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Abstract—To meet strict dependability requirements in hostile
and highly-varying environments, IoT communication protocols
need to be carefully tuned in relation to the expected environ-
mental changes. However, this is difficult to attain, as every
application has unique properties and requirements. Tuning
communication protocols correctly requires indeed significant
expertise as well as a clear understanding on how hardware and
software components are affected by environmental changes.

In this paper, we propose a novel framework to automate the
parametrization of IoT communication protocols. The framework
uses models of the environment as well as the employed hardware
and protocols to predict the effects of environmental changes on
network performance and to automatically select a configuration
that meets user-specified dependability requirements.

We demonstrate how to use this framework to configure a
state-of-the-art MAC protocol for an IoT application deployed
in a challenging outdoor environment and evaluate its accuracy
in predicting how environmental changes affect network per-
formance. We further evaluate the performance with different
optimization strategies and show that the average run-time
necessary to find a solution is sufficiently low to enable the use
of our system in a typical IoT design process.

Index Terms—Dependability, Environmental Impact, Commu-
nication Protocols, Optimization, Internet of Things, Wireless
Sensor Networks.

I. INTRODUCTION

An increasing number of Internet of Things (IoT) and
wireless sensor network (WSN) systems has been installed in
real-world settings during the last years [1]. These systems are
becoming an integral part of our daily lives, as they are used in
application areas such as civil infrastructure monitoring, home
automation, smart cities, smart grid, and smart healthcare.
Several of these application domains are safety-critical, and
rely on the dependable and predictable operation of sensors
and actuators that are wirelessly networked. For example,
systems employed to monitor patients, to control traffic, and
to inspect the structural health of buildings impose strict
dependability requirements on communication performance, as
their failure can have severe consequences.

Fulfilling these dependability requirements can be very
difficult, as WSN and IoT systems are often deployed in hostile
environments that significantly affect their performance. For
instance, systems deployed outdoors are affected by temper-
ature fluctuations and changing weather conditions [2], [3].
To cope with these challenges and meet strict dependability
requirements also in hostile environments, communication
protocols need to be carefully tuned in relation to the expected

environmental changes [4]. This is, however, difficult to attain,
as every application has unique properties and requirements,
and there is no “one-size-fits-all” solution. Tuning communi-
cation protocols correctly can indeed be a tedious task that
requires significant expertise, as well as a clear understanding
of how the environment affects the hardware in use and the
different communication protocols [5], [6]. Furthermore, even
for experts in the field, it may be difficult to find the right
trade-off that satisfies multiple requirements for the application
at hand (e.g., achieving both a high reliability and a low
energy consumption). Therefore, there is a need for a simpler
configuration of IoT communication protocols that does not
overwhelm the intended users of the technology.

In this paper, we propose a novel framework to support the
deployment of IoT and WSN applications by automating the
configuration of communication protocols such that specific
dependability requirements can be met. The framework uses
models of the environment as well as of the employed IoT
hardware and communication protocols to predict the effect
of environmental changes on network performance. Given a
set of user requirements, these models are used in combination
with mathematical optimization techniques to select a protocol
configuration that provides the required performance.

We demonstrate how our framework can be used to find
a suitable protocol configuration that meets user-defined de-
pendability requirements using a building façade monitoring
application as a case study. We show that our framework can
help to predict and avoid the adverse effects of temperature
variations on communication performance found in this type
of application and evaluate its accuracy and performance.
We further evaluate the performance of different optimization
strategies within the framework and show that the average run-
time necessary to find a solution is sufficiently low to enable
the use of our system in a typical IoT design process.

The contributions of this paper are three-fold:

1) We present the architecture of a new framework automat-
ing the configuration of IoT communication protocols;

2) We demonstrate how to apply this framework to configure
a state-of-the-art MAC protocol for an IoT application
deployed in a challenging outdoor environment;

3) We evaluate the accuracy of the framework in predicting
the behavior of the environment and its effect on network
performance.



The remainder of the paper is structured as follows. The
next section introduces an exemplary application that will
serve as running example and as basis for the evaluation of
our system. We illustrate our approach in Sect. III and detail
on the architecture and implementation of our framework in
Sect. IV. Thereafter, in Sect. V, we demonstrate how to use
the framework to find a suitable configuration that meets user-
defined dependability requirements. In Sect. VI we evaluate
the overall performance of the framework. After describing
related work in Sect. VII, we conclude our paper in Sect. VIII.

II. CASE STUDY: RELIABLE MONITORING
OF BUILDING FAÇADES

A large number of IoT and WSN systems are deployed
outdoors and are expected to operate dependably over ex-
tended periods of time, e.g., wildfire detection systems in
forests [7] or wireless networks monitoring structural damage
in civil infrastructures and buildings [8], [9]. Unfortunately,
the performance of wireless systems deployed outdoors is
typically affected by time-varying environmental conditions
such as meteorological changes and variations in humidity [2],
[3], which makes it difficult to satisfy strict dependability
requirements. For example, large temperature variations can
have a severe impact on network performance, as they reduce
the efficiency of radio transceivers [4].

We have experienced these problems in the context of the
RELYonIT project [10], during a pilot deployment of a WSN
on the different façades of a building in Madrid, Spain. The
purpose of our outdoor deployment is to promptly detect
structural damage as well as to measure the energy efficiency
of the construction by analyzing how the employed insulat-
ing materials reduce heat transfer. This type of application
requires a continuous reliable collection of sensor data, such
as temperature, humidity, and vibration. On the one hand,
achieving a high packet delivery rate across the network is
necessary to have a complete picture of the integrity of the
building and to avoid severe issues, such as the detachment
of loose parts from the building façade. On the other hand,
to draw conclusions about the effectiveness of a constructing
material or HVAC system, engineers rely on tiny changes in
the measured variables, and any gap in the collected data may
lead to false conclusions.

The major obstacle towards a reliable data collection is that
nodes deployed on the building façades often experience high
temperature fluctuations, especially if they are placed inside
IR-transparent enclosures exposed to direct sun radiation.
During our pilot deployment we have indeed observed daily
temperature variations as high as 50 ◦C.

These large temperature variations can have a severe impact
on the operation of CSMA protocols, because they can reduce
the effectiveness of clear channel assessment (CCA) methods
and compromise the ability of a node to avoid collisions
and to successfully wake-up from low-power mode [11].
Indeed, at high temperature the efficiency of low-power radio
transceivers may reduce significantly: as a result, the signal
strength between two wireless sensor nodes A and B decreases

when the on-board temperature of one of the two nodes (or
of both nodes) increases [4].

This problem is exacerbated by the fact that most state-
of-the-art CSMA MAC protocols rely on default system set-
tings, e.g., on the default CCA threshold of the employed
radio device, hence neglecting the impact of the specific
environmental properties of the target deployment site. As
we show in Sect. V, protocols should instead be carefully
parametrized in relation to the network configuration and to
the properties of the environment. For example, an inaccurate
selection of the CCA threshold may lead to a situation in
which receiver nodes constantly remain in low-power mode
at high temperatures, causing the disruption of links and a
drastic reduction in network performance that may violate the
dependability requirements of the application [11].

However, configuring protocols correctly is a very complex
task. For example, to select the optimal CCA threshold for a
MAC protocol employed outdoors, engineers need to consider
the expected temperature variations at the deployment site,
their impact on the hardware platform in use and on protocol
operations, as well as the overall implications on a network
level. This is not only time-consuming, but also non-trivial,
given that the parameter value needs to be computed in relation
to the specific application requirements defined by the user and
to the actual placement of nodes.

To correctly predict the effects of environmental changes
on network performance and select an optimal configuration
of the system, it is hence highly desirable to employ a tool that
automates the parametrization of communication protocols so
that user-specified dependability requirements can be met.
We describe next our attempt to build such an automatic
framework by first illustrating the approach we have followed.

III. APPROACH

In order to fine-tune communication protocols such that
user-specified requirements can be met, our framework needs
a set of user requirements and a number of formal models
to make reliable predictions about the system and its sur-
rounding environment. The framework uses then mathematical
optimization techniques to find a (near-)optimal configuration
that meets the desired performance.

We distinguish between three categories of interacting mod-
els: environmental models, platform models, and protocol
models.

1) Environment models. These models capture relevant as-
pects of the environment and provide an abstract repre-
sentation thereof. Individual model instances are created
for each specific environment by setting key parameters.
The latter are determined by running a data collection
application prior to the actual deployment. In our façade
monitoring application example, we need to employ a
model capturing the evolution of temperature in the
target deployment site. Such a model can consist of the
expected minimal and maximal temperatures for specific
time intervals of the day (e.g., dawn, morning, noon,
afternoon, evening, and night). To instantiate the model,



temperature is monitored over an extended time period
prior to the deployment to compute minimal and maximal
temperatures for each time interval.

2) Platform models. Different brands and types of sensor
nodes react differently to specific environmental condi-
tions. This relationship is captured by platform models.
The latter provide a mapping of environmental parameters
to variables that are relevant for the operation of WSN
software. In our case study, temperature affects the oper-
ation of low-power radio transceivers. Consequently, our
platform model needs to capture the relationship between
the on-board temperature of sender and receiver nodes
and the attenuation of the received signal strength for the
employed hardware platform [4].

3) Protocol models. These models characterize the operation
of a protocol under certain environmental conditions and
with a predefined hardware configuration, and are hence
built upon environmental and platform models. To be
able to assess the effects of performance changes, these
models need to expose all the relevant parameters of the
protocol that may suffer from environmental impact. In
our façade monitoring application case study, we use a
network of nodes running ContikiMAC [12], a CSMA-
based MAC protocol that is vulnerable to the impact of
temperature variations on clear channel assessment. We
therefore need to derive a model for ContikiMAC that
estimates how different CCA settings affect the expected
packet reception rate (PRR) as a function of the expected
temperature variations and hardware platform employed.

These models alone already allow predictions of the per-
formance based on a specific configuration. To automatically
identify a (near-)optimal configuration that meets the user’s
requirements based on these predictions we employ mathe-
matical optimization. Optimization strategies provide a way
to systematically evaluate configurations such that a (near-)
optimal solution can be found in a relatively short time.

The configuration process is steered by user-defined depend-
ability requirements, as an optimal selection of a parameter
strongly depends on the actual application needs. The defini-
tion of application requirements is complicated by the fact that
some applications support different states of operation, often
with significantly different requirements. For example, a sys-
tem to detect wildfires in forests would be typically optimized
for a long system lifetime during normal operation. However,
as soon as a forest fire is detected, lifetime is not a primary
concern anymore, and the primary goal becomes instead the
fast dissemination of the fire-front direction. Consequently, it
is necessary to allow the user to define multiple performance
states and their associated sets of requirements. For each state,
an individual configuration is created, and at run-time the
application can select the configuration that best meets its
current state.

IV. PARAMETER SELECTION FRAMEWORK

We now describe the parameter selection framework imple-
menting the automatic protocol configuration approach intro-
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Fig. 1. Architecture of the parametrization framework.

duced in Sect. III. After giving a coarse-grained description
of the software architecture of the parametrization component,
we then detail on the optimization techniques employed by the
framework and illustrate the actual software implementation.

A. Architecture

A bird’s eye view of the architecture of the parametrization
framework is presented in Fig. 1. The system architecture is or-
ganized around the static configuration component for protocol
parametrization, which coordinates the automatic parameter
selection process. It receives a user-provided specification of
the dependability requirements as input.

The specification consists of a number of constraints on
properties of the network behavior and a single property that
should be either maximized or minimized (e.g., maximization
of network lifetime). To increase the flexibility, our framework
also supports probabilistic constraints that only need to hold
at a specific point in time with a given probability. It is also
possible to define more than one constraint for the same met-
ric, typically with different probabilities. For example, a user
could specify that the packet reception rate should stay above
0.8 with a probability of 0.9 and above 0.5 with a probability
of 1. For applications that support different operation modes,
the requirements for each mode are specified individually and,
for each mode, an individual protocol configuration is derived.

Based on these inputs a near-optimal configuration for the
respective protocol is generated by the static configuration
tool, employing mathematical optimization techniques. If the
requirement specification defines different modes of operation,
the process is executed individually for the requirements of
each mode.

The final output of the parametrization tool is a protocol
configuration for each employed protocol. These configura-
tions are static and do not change at run-time. Nevertheless, it
is possible to switch between configurations associated to the
different performance modes. In the following sections we will
look at individual aspects of the framework in more detail.

B. Underlying Mathematical Model

The static configuration component employs mathematical
optimization to generate an optimal parameter configuration.



We employ stochastic optimization strategies that are not able
to give absolute guarantees, but are usually more robust to
noisy data and require less fine-tuning for a specific problem
instance. Due to their inherent randomness, stochastic strate-
gies tend indeed to be able to escape local minima and to
approach a global optimum even in a non-convex search space.

Each dependability specification essentially defines a con-
strained optimization problem. The formulation is based on
a number of metrics mi(c) that allow to evaluate a specific
configuration c based on a protocol model. A single protocol
model may support more than one metric, each representing
a specific relevant performance measure of the underlying
protocol implementation. During the evaluation, the protocol
model resorts to a suitable environment and platform model
to incorporate the exact properties of the the environment and
platform at hand. In the current system, we only consider
the single objective case where a single metric is optimized.
In addition to this optimization goal, the user may specify a
number of constraints that further determine the properties of
the desired solution. This results in optimization problems of
the following form1:

Minimize m0(c)
Subject to m1(c) ≤ t1with prob. p1

m2(c) ≤ t2with prob. p2

(1)

The goal is to find a set of protocol configuration parameters
c that optimize a single metric m0. In addition, a variable
number of constraints need to be fulfilled by ensuring that
m1(c) and m2(c) are below the respective thresholds t1 and
t2 with a probability of at least p1 or p2. Note that m0, m1,
and m2 may refer to the same metric.

To be suitable for automatic optimization, this optimization
problem needs to be transformed into a suitable goal function,
as most optimization strategies cannot immediately handle
probabilistic constraints.

First, the constraints are integrated with the optimization
function in an approach resembling penalty functions [13]. In
the unconstrained case, the cost f(c) of a specific configu-
ration c is determined only by the goal function m0(c). To
integrate constraints, a measure of violation is computed for
each constraint and is added to the total cost of the current
configuration. To ensure that invalid solutions are unlikely to
be selected, while still allowing the optimization algorithm
to traverse infeasible regions of the search space in order to
reach more promising regions, the influence of the constraint
violation is given more weight. If we assume a weight of k,
the total cost for a given configuration c and r constraints can
now be calculated as:

f(c) =
fgoal(c) + k

∑r
j=1 fcons,i(c)

1 + kr
(2)

1To simplify the presentation and without loss of generality, we assume that
the metrics (m0, m1, m2) and the thresholds (t1, t2) are normalized to the
[0, 1] range and that smaller values denote superior properties. In addition,
only minimization and less-or-equal constraints are considered, as other goals
and constraints can be easily converted into this form.

where fgoal(c) = m0(c) depends only on the evaluation of the
goal and fcons,i(c) = max{(ti −mi(c)) , 0} is determined by
the degree of violation for the ith constraint.

Second, the non-standard feature of probabilistic constraints
that is not supported by the employed optimization techniques
needs to be handled. To support this, we exploit the fact that
most environmental parameters exhibit a periodic behavior,
e.g., a day and night cycle. This allows us to divide the period
into a number of intervals with individual environmental
properties. If we assume that communication events are evenly
distributed over time, we can associate a probability qj with
each interval based on its relative length. This indicates how
likely it is that a communication event is affected by the
properties of this specific interval. Instead of a single function
mi(c) per metric, we now employ a set of functions mi,j(c),
each corresponding to one of the n intervals. Each of these
functions uses a different instance of the environmental model
that represents the distinct interval. To support probabilistic
constraints, we now need to adapt the definition of the func-
tions fgoal(c) and fcons,i(c) in Eq. 2. The cost of the goal
fgoal(c) is simply defined as the average of the cost for each
individual interval:

fgoal(c) =

n∑
j=1

qjm0,j(c) (3)

The calculation of the cost of the individual constraints now
takes the probabilities in account by employing the definition:

fcons,i(c) = max


pi − n∑

j=1

τ(mi,j(c), ti, qj)

 , 0

 (4)

where n is the number of intervals and the function

τ(v, t, q) =

{
q, v > t

0, otherwise
(5)

implements the aforementioned check for violation of the con-
straint. The resulting definition of f(c) can now be employed
as goal function of an unconstrained optimization problem that
is well supported by the employed optimization techniques.

C. Implementation

The protocol parametrization tool is implemented as a
standalone Python application. Its primary input is a user-
provided requirement specification employing a custom XML-
based specification language. This file contains an encoded
specification of the user’s requirements and defines an opti-
mization problem as detailed in Sect. IV-B. If the application
supports different states of operation, an independent require-
ments specification document is provided for eachstate.

In addition to the specification, the parametrization com-
ponent has access to a collection of protocol model im-
plementations. Available protocol model implementations are
located via a search path and are automatically loaded by the
framework as needed. To enable dynamic loading and the easy
addition of additional models without the need to modify the
framework itself, protocol models employ a plug-in interface.



This interface provides methods for initialization and model
evaluation. The latter is used during the optimization process
to evaluate the quality of individual protocol configurations.
In addition, the interface allows to query which metrics
are supported by the model and can be used in a related
requirement specification. Most models only cover a subset
of the available performance and reliability metrics. When
evaluating a configuration, the protocol model implementa-
tions make use of platform and environmental model instances.
For simpler models, their implementation is usually directly
integrated with the implementation of the protocol models.
For more complex platform and environmental models, they
are implemented as separate modules which are accessed via
method calls. Both environmental and platform models depend
on application-specific empirical data that is usually loaded
from a file at initialization. This interface is defined by an
abstract Model class.

The protocol parameterization component can utilize differ-
ent optimization strategies to solve the optimization problem,
allowing the user to choose a strategy that is most appro-
priate for the specification and models at hand. The current
prototype implements two stochastic optimization strategies.
Stochastic optimization strategies cannot guarantee that an
optimal solution is found in each run, but they are usually
more robust to noisy data and require less fine tuning for
a specific problem instance. Suitable stochastic optimization
strategies still possess a high probability of convergence and
are usually able to find a near-optimal solution. Due to their
inherent randomness, stochastic strategies tend to be able to
escape local minima and to approach a global optimum even
in a non-convex search space. The current prototype supports
simulated annealing and evolutions strategies. Both strategies
use custom implementations that support configurations with
integer, floating point, nominal, and Boolean values. The
implementation of evolution strategies builds on ideas from
Reehuis and Bäck [14].

The final output of the configuration tool is a protocol
configuration encoded in a C source file. It contains individual
configuration values for the configurable parameters of the
involved protocols. The C representation is later compiled
and linked with a run-time environment to enable the correct
configuration of the communication protocols during oper-
ation. To give the protocol implementations access to the
derived configuration values, a unified configuration interface
is provided by a run-time environment, which enables them
to receive their configuration parameters at initialization. In
addition, to support different performance states for the ap-
plication, the static optimization tool generates an individual
parameter configuration for each performance state. The run-
time environment provides methods for the user-application
to switch between different performance states and to notify
protocols of a state change.

V. APPLICATION OF THE FRAMEWORK

We now demonstrate the applicability of our framework
in a typical IoT application using the façade monitoring

application introduced in Sect. II as a case study. In this
scenario, nodes deployed on the building façades may expe-
rience high fluctuations of their on-board temperature. As we
have discussed previously, these variations can have a severe
impact on the operation of low-power CSMA MAC protocols
such as ContikiMAC [12] due to the inefficiency of clear
channel assessment at high temperatures. Indeed, the signal
strength between two nodes A and B decreases in a linear
fashion when the on-board temperature of one of the two nodes
(or of both nodes) increases [4]. When low-power CSMA
protocols perform an inexpensive clear channel assessment
(CCA) check to determine if a node should remain awake
to receive a packet or whether it should return to sleep mode,
they essentially compare the current received signal strength
with a CCA threshold ζ. The latter is typically chosen at
compile-time and often set to the default value of the employed
radio device (e.g., -77 dBm for the off-the-shelf CC2420
radio transceiver). When temperature increases, the received
signal strength of a node may decrease to a point in which it
becomes lower than ζ. When this happens, the receiver node
remains constantly in low-power mode, causing disruption of
the link [11]. Still, ζ should not be set to an arbitrarily low
value, as this may lead to an increased number of false wake-
ups due to interference and noise in the surroundings that
would significantly increase the energy expenditure. To avoid
the issues, we need to properly configure ζ such that any
potential increase in the on-board temperature of the deployed
nodes will not lead to a loss of connectivity, i.e., we need to
find a suitable configuration of ζ such that the network can
sustain the desired PRR despite temperature changes while still
minimizing energy expenditure. Towards this goal, we need
to (i) derive the necessary models, (ii) select the application
requirements, and (iii) integrate them into the framework.

A. Deriving the Models

Our framework requires three different types of models:
environmental, platform, and protocol models. The protocol
model will describe how the operations of the employed MAC
protocol, ContikiMAC, are affected by temperature changes.
More specifically the protocol model captures the effect on the
performance of ContikiMAC in terms of PRR. This model will
build upon a platform model characterizing the signal strength
attenuation of the radio transceiver embedded in the employed
sensor nodes, as well as upon an environmental model captur-
ing the possible variations of on-board temperatures in the
specific deployment environment.

a) Environmental model: Our façade monitoring appli-
cation is deployed in the city of Madrid, Spain, and we hence
need to capture how its Mediterranean climate can affect the
on-board temperature of sensor nodes. We devise an environ-
mental model based on the maximum on-board temperatures
recorded on the sensor nodes at specific times of the day. In
particular, we sub-divide each day into six intervals of equal
length, and run a specific data collection application prior
deployment that records the on-board temperature variations



over several days [10]. The model thus provides the maximal
temperature as a function of the time of the day.

b) Platform model: In our deployment we employ MTM-
CM5000-MSP motes embedding a CC2420 radio transceiver.
In earlier research, we have shown the effects of temperature
on the efficiency of this transceiver, and derived a linear model
characterizing the decrease in signal strength as a function
of temperature [4]. Denoting PL as the path loss between a
transmitter-receiver pair, Pt as the transmission power, Pr =
Pt − PL as the received power, and Pn as the noise floor at
the receiver, this model describes the temperature effect on the
SNR as follows:

SNR = (Pt − α∆Tt)− (PL+ β∆Tr)
−(Pn − γ∆Tr + 10 log10(1 + ∆Tr

Tr
))

= (Pr − α∆Tt − β∆Tr)
−(Pn − γ∆Tr + 10 log10(1 + ∆Tr

Tr
))

(6)

where the constants α, β, and γ with units dB/K denote
respectively the effect on transmitted power, received power,
and on the noise floor. These values are obtained by regression
over data obtained from testbed experiments. The values
Tt and Tr represent the reference temperature in Kelvin of
transmitter and receiver; whereas ∆Tt and ∆Tr capture the
difference of current temperature in Kelvin with respect to Tt

and Tr [4].
c) Protocol model: The reception of a packet in CSMA-

based protocols such as ContikiMAC can be estimated by
analyzing how the signal strength with which the packet is
received relates to the transitional phase of the radio response
and to the selected CCA threshold.

Each node periodically wakes up from low-power mode and
checks for incoming packets by verifying if the received signal
strength sr is above a fixed CCA threshold ζ. The PRR is
hence firstly influenced by the relationship between sr and
ζ: if sr ≥ ζ, the node infers that an ongoing transmission is
present and remains awake to receive the packet; if sr < ζ,
the node believes that there is no ongoing transmission and
returns to sleep mode without receiving the packet.

Furthermore, PRR is also affected by the transitional phase
of the radio response. When the signal strength of the received
packet is too close to the sensitivity threshold of the employed
radio, it becomes unlikely to successfully demodulate the
packet. Early WSN research has shown that the decrease of
PRR in the transitional region follows a sigmoid curve [15],
in which the probability p of receiving a packet is

p = (1− f(Pr − Pn))b (7)

with Pr being the received signal strength in dBm, Pn the
sensitivity threshold of the radio in dBm, and b the number of
bits in the packet.

Denoting s0.99 as the signal strength that leads to a delivery
rate of 0.99, and s0.01 as the corresponding signal strength for
a delivery rate of 0.01, we can define three reception regions,
as shown in Fig. 2 in the black sigmoid curve: a connected
region, where the received signal strength is above s0.99; a
disconnected region, where the signal strength is below s0.01,

[%
]

τ

Fig. 2. The impact of temperature on the operation of a MAC protocol.

and a transitional region of length τ dB, where the delivery
rate drops monotonically between 1 and 0.

Because of the dependency between signal strength and
temperature, according to Eq. 6, a variation in the on-board
temperature at the receiver or at the transmitter will cause the
receiver to measure a signal strength

s
′

r = (sr − α∆Tt − β∆Tr) (8)

i.e., an increase (decrease) in Tt and/or Tr will attenuate
(strengthen) sr into s

′

r. Fig. 2 shows an example in which the
received signal strength sr decreases (i.e., is shifted to the left)
due to an increase of temperature in both transmitter (α∆Tt

component) and receiver (β∆Tr component). To predict if a
change in the on-board temperature at the transmitter and/or
receiver node will affect packet reception, we need to verify
if s

′

r < ζ. If this is the case, no packet will be received, as
the node will return to sleep mode after having assumed no
ongoing transmission.

Similarly, if the on-board temperature of the receiver
changes, also the position of the sigmoid curve may change.
For example, an increase in temperature would lower the
noise floor (see Eq. 6), shifting this curve towards left (red
sigmoid curve). To predict how s0.01 and s0.99 would change
in relation to temperature variation we use Eq. 6 to derive
s′0.99 = s0.99 −∆Trγ and s′0.01 = s0.01 −∆Ttγ.

We can hence estimate the packet delivery rate PRR′ given
a specific ζ value for each link i in the network as:

PRR′ =

 1, if max{ζ, s′0.99} < s′r
p, if s′0.01 ≤ ζ < s′r ≤ s′0.99

0, otherwise
(9)

This allows us to estimate the worst case delivery rate given
a specific temperature variation/range.

B. Integration with the Framework

The aforementioned model has been realized as a plug-in
implementing the interface defined by the framework. The
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implementation exposes one configuration parameter, ζ, and
provides a number of metrics that can be used to define goals
or constraints. The primary metric is the expected worst case
PRR of a link averaged over all links in the network.

C. Selecting the Dependability Requirements

As discussed in Sect. II, the target application needs a highly
reliable data collection. Therefore, the MAC layer needs to en-
sure a high PRR even under adverse environmental conditions.
At the same time, it is also important to ensure that the system
will have a long lifetime in order to keep maintenance at a
manageable level. Hence, we need to find a CCA threshold
setting that still ensures that the user requirements are met but
leads to as little energy wastage as possible. Consequently,
the CCA should be maximized while still not violating the
constraints, as lower CCA values lead to a higher number of
false wake-ups.

An industry partner running the deployment specified, that
to enable useful insights about a building’s energy-efficiency,
at least 85% of the collected measurements should be success-
fully delivered to the sink at all times and with a probability
of 0.9 at least 95 % of the packets should arrive at their
destination.

Based on these requirements and the implemented models
it is now possible to determine a protocol configuration that is
able to support the expected performance. These requirements
lead to the following optimization problem:

Maximize CCA([ζ])
Subject to PPR([ζ]) ≥ 0.85 with probability 1.00

PPR([ζ]) ≥ 0.95 with probability 0.9
(10)

VI. EVALUATION

In this section we evaluate the performance of the proposed
framework.

A. Suitability of the Framework

To evaluate the applicability of the framework, we employ
it to generate a suitable configuration for the case-study
introduced in Sect. II. The goal is to find an optimal CCA
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Fig. 4. Impact of CCA threshold on PRR on a network of nodes. The bottom
plot shows the different temperature profiles of the nodes in the network.

threshold value that conserves energy while still fulfilling the
user’s dependability requirements. To ease the analysis and
presentation of the results, we first consider a single link
between two nodes. In a second step, we demonstrate that
the same principle correctly works on a network of nodes.

We use TempLab [16], a temperature-controlled testbed,
to recreate a network scenario similar to the one found on
real-world outdoor façades. In particular, we feed TempLab
with temperature traces previously recorded in Madrid so that
the on-board temperature of the sensor nodes in the testbed
experiences the same profile as in the real-world. In our
experiments we use a time-lapse factor of 12, so that a day
is replayed within 2 hours in our testbed. We further set the
width of the transitional region τ = 5 dB and the packet size
b = 35 bytes. The remaining model parameter were left at
their default values of α = 0.078dB/K, β = 0.078dB/K,
and γ = 0.037dB/K. These values have been empirically
determined by earlier experiments [4].

In the first set of experiments we employ the framework
to configure the CCA threshold to obtain dependable com-
munication on a single link. In particular, we aim to find
a configuration that maximizes the CCA threshold while
maintaining a PRR between the two nodes of 0.85 at all
times. Based on temperature traces from the deployment in
Madrid, the configuration framework determines an optimal
CCA threshold of −83 dBm for this requirement specification.
When trying different possible CCA threshold settings in the
TempLab testbed, as shown in Fig. 3, we can see that with
a threshold of −83 dBm, the PRR actually stays above 0.85
for the whole duration of the experiment, whilst with a higher
CCA threshold this would not be the case.

In a second experiment, we employ the same PRR constraint
of 0.85 but only with a probability of 0.6. For this scenario,
the framework determines an optimal CCA threshold of −81
dBm. As shown in Fig. 3, the use of a threshold of −81 dBm
actually ensures that the PRR stays above 0.85 in four out
of the six intervals per day, which fulfills our requirement of
sustaining a PRR of at least 0.85 in at least 60% of the cases.
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Fig. 5. Time/quality trade off for different optimization strategies.

We can also see that a CCA threshold of −80 dBm would
violate the constraint by also dropping below 0.85 in the first
interval, hence −81 dBm can be actually assumed to be the
most energy conserving configuration that is able to fulfill the
constraint.

We now use our framework to configure a network of
seven sensor nodes connected to a single gateway node in a
star topology. All nodes are exposed to different temperature
profiles following the ones recorded on different building
façades in Madrid. To configure the network, we employ
the user-defined requirements introduced in Sect. V. For this
scenario, the framework suggests the use of a CCA threshold
of −83 dBm. Based on the results reported in Fig. 4, it can
be seen that for the selected CCA threshold, the average PRR
stays above 0.85 at all times. For CCA thresholds above −80
dBm, this constraint is clearly violated. Nevertheless, with a
threshold of −82 dBm or higher, the PRR drops below 0.95
for at least three out of the 18 intervals, which indicates that
the second constraint cannot be met. Consequently, the tool
actually picked the best possible CCA value for the given
scenario. This demonstrates that our tool is capable to generate
useful configurations for realistic deployment scenarios within
the selected application area and is able to handle the more
complex requirements of typical users.

B. Performance

We now evaluate the basic performance of the system and
measure the relative performance of the different optimization
algorithms. Employing the same model and similar settings
as in the previous section, a globally optimal solution can be
found with a CCA threshold of -84 dBm and a cost value
f = 0.14344.

For the evaluation, we execute the parametrization process
with both available optimization strategies. To evaluate differ-
ent time/quality trade-offs, we artificially limit the maximal
number of iterations. To reduce the effect of random events,
each algorithm is executed 100 times for each setting.

Fig. 5 presents the trade-off between the runtime of the op-
timization algorithms and the average quality of the solutions
found. To illustrate the observed trend, an exponential function
(x 7→ a ∗ eb∗x + c) has been fitted to the raw data. It can
be seen that with very short run times, the optimal solution

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200  250Pr
o
b
a
b
ili

ty
 o

f 
fi
n
d
in

g
 o

p
ti

m
a
l s

o
lu

ti
o
n

Average Run Time (s)

Evolution Strategies
Simulated Annealing

Fig. 6. Probability of finding the optimal solution within a given time.

is only found in a limited number of runs and the returned
solutions are often far away from the optimal one. With a
run-time of two minutes or more, both algorithms are very
likely to identify the optimal configuration. Incorrect solutions
tend to be close to the optimal solution, as shown in Fig. 6.
In most applications, finding a good solution that satisfies all
constraints is already sufficient. Due to a rather small number
of nodes and a limited set of configuration options in this
case-study, exhaustive search is also still a feasible option, but
its performance degrades quickly if the number of possible
configurations is increased.

Both optimization algorithms performed well in this sce-
nario and a run-time in the order of minutes coupled with
a high reliability enable an efficient use within a typical
WSN development process. For the given model, evolutionary
strategies exhibit a slightly superior performance, but both
strategies are able to generate suitable configurations within
reasonable time.

C. Extensibility

Even though the presented evaluation is limited to a single
use case and protocol, the framework can be applied in several
other scenarios. As part of the RELYonIT project [10], we
have indeed implemented protocol models for a number of
additional protocols:

1) A model for TempMAC, a temperature-aware extension
of ContikiMAC [11]. This model is essentially an exten-
sion of the one introduced in Sect. V;

2) A model capturing the impact of duty cycle configuration
on the energy expenditure of a MAC protocol. This model
can be used to find the best duty cycle for a specific radio
environment and therefore especially targets indoor de-
ployments where radio interference tends to significantly
affect network operation;

3) A model to aid the configuration of the jamming-based
agreement (JAG) protocol [17]. This model can be used
to determine the jamming period length that yields an
optimal agreement probability in environments prone to
external radio interference;

4) A model to aid the selection of an optimal packet length
to minimize energy consumption and reduce latency.



Within RELYonIT the framework has also been applied to
determine the configuration of WSN-based smart parking sys-
tems in densely populated urban areas where both temperature
and radio interference influence the network operation.

VII. RELATED WORK

Support systems for WSN configuration are a surprisingly
rarely-considered aspect of deployment support. Few systems
exist that support users with the complex task of finding
optimal configuration parameters for a given environment.

Existing approaches often rely on simulation [18], [19] and
systematically try out different possible configurations in an
emulated environment. With existing simulation environments,
this is usually a time-consuming task as the high-fidelity
models require significant processing power and consequently
only allow limited speed-up for larger networks. The long
computation times significantly limit the number of configu-
rations that can be evaluated and easily lead to sub-optimal
configurations. While our approach shares the same basic
strategy, we can significantly reduce the run-time of the model
evaluation by using more abstract formal models. This allows
to evaluate a larger number of possible configurations and thus
increases the likelihood of finding an optimal configuration.

Only a very small number of works apply formal models
and mathematical optimization to WSN protocol configuration.
A well-known example is the ptunes system developed by
Zimmerling et al. [20]. Ptunes employs a formal protocol
model and constraint programming to find optimal MAC pro-
tocol configurations settings for a specific network topology
and radio environment. Ptunes’ goals are very similar to our
approach, but at least in its current form, ptunes is limited to
MAC protocol configuration, while our approach targets proto-
cols at different levels of the network stack. More importantly,
ptunes does not explicitly model any environmental effects and
only considers internal interference. Instead, ptunes is intended
to work online and constantly reconfigure the network, which
allows to constantly adapt the configuration to a changing
environment, but significantly limits the available run-time for
optimization. Our approach of pre-deployment configuration
can use more sophisticated models that require a higher run-
time, but leads to more precise and dependable results.

Our work builds on simulated annealing and evolution
strategies to implement the actual optimization. While our im-
plementation of simulated annealing follows common design
strategies found in relevant textbooks, our implementation of
evolution strategies employs ideas from Reehuis and Bäck [14]
to support integer and floating point parameters.

VIII. CONCLUSION

In this paper, we introduced a novel framework for the
automatic configuration of IoT communication protocols based
on different models and user requirements. Our experimental
evaluation demonstrates the feasibility of our approach for
an exemplary application and an adequate performance of
the current prototype. In the future we intend to implement
additional protocol models and employ the framework in

additional case studies. This will allow us to further assess the
performance of the system and to identify means to increase
the flexibility of the framework. Ultimately, we intend to
enable the configuration of typical WSN and IoT software-
stacks without requiring extensive expertise in the area.
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