after a signal

is received, the localization algorithm provides an estimated

location that can be anywhere. In our method, the localization

algorithm only has a limited number of locations to choose

from. The number of locations depends on the number of

beams and tilted angles. Thus, upon receiving a signal, our

method’s task is to map the received signal to the most

appropriate location, without requiring a training phase.

B. Localization: realistic case

We now test our passive localization in a more realistic

case, consisting of less beams and an object with less tilted

angels. In this scenario, we use two nodes equipped with the

Shine++ front-end. As introduced in Sec. IV, Shine++ uses

more powerful LEDs, which enable nodes to communicate at

a distance of 5 m In the tests, we set the height of the nodes

to various levels: 1 m, 1.5 m, and 2 m.1 Meanwhile, the inter-

node distance is adjusted between 2 m and 2.5 m.

Results. The evaluation results are shown in Fig. 20, where

the height and inter-node distance are set to 1.5 m and

2.5 m, respectively. For this experiment we use the aluminum-

car. First, it is important to observe that in this setup we

can only detect five locations, which is less than the eleven

locations detected under the ideal case. This occurs because

we now have less beams and less tilted angles. But all the five

1The height (range) can be increased if we add a lens to the photodiode.



TABLE IV
EVALUATION RESULTS (HEIGHT=1.5 M, INTER-NODE DISTANCE=2.5 M)

No. R1 R2 R3 R4 R5

Algorithm 0 m 0.866 m 1.25 m 1.801 m 2.5 m

Mirror -0.02∼0.02 0.85∼0.88 1.25∼1.26 1.76∼1.78 2.48∼2.52

Aluminum -0.02∼0.02 0.85∼0.88 1.25∼1.26 1.77∼1.79 2.48∼2.52

TABLE V
EVALUATION RESULTS (HEIGHT=2 M, INTER-NODE DISTANCE=2.5 M)

No. R1 R2 R3 R4 R5

Algorithm 0 m 1.155 m 1.25 m 1.567 m 2.5 m

Mirror -0.02∼0.02 1.15∼1.17 1.25∼1.27 1.5∼1.52 2.48∼2.52

Aluminum -0.02∼0.02 1.13∼1.15 none 1.51∼1.52 2.48∼2.52

estimated locations are still accurate. Note that in Fig. 20, red

bars are used to represent the ground-truth positions (instead

of dots as in Fig. 18). This is because the surfaces are wide

enough to give a continuous location range, while in Sec. V-A

the mirrors are so narrow that only a ‘single’ point is detected.

Results under different inter-node distances and heights are

given in Tables III–V. These tables show the estimations of

our algorithm and the ranges of the actual locations for the

aluminum- and mirror-car. From these results we can observe

that the maximum localization error is around 5.3 cm and the

average error is 0.97 cm. The performances with the mirror-

and aluminum-car are similar. The only difference is that in

Table V, the position R3 can be detected with the mirror-car

but not with the aluminum-car (due to the lower reflective

coefficient of aluminum).

C. Identification

We now present the evaluation on passive identification.

Without loss of generality, we use the object-ID “01” shown

in Fig. 16. In the experiment, the height of the transceivers is

1.5 m and the inter-node distance is 2.5 m. The object is moved

at a constant speed by hand from transceiver A to transceiver

B. We only use the “standard reflector” in this test because

the “perfect reflector” is too small to carry the object-ID.

Results. The signal received by the PD of transceiver A is

shown in Fig. 21(a). We clearly observe the high-frequency

signal that contains the beam-ID, which has been successfully

used for localization in our experiment (similar to Fig. 20).

Furthermore, we can observe that the object-ID appears three

times: In Fig. 21(a), the corresponding signals are marked as

G1, G2 and G3. They correspond to the three positions R1,

R2, and R3 in Fig. 20, where the object is located. Note that

the PD on transceiver B captures the signals of the object-

ID when the object appears at the location R3, R4, and R5.

To decode the object-ID at these positions, we first decouple

signals using the downsampling based method presented in

Sec. III-A. The resulted signal is shown in Fig. 21(b), which

is much cleaner. In Fig. 21(b), the first two groups of signals

(G1 and G2) are affected by ISI. For G1, which is mapped

to position R1, ISI takes effect at the tail. For G2 (mapped

to position R2), ISI occurs at the beginning (τ is negative,

cf. Sec. III-B1). For both G1 and G2, we successfully used

the steps presented in Sec. III-B to remove the ISI. The results

are show in Fig. 21(c). For G3 (mapped to position R3), the
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(a) Raw signal received by the PD at transceiver A
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(b) Detected envelope: filtering of high-freq. signal (Sec. III-A)
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(c) After eliminating the ISI (the changes are highlighted)

Fig. 21. Performance evaluation on the passive identification

object only modulates the light of one beam. Thus, ISI does

not exist, and we can decode the object-ID directly.

VI. RELATED WORK & DISCUSSION

Localization, both active and passive, has been investigated

widely. In this section, we summarize the most relevant work.

Passive localization with radio. M. Youssef et al. introduce

the concept of Device-free Passive (DfP) localization using

Wi-Fi [9], [10]. They show that changes in radio signals,

caused by people, can be harnessed to localize a person with

an average accuracy of 0.3 m. Recently, researchers have also

been able to track multiple objects passively with existing

radio signals [11], [12]. We are motivated by these works

to analyze the unique properties of visible light waves for

passive localization. Compared to radio waves, visible light

waves behave in a more deterministic manner (less multipath)

but have poorer coverage (because they cannot travel through

opaque objects). Our study exposes the opportunities and

limitations of exploiting the external surfaces of objects to

achieve accurate localization and identification.

Active localization with visible light. Epsilon [5] uses bea-

cons sent by LED lamps and a trilateration algorithm to cal-

culate a smartphone’s position, achieving an accuracy of 0.4-

0.8 m. This is improved by Luxapose [6], which leverages the

angle-of-arrival of signals to achieve decimeter-level accuracy.

A lighter-weight system, based on modulation via polarization,

reduces the processing workload and achieves an accuracy of

3 m [13]. Complementary to existing work, LiPro deals with

scenarios that only have one reference point [14]. It achieves a

median error of 0.59 m by exploiting the Lambertian property

of LEDs [15] and the receiver’s rotation. Similar to these



Annular FoV

Photodiode

Block

Fig. 22. Customized annular-FoV.

10
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studies, we also rely on the Lambertian coverage of LED

lights and the attenuation properties of visible light to obtain

localization. But contrary to those studies, our method does

not require the object to carry any photodetector.

Passive sensing with visible light. There is not much re-

search on passive localization with visible light. Okuli [16]

inspired our work because it uses an LED and two photodiodes

to track a finger’s movement with a median error of 0.7 cm

within an 8x8 cm pad. Okuli exploits the fact that fingers are

round and good diffusers of light to build a model-driven

solution, but it requires training data and a lighting system

that is specifically designed for near-field localization. Two

other related studies are CeilingSee [17] and LocaLight [18].

CeilingSee estimates occupancy by monitoring changes in

light reflection caused by people in a room. CeilingSee uses

general purpose luminaries, but they require a training phase

to obtain only occupancy information. LocaLight deploys

photosensors on floors to track people based on the shadows

they cast. Compared to our work, the main advantage of these

three systems is that they do not need to modify the external

surfaces of the elements they track. We, on the other hand,

modify the external surfaces, but obtain accurate localization

at longer ranges without requiring extra infrastructure (Okuli,

LocaLight) or training phases (Okuli, CeilingSee).

Discussion. Many of the assumptions we make for the

potential applications are realistic, such as knowing the height

and geometry of luminaries. But our system also has limi-

tations: (i) the path should not be bumpy, (ii) we can only

track a few points in the paths, (iii) the system only works

for 1-D scenarios, (iv) if multiple objects pass the same point

simultaneously, they would cause ‘reflection collisions’, and

(v) the size of the object’s surface determines the maximum

number of symbols that can be encoded (maximum number of

IDs), (vi) the orientation of transceivers should be stable. Point

(i) is a strong requirement, the bumpy spots in the detection

area will generate outliers in our result. Our system is only

resilient to few bumpy spots by eliminating outliers according

to the object trace. The other five points can be improved. For

point (ii), Kalman or Particle filters can be used to provide

continuous location information. For point (iii), we can create

annular FoVs with a single photodiode, cf. Fig. 22, to provide

2D localization, cf. Fig. 23. Solving point (iv) with a single

PD would be challenging, because it is hard to disaggregate

colliding signals, a plausible alternative is to add more PDs

with a narrower FoV to cover single lanes or tracks. Reducing

the receivers’ FoV would also help ameliorating point (v): a

narrow FoV would allow us to use narrower stripes, which

would increase the number of IDs that can be encoded on the

object’s surface. To alleviate point (vi), we can store the light

intensity caused by ground reflection after calibration. When

there is no object passing by and the ground reflection does

not match with the stored value well, we can then recalibrate

the orientation of transceivers.

VII. CONCLUSION

In this work, we took a first step to design a passive

localization system based on visible light, where objects are

not required to carry photosensors. To achieve our goal, we

modify the external surfaces of objects so light reflections

can provide information for localization and identification.

We define and analyze the elements of our proposed system,

and implement a testbed to benchmark its performance. Our

results show that visible light can provide passive identification

and localization with cm-level accuracy. Passive sensing and

localization with visible light is a nascent area, we hope our

work offers new insights in this up-and-coming domain.
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