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Abstract—Due to new regulations regarding privacy and the in-
creasing reservations of citizens about surveillance systems, cities
are exploring privacy-friendly technologies for crowd monitoring.
An alternative gaining significant interest is mmWave radar for
people counting applications. However, most studies in mmWave
monitoring primarily focus on indoor or outdoor deployments
under ideal conditions. Working with the municipality of Ams-
terdam, we propose a method for counting people with mmWave
in a real outdoor scenario. These realistic scenarios pose two
significant difficulties. First, it is hard to estimate the number of
people when they walk together because the radar captures the
group as a single-point cloud. Second, the dynamic environment
adds random points (noise) that may get reflected as false counts.
To tackle these challenges, we optimize a state-of-the-art deep
learning model to attain noise filtering and cluster disaggregation.
We deploy the radar across a street and measure its performance
under real traffic conditions. Our system achieves an accuracy
of 96% for Presence detection and 69% for People counting.
Over the long term, the system can monitor the crowd level
with an error below 2.5%. Furthermore, considering the needs
of our application, we reduce the complexity of the original SoA
model by 93%. Our results indicate that mmWave is a promising
solution for privacy-friendly people counting in urban scenarios
and exposes unique challenges that have not been reported or
considered in the SoA.

I. INTRODUCTION
A. Motivation

Need for people counting: We carry out this work to-
gether with the municipality of Amsterdam. The city requires
an estimate of ‘People Count’ to meet various objectives.
Depending on how crowded an area is, the city decides to
deploy additional officers or to regulate the traffic movement.
Similarly, the department governing the parks in the city is
interested to know which areas and playground equipment are
used more often by the citizens. This helps them better plan
their future investments. The sports department likewise is
interested to know the occupancy of open courts for badminton
and soccer. Frequently, these fields are reserved by sports
clubs but are not utilized. Thus, while the records portray that
the sporting infrastructure is insufficient, the ground reality
indicates it is underutilized. These three examples derived
from our interaction with the city officials reinforce the need
for people counting in urban infrastructure. However, the
technological solutions adopted by the city must meet privacy
mandates dictated by the legal framework and citizen concerns.

Mandate for privacy: Through various manifestos, the city
declares the ethical guidelines governing the implementation
of a technology. The TADA values -a manifesto containing

shared values for a responsible digital city, states that it
is important to use technology and data for the benefit of
residents without having a negative impact on the privacy and
freedom of citizens [1]. On a wider scale, across Europe, the
General Data Protection Regulations (GDPR) provide a legal
framework for sensing, communication, usage and storage of
personal data. These new regulations state that personal data
shall be adequate, relevant and limited to what is necessary in
relation to the purposes for which they are processed (‘data
minimization’). Thus, the privacy of a citizen is given utmost
importance in the framework of urban governance. More
significantly, beyond the legal mandate, citizens are becoming
increasingly aware of their right to privacy and are asserting
their reservations against any technology that may invade their
personal space. For example, the city of Amsterdam deployed
multiple cameras in the past, but now it is performing a pilot to
deploy shutters to cover the cameras due to citizen demands.
Furthermore, two universities were compelled to withdraw the
installation of crowd-counting cameras due to protests from
students [2], [3], emphasizing that these devices have not
been able to invoke sufficient trust in people. Hence, a new
legal framework and civic awareness are driving the sensing
of urban parameters to be more privacy-friendly.

Ground reality: Despite the aforementioned guidelines,
crowd counting cameras are the most adopted solution for
people counting. Several products from companies such as
Hikvision [4] and Xovis [5] are commercially available for
people counting. Such cameras capture the images, identify
people through algorithms, count them and communicate this
count. However, besides being considered intrusive devices,
the cameras need to be configured through various software
updates and maintenance cycles. An incorrect configuration
could render the privacy protection inadequate. Thus, while
there is a strong requirement for people counting, simultane-
ously there is an expectation to perform it in a privacy-friendly
manner. This has led the city to explore alternative techno-
logical solutions. One such alternative is data-minimization,
i.e., limit as much as possible the collection of personal data.
Nothing can go wrong with the data that is not collected:
it cannot be abused, it cannot be misused, or get leaked
accidentally [6]. For crowd monitoring, this means that the
sensor should not be able to gather personalized data in the
first place, which indicates that cameras cannot be used.
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B. Millimeter Wave (mmWave) radar for people counting

Millimeter wave (mmWave) radars have the innate advan-
tage that they sense objects through a cluster of points, called
‘point clouds’, thus minimizing the exposure of personal data.
Through radar parameter settings, the density of point clouds
can be configured such that it indicates the people count but
the sparsity makes it difficult to identify the individuals. Thus,
the risk of leakage of personal data during a security breach
is minimized. Also, they offer an added advantage: adverse
weather conditions such as rain or fog have little impact
on their performance [7]. This makes mmWave a promising
candidate for privacy aware people counting.

In recent years, there has been an increased interest to
explore the usage of these radars across diverse applications
such as gesture sensing [8], [9], gait estimation [10] and people
counting [11]. However, most of the work focuses on indoor
scenarios under controlled conditions. Outdoor deployments
for people counting pose two significant difficulties. Firstly, it
is non-trivial to estimate the correct count of people when they
walk together in a group because the radar captures the group
as a single point cloud. Secondly, the dynamic environment
adds random points (noise) that may get reflected as false
counts. Few studies use mmWave sensor for outdoor people
counting. In our earlier work, we discuss the deployment of a
mmWave radar in a university campus for people counting dur-
ing three months [12]. However, that study does not identify
the number of people in a single cluster, leading to potentially
severe undercounting. Another study proposes a method to
estimate the number of people in a single cluster by extracting
features from the point cloud and using a statistical method
for classification [13]. However, the implementation uses raw
radar data (radar cube) as input which is much larger in size
compared to a point cloud. Further, the evaluation is done
under controlled conditions.

In this work, we attempt to overcome these limitations by
proposing a two-step approach consisting of Cluster creation,
i.e., creating clusters of point clouds that are free of noise, and
Cluster identification, i.e., identifying the people count within
each cluster. We assess the performance of our implementation
under real-life conditions through a rigorous evaluation. In
particular, the main contributions of our work are:

o We implement an optimized method for point cloud data
that effectively filters the noise and reduces false counts
(Section IV). The efficacy of the noise rejection is shown
through a high accuracy of presence detection.

o We optimize a state-of-the-art neural network to 7% of
its original size and apply it for cluster identification
(Section V). The light-weight network model classifies
a single cluster to predict the count of people.

e We perform a rigorous evaluation to benchmark the per-
formance of our methodology (Section VII). The results
show that our network model can correctly predict the
number of people in a single group with 83% accuracy.

o We evaluate the system with real traffic data by setting a
deployment across a street (Section VIII). Our system
can accurately identify ‘Presence detection’ with 96%
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(b) A typical pavement ob-
(a) Crowd counting camera served by a crowd counting

mounted on one of the streets. camera.

Fig. 1: Crowd counting camera deployment.

Sr No | Parameter Targ.et .
Specification
1 Range 10m
2 Area 100sq m
3 Traffic Slow moving
- ... | Should operate under
4 Lighting Conditions varying lighting conditions
5 Responsiveness Few minutes
6 Power Through electricity mains
7 Miscellaneous Contmuops mode
of operation
TABLE I: Requirements of a people counting system.

accuracy, and ‘People count’ with 69% accuracy.

II. REQUIREMENTS OF A PEOPLE COUNTING SYSTEM

We discussed three potential applications for people count-
ing in Section I-A. Now, we present our work in the context
of the first application, about people counting on streets, with
the possibility of generalization for other applications.

Application scenario: Figure 1 shows a crowd counting
camera deployed in the city. Table I summarizes the require-
ments for such systems. In the current system, each crowd-
counting camera captures the scene every minute, computes
the count at the edge and relays the outcome to the server. The
people count is processed to achieve two objectives. Firstly,
the data is aggregated and relayed every fifteen minutes to
the ground staff responsible for making interventions. The
ground staff performs specific actions such as implementing
blockades, depending upon the aggregate data. An estimate
of how crowded an area is, rather than a precise count, is
sufficient to perform these interventions. Secondly, the data is
used to create various analyses to plan the city infrastructure.
For example, the city plans to increase public transport in
different areas based on an estimate of people visiting those
areas. For the system to be trustworthy, it is imperative that
the sensor is reliable and agnostic to ambient lighting.

Table I summarizes the requirements for a people counting
system. We evaluate the accuracy of our system under these
requirements. We use the data provided by the camera as
ground truth. Our results show that if the count is aggregated
over time, the system provides better accuracy.
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(a) Sample camera picture

(b) Equivalent point cloud

Fig. 2: The mmWave point cloud representation shows clusters
for a person and a bicycle.
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(a) Point cloud for one person. (b) Point cloud for five people.

Fig. 3: The shape and size of a point cloud varies with the
number of people and their relative position from the radar.

ITII. SYSTEM BACKGROUND AND INSIGHTS

A. mmWave radar sensor

We use the IWR6843-ISK [14], a commercially available
mmWave radar evaluation board from Texas Instruments for
our application. The radar works in the frequency range of 60
GHz - 64 GHz and belongs to a special class of mmWave
technology known as Frequency Modulated Continuous Wave
(FMCW) radars. A FMCW radar emits linearly changing
electromagnetic signals called chirps that are reflected by the
objects in their path. The radar system compares the reflected
chirps with the transmitted chirps, to determine the range,
velocity and angle of the objects [15]. The object is represented
as a cluster of points known as point cloud. Figure 2 shows a
scene captured by a camera and the corresponding point cloud
created by the mmWave radar. The comparison demonstrates
the privacy-friendly property of mmWave sensing. In the
context of our application, each point cloud may represent
a single person or multiple people. Each point in the point
cloud is characterized by its position (range and azimuth
angle), velocity and signal strength. The range and azimuth
are translated from Polar coordinates to the Cartesian space.
We use the velocity information to filter and further process
only those points that represent moving objects.

The radar encapsulates the point cloud information within a
frame together with header information such as frame number
and checksum. Each frame captures an instant of time.

B. Insights from the point cloud

From Figure 2, we see that distinct clusters are formed by
objects or people far from one another. Thus, people counting
algorithms first perform clustering to identify the number of
people, but this assumes that every cluster contains only one
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Fig. 4: Multiframe representation of point clouds. Each figure
captures a different number of consecutive frames.

[ MF [T 12 [3 [ 5 |
| Average cluster size | 70.80 | 134.15 | 198.15 | 324.87 |

TABLE II: Average cluster size for different values of MF.

person [11], [13], [16]. We follow a similar approach but
with an improved clustering implementation, as shown in
Section IV. The next step is to identify the number of people in
each cluster. Figure 3 plots the point clouds for a single person
and for five people. We observe that the shapes and sizes of
the two clusters are different. This is because the contour of
the point cloud depends upon the radar cross-section offered
by the object. Thus, the point clouds also depend upon the
relative position of the objects from the radar. Further, the
signal strength and velocity of each point inside a cluster
provide additional information about the object. For example,
the signal strength of points reflected from a metal object such
as a vehicle will be higher than those reflected by a non-
metallic object. These point cloud properties are exploited to
derive the number of people in each cluster. We discuss our
Cluster identification methodology in Section V.

Multiframe Factor: The mmWave point cloud is sparse in
nature providing little information in a single frame. Many
gesture recognition algorithms, such as PointLSTM [17] and
Pantomime [8], combine multiple consecutive frames to derive
more meaningful information. This inspires us to process
multiple successive frames as well. We set our system to
capture three frames per second. The number of successive
frames, combined for processing, is denoted by the term
Multiframe factor, MF. Figure 4 shows a scene represented
by a different number of successive frames. For example,
Figure 4c plots three successive frames, in this case, we say
that MF=3. Table II tabulates the average size of clusters
across different MF values for our training data, reaffirming
the increase in information as MF increases.

Processing consecutive frames provides multiple advan-
tages. Firstly, if one frame is impacted by noise, the informa-
tion can be retrieved from points in other frames. Secondly,
if a person is occluded in one frame, she may be visible in
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(a) Camera picture

(b) Point cloud with eps=0.3
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(c) Point cloud with eps=0.45 (d) Point cloud with eps=0.6

Fig. 5: Impact of eps on clustering. Different colors indicate
separate clusters. An optimum value of eps (0.45) helps create

accurate clusters.
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(a) Noise filtering in the pres- (b) Noise filtering for scattered
ence of valid points. noise.

Fig. 6: Noise filtering through DBSCAN.

another. Thirdly, the sequence of frames allows for inferring
the direction of movement (if desired). Thus, besides using
the position, velocity, and signal strength of points as inputs,
our model will consider the sequence number as an additional
point cloud feature.

Our approach processes multiple frames but we need to
derive the optimum MF value. It may seem that a greater
MF would be advantageous, but there are tradeoffs during
Cluster Creation and Cluster Identification. We investigate
these tradeoffs in Sections IV and V.

IV. CLUSTER CREATION

Before estimating the number of people in the scene, we
need to identify and isolate the clusters of points. The clus-
tering algorithm considers only the spatial coordinates of the
points and ignores the SNR and velocity. Across the literature,
the preferred clustering method for radar point clouds is
the Density-Based Spatial Clustering of Applications with
Noise (DBSCAN) [8], [18]. DBSCAN has several desirable
properties [19]: (a) It is a density-based algorithm, effective
for clustering points formed by people. (b) The number of
clusters does need to be known beforehand. It is capable of
creating a variable number of clusters, each with possibly
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a different number of points. (c) It performs noise rejection
through outlier removal. The work in [20] combines multiple
frames and implements DBSCAN on the merged point clouds
for better noise filtering in an automatic driving application.
We follow a similar approach in our application.

Optimization of parameters for noise rejection: The
presence of scattered noise in the frame may lead to incorrectly
counting a person when there is none. During data collection,
we observed that any frame representing a person had a
minimum of twenty points. Thus, we perform clustering only
if the number of points present in a frame is greater than
twenty. If less, the points are rejected as noise. Next we
carefully set the two important parameters of DBSCAN, viz.,
min_samples and eps for optimizing the noise rejection and
cluster formation. The point cloud resolution corresponding
to our radar configuration is 0.37m. This implies that the
points within the same cluster may be as far as 0.37 m from
one another. If the value is much larger than 0.37, points
corresponding to different people may combine together into
a single cluster or points corresponding to noisy objects may
not get filtered. Thus, we set the eps value to 0.45. By deriving
the eps based on the radar configuration, we arrive at an
optimum value that prevents noise being labeled as valid
points. Figure 5 shows the impact of different values of eps
on cluster formation. Next, we choose min_samples to ten.
Thus, even if a frame has more than twenty points, unless ten
of them are together, they are rejected as noise. This helps
reject scattered noise points. Figure 6a shows the filtering of
noise in the presence of valid points. The algorithm marks the
points between X=-8 and X=-4 as noise while putting the
points around X=0 into a single valid cluster. In Figure 6b
all the points are marked as noise demonstrating an example
of scattered noise rejection. One of the ways to measure the
effectiveness of noise rejection is to check whether frames
with no people have been correctly recognized with a zero
count. We evaluate this metric in Section VIII-B.

MultiFrame factor tradeoff for Clustering: We have
discussed in Section III-B that increasing the multiframe factor
(MF) increases the number of points processed simultaneously.
This may result in smaller separation between clusters, causing
the smaller distinct clusters to merge together and form a
single large cluster. Figure 7 compares the cluster formation
for MF=1 and MF=3 for the same scene. Distinct clusters
are indicated by different colours in the figure. We observe
that MF=1 leads to four distinct clusters. However, in case of
MF=3, three of the small clusters merge together to form one
single cluster. In Section VII we show that the identification
accuracy is higher when the cluster size is smaller. This implies
that there is a tradeoff in choosing the value of MF, a higher
value contributes to dense more meaningful frames, however
also leads to merging of distinct clusters that may adversely
impact accuracy.

At the output of Clustering stage, we have marked the points
in the point cloud into distinct clusters, each representing
one or more people. In the next section, we describe the
methodology to count the number of people in each cluster.
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(a) Four clusters with MF = 1 (b) Two clusters with MF = 3

Fig. 7: Impact of MF on cluster formation. Three small clusters
merged into a single cluster when MF changes from 1 to 3.

V. CLUSTER IDENTIFICATION

After the clusters are formed, the next step is to identify
the number of people in each cluster. We study the state of
the art to identify a suitable neural network architecture that
can process the point clouds and provide the corresponding
people count. We approach this as a multi-class classification
problem. The network takes the points in a cluster as input and
classifies it into one of the following six classes: 1-person, 2-
people, 3-people, 4-people, 5-people and bicycle. There are
two underlying assumptions. Firstly, we assume that the noise
filtering has happened in the Cluster creation stage (refer
to Section IV). Thus, during cluster identification, the point
clouds represent only valid classes. Secondly, we limit the
maximum number of people in a single cluster to five. The
studies related to the walking behavior of pedestrian social
groups confirm that the group size is limited to less than five in
99% of the cases [22], [23]. Further, as the number of people in
a single cluster increases, the number of possibilities in which
they can form the cluster increases exponentially. For example,
a group of four people can walk in a single row of four people,
in two rows of two, in two rows of one and three, or in
three rows with one of the rows having two people walking
together. Due to the increasing combinations, the amount of
data needed to train the neural network for a larger cluster
increases significantly, making it harder to obtain.

A. State-of-the-art

Early works on image -classification such as Subvol-
ume and MVCNN focus on Convolutional Neural Networks
(CNNs) [24], [25]. These approaches have been demonstrated
on images and dense point clouds generated through Lidars
for objects such as bathtubs, sofas, and beds. However, the
computational cost for CNN-based approaches is high [21].
Texas Instruments itself provides a people counting demo
under the Industrial toolbox [26]. In this approach, the moving
targets are continuously tracked until they leave the scene.
However, recent studies have shown that the approach fails
to predict the count accurately when people are walking in
close groups [13]. That same study [13] proposes a method
of counting people in a group by extracting features from the
radar cube and using a statistical method for classification.
A radar cube is a raw representation of the data captured
by the radar and is significantly bigger compared to point
clouds. As a result, the methods based on raw radar cubes
have higher memory and processing demands, potentially
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Blocks
Input Transform
& Feature Transform

PointNet Our Implementation
Block not

implemented

Spatial Transformer

Local and global

Segmentation feature aggregation Block not
Network followed by mlp implemented
Information

mlp (64, 128, 1024) | mlp (64, 128, 512)

aggregation stage
Class probability
prediction

mlp (512, 256, k) mlp (256, 128, 6)

TABLE III: Comparison of PointNet with our implementation.

requiring complex algorithms and expensive hardware. The
memory footprint for a single point cloud in our case is
approximately 6 KB whereas the size of a radar cube is in
the range of 500 KB [27]. Further, a statistical classifier must
define and capture all the features precisely. On the other hand,
learning-based models have the adaptability to learn the most
relevant features on their own. We thus prefer a learning-based
approach with point clouds as input.

PointNet [21] proposes a lightweight deep learning-based
architecture for processing point clouds. The number of pa-
rameters in PointNet is 3.5M as compared to 16.6 M for
Subvolume and 60M for MVCNN [21]. PointNet extracts
the features from a point cloud and uses them for multi-class
classification as well as segmentation. PointNet classifies Lidar
point clouds from sixteen object categories such as bag, car
and lamp with 83.17% accuracy. Some recent works, such as
PointNet++ [28], Pantomime [8] and Tesla Rapture [9], further
extend this line of work for classifying gestures.

PointNet++ applies the PointNet approach recursively on
nested input partitions and thus captures local features at dif-
ferent contextual levels. PointLSTM uses a Recurrent Neural
Network (RNN) together with LSTM to capture the temporal
evolution of frames. Similarly, Pantomime uses the Point-
Net++ architecture with LSTM to exploit the temporal and
spatial correlation of frames. These architectures are shown
to provide better performance for a structured sequence of
frames. In the case of gestures, the point clouds evolve in a
structured manner over the sequence of successive frames. In
our case, the sequence of frames may not lead to a well-defined
pattern of point clouds. A person may follow different paths
causing varying trails of point clouds. This makes it difficult
to exploit the temporal evolution. Thus, we prefer the simple
architecture of PointNet for our application. Next, we discuss
the PointNet architecture and its adaptation to our application.

B. PointNet architecture and model adaptation

Figure 8 shows the block diagram of the PointNet architec-
ture. The input to the neural network is a n x m datastructure,
where n indicates the number of points and m indicates the
number of channels. In our case, n represents the number
of points across all the aggregated frames and depends upon
the MF; and m represents the number of features determined
from the point clouds. We evaluate the performance for four
different values of n and three different combinations of m.
We discuss the choice for n and m in Section VII.

Input and Feature transforms: PointNet utilizes input
data dependent spatial transformer in two stages represented
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Fig. 9: Pipeline explaining different steps for computing people count at a scene.

as input and feature transforms. The spatial transformers are
typically used to transform the inputs in a standard form
before the neural network processes them. It normalizes the
input and achieves invariance against transformations such as
translation and scaling. In our application, the size and shape
of the point cloud with respect to its distance from the radar
provides significant information about the count of people.
Thus, we have decided against using the spatial transformer.
Even in the case of PointNet, the improvement in performance
through the spatial transformer is not significant (89.2% Vs.
87.1%) [21]. Eliminating the spatial transformer provides an
additional advantage of significantly reduced model size, as
discussed in Section VII.

Information aggregation stage: The MultiLayer Percep-
tron (mlp) with a configuration of (64,128,1024) and the subse-
quent max pooling stage performs information aggregation and
extracts the global features of the point cloud. The max pooling
function acts as a symmetric function for the unordered set of
points, i.e., it extracts the features independent of the order of
points. The output of this stage is a 1024-dimensional feature
vector. In our case, the mmWave data is sparse. Thus, we
reduce the mlp size to (64,128,512) effectively reducing the
feature size to half.

Class probability prediction: The next stage is also a
fully connected mlp network with a (512,256,k) configuration,
where k indicates the number of output classes. In case of
PointNet, k corresponds to sixteen. In our implementation,
we perform a six-class classification (k=6). The mlp stage is
accordingly resized to (256,128,6). The last stage uses a log-
softmax function that is used to derive the class probabilities.

Segmentation network: The PointNet architecture com-
bines local and global features to achieve segmentation.
However, our application only requires classification. Thus,
we ignore the local features and exclude the segmentation
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network.

Table III summarizes the changes done to PointNet to suit
our application. We eliminate blocks that are not relevant
to our application and scale down the configuration of the
remaining blocks. This results in a lower memory footprint
and computational requirement. We discuss the impact of our
model adaptations in Section VII-C.

C. Computation of people count

Having discussed the two steps, viz. Cluster creation and
Cluster identification, we now explain the steps for computing
the count of people at a scene.

Firstly, using the class probabilities from the Cluster identi-
fication stage, we compute the expected number of people in
a cluster using

1=6
E[No] = > P; x N;. (1)
i=1
In this equation, N, represents the number of people in
the cluster, IP; represents the classification probability of the
cluster being classified as N; class. For ¢+ = 1...5, the value
of ¢ indicates the corresponding number of people. For i = 6
(bicycle class), we use a count of one, i.e. Ng = 1.
The total number of people in a scene (Ngeene) is derived
by adding the expected count from all the clusters present in
the scene:

j=n
Nscene - Z E[Nc] . (2)
=1

where n represents the total number of clusters after the
cluster creation step. Figure 9 captures the step-by-step process
of the entire methodology.
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Parameters Designed values
Maximum range (m) 34.306
Maximum velocity (m/s) | 7.969
Chirp Time (us) 36.411
Range resolution (m) 0.343
Velocity resolution (m/s) | 0.125

TABLE IV: Radar configuration parameters.

VI. SETUP AND DATA PREPARATION

A. Hardware Setup

We choose the IWR6843ISK [14], an off-the-shelf evalua-
tion board from Texas Instruments (TI) as a radar sensor for
our implementation. The board has a IWR6843 radar chip.
This is a single chip solution from TI with 4 receivers and
3 transmitters, thus providing a fine angular resolution. It has
an onchip ARM CPU and radar hardware accelerator, enabling
complex computations in hardware. This provides us with the
opportunity to perform machine learning at the edge during
future enhancements.

Figure 10a shows the hardware connection setup. A Rasp-
berry Pi (RPi) connected to the radar board, receives the
point clouds and writes them into an output file every 1000
frames. The RPi is powered through Power over Ethernet
(PoE) and in turn powers the mmWave sensor through USB.
To protect the hardware from various weather conditions (rain,
fog, wind), we place the RPi, mmWave sensor and the PoE
splitter inside a radome (case). For the radome, we use the
design suggested in our earlier work [12] because it is low
cost and resilient to different types of weather. A camera is
installed next to the mmWave radar to capture the ground truth.
The time on the camera and Rpi are synchronized through
the Network Time Protocol (NTP). Figure 10b shows the
picture of the actual installation. The setup is mounted at a
height of 3.4 m and looks into a street that is 12m wide. The
street is generally used by pedestrians and bicycles with a
very little presence of motor vehicles, making it suitable for
our crowd monitoring application. The setup is mounted such
that generally the traffic moves sideways across it. Further,
the mmWave sensor and the camera are tilted downwards
and towards left with an azimuth angle of 20 degrees and
an elevation angle of 30 degrees. Figure 5a shows a typical
picture of the street captured by the camera with a visual
perspective of the azimuth and elevation tilt.

Table IV lists the important radar parameters. To cover the
road’s width of 12 m at a range of 10m (i.e., to ensure that the
coordinate (-10, 12) is covered by the radar installed at (0, 0)),
the radar must cover a diagonal distance of 16 m. Through ex-
periments, we found out that our initial configuration achieved
only half of the expected range. Our conjecture is that the
radome and environmental parameters attenuate the signals
more than what is reported in the SoA. This highlights the
challenges for outdoor deployment with a protective enclosure.
Thus, we re-configured the radome for a 34.3m range and
limited the velocity to 8 m/s considering the slow moving
traffic. With these values, the range and the velocity resolutions
are set to 0.343 m and 0.125 m/s, respectively.
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Fig. 10: Radar setup for capturing the point clouds.
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Fig. 11: Volunteers participat- TABLE V: Sample size across
ing in the data collection. different classes.

B. Data collection

We signed up a group of five volunteers for training our
neural network model. The group consists of a mix of two
females and three males, all in an age group between 21 years
and 30years and heights between 150cm and 175cm. The
volunteers walked in different group sizes, starting with indi-
vidual walks and then in groups of two, three, four and five.
Further, for group sizes larger than two, the volunteers walked
in different formations. For example, for a group size of four,
they walked in formations of one and three, two and two as
well as all four in a row. They walked at different distances,
from the near-end to the far-end of the road, covering the
entire field of view of the radar. The walks were recorded
through the camera and the corresponding mmWave point
clouds were captured. We used the video data to annotate the
radar frames into six different classes indicating the count of
people in the cluster. We created a separate class for bicycles
since the point cloud created by a bicycle is distinct from
that of a group of people. Figure 11 shows a frame from the
video recorded during training. Table V provides the number
of radar frames captured for each class. Altogether more than
20000 frames were captured during seven hours of walk by
the volunteers. From the table, we also see that the sample
size varies across different classes. To minimize the impact
of class imbalance we perform data augmentation making to
attain 5000 point cloud samples for each class. To generate the
augmented data, we sequentially process the collected point
clouds and add Gaussian noise with zero-mean to the x and y
values. The variance of the = and y values in the point cloud
is computed and 20% of that range is set as variance for the
noise distribution.

The point clouds captured by the radar as well as the
augmented data have varying number of points. However,
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. Percentage of clusters
MF | Input size within thge input size
1 128 95
2 256 95
3 512 99
5 1024 100

TABLE VI: Input size to neural network for different values of
MEF. The input sizes have been chosen such that the majority
of the clusters have size less than the defined input size.

Feature size m | Features

3 Position (x,y), Sequence

4 Position (x,y), Sequence,
SNR

5 Position (x,y), Sequence,
SNR, Velocity

TABLE VII: Combination of features considered for different
values of m.
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(a) Histogram with MF = 1 (b) Histogram with MF = 3

Fig. 12: Histograms of cluster size.

the neural network model expects a uniform input. Next, we
describe the data preprocessing steps undertaken to achieve
uniformity before it is given to the network model for classi-
fication.

C. Data preprocessing

The input data size to the network model depends on
the multiframe factor MF and the combination of features.
We evaluate the performance with four different values of
MF listed in Table VI and three different combinations of
features listed in Table VII. We are interested only in points
corresponding to moving objects. Hence first, we filter points
with velocity greater than zero and combine them from
successive frames depending on the MF. For example, if
MF= 3, the points from each frame are combined together
with those from the next two successive frames to form
a larger point cloud. However, while combining we add a
new property, viz. sequence, to keep track of the order of
original frames. Figure 12 plots the histograms of cluster
sizes for MF=1 and MF=3. We see that the sizes of the
point clouds vary significantly for both values of MF. Thus,
second, we compare the resulting number of points in the
combined point cloud with the target input size listed in
Table VI. If the resulting point cloud size is smaller, we pad the
point cloud with supplementary points through Agglomerative
clustering [29]. Agglomerative clustering creates the specified
number of centroids depending upon the location of input
points and has been used for upsampling in the literature [8].
For example, if MF=2 and the resulting point cloud size is
200, then 56 supplementary points are added. In this case,
56 centroids are created through Agglomerative clustering
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MF=1 | MF=2 | MF=3 | MF=5
m=3 | 0.71 0.76 0.80 0.79
m=4 | 0.77 0.83 0.83 0.83
m=5 | 0.77 0.81 0.82 0.82

TABLE VIII: Accuracy across different combinations of fea-
tures and multi-frame factors.

based on the existing 200 points, and the coordinates of these
centroids are considered as supplementary points. In case the
resulting point cloud size is larger, we remove the points with
the lowest SNR to meet the target input size. We prefer to
perform padding (add points) as opposed to reduction, and we
set accordingly the value of n to achieve that. For example,
referring to Table VI, we see that for MF=3 only 1% of the
clusters undergo reduction. Third, we select the corresponding
features based on the parameter m. Table VII lists the selected
combination of features for different values of m. We always
use the coordinates and sequence values as features since they
provide information regarding shape and size. We observed
that the velocity information is noisy even when a single
person is walking. This may be due to the fact that the trunk
of a person has different motion characteristics as compared
to the limbs of a person. Hence, we choose SNR ahead of
velocity while selecting the features. Fourth, we add some
amount of noise to the x and y values of the resulting point
clouds. Similar to the case of adding supplementary point
clouds, the added noise has Gaussian distribution with mean
as 0. This last step is taken because the literature reports that
adding noise to the training data makes the model resilient
under noise and minor variations [30].

Model Training: Across different combinations of m and
MF, the input layer of the model is changed to accommodate
the varying number of features. The architecture remains the
same and in each case the number of features extracted re-
mains 512. We randomly split the data into training, validation
and test sets in a 70:15:15 ratio. At this stage, the data is ready
for being given as input to the neural network model.

VII. EVALUATION OF NEURAL NETWORK

A. Accuracy across different configurations

We evaluate the performance of the network model for
different combinations of features (m) and multi-frame factors
(n) as shown in Tables VI and VII. The performance indicates
the capability of the model to identify the number of people in
different-sized clusters. Table VIII summarizes the accuracy
across different combinations. We observe that the accuracy
increases with MF but saturates at MF=3. Thus processing suc-
cessive frames simultaneously indeed improves performance,
but the law of diminishing return kicks in early. Similarly, the
accuracy improves when we add SNR as a feature (MF=4) but
not further when velocity is also considered (MF=5). Thus, the
optimum accuracy is 83% when m=4 and MF is either 2 or 3.
Table IX presents various performance metrics for these two
combinations. We observe that the performance is balanced
across both precision and recall.
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Metric | F1 score | Accuracy | Precision | Recall
m=4
MF=2 0.8278 0.8306 0.8297 0.8306
m=4
MF=3 0.8348 0.8371 0.8387 0.8371

TABLE IX: Performance metrics for two different combina-
tions of m and MF.
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Fig. 13: Confusion matrix for m=4 and MF=3.

B. Observations from Confusion Matrix

Figure 13 plots the normalized confusion matrix for the case
when m=4 and MF=3. We have a few critical observations
from this confusion matrix. Firstly, we see that the clusters
with a single person and bicycles are recognized better. In the
case of bicycles, we believe this may be due to the distinct
shape characteristics. Secondly, in case of misclassification,
the probability that a cluster gets misclassified to an adjacent
class is higher. Unlike classical multi-class classification, the
adjacent clusters in our case are related and imply an error
of one person in the count. In other words, if a cluster of
three people gets misclassified, there is a higher chance that
it is counted as a cluster of either two or four people. Ad-
ditionally, we observe that for three and four-people clusters,
the errors are balanced. For example, a three-people cluster
gets undercounted 18% of the time and overcounted 13% of
the time. Similarly, a four-people cluster gets undercounted
13% and overcounted 15% of the time. This observation is
significant for people counting applications. In Section II, we
mentioned that current people counting systems aggregate data
over fifteen minutes and then transmit it. Our results imply that
as we aggregate people count over a longer duration, the errors
will tend to cancel each other out.

C. Model size

As discussed in Section V, we scaled down the PointNet
model to adapt to the people counting application. Figure 14a
and Figure 14b compare the size and the number of variables
of the scaled-down model with the original PointNet model.
We observe that we have been able to achieve a 93% reduction
in model size. This lightweight model could facilitate execu-
tion from the edge in future enhancements.
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Fig. 14: Comparison of the reduced model with the original
PointNet model.

Fig. 15: Radar coverage. The red dot depicts the radar’s
location.

D. Range and coverage of the radar

Figure 15 depicts the coverage of the mmWave radar. In
this figure, we plot all the point clouds collected over 2 hours,
while the volunteers walked during data collection. From the
figure, we observe that the radar covers reasonably well the
area between x=-8 and x=2 and y=2 and y=12, an area
greater than 100m?, effectively monitoring the entire road
width. The coordinate (0, 0) indicated by the red dot in the
figure points to the location of the radar. More significantly,
the coverage area is conical with a field of view of 120 degrees,
with a maximum range along the cone’s axis. This information
can help in planning future deployments.

VIII. PERFORMANCE DURING DEPLOYMENT

Having evaluated the neural network on the data gathered
during training, we evaluate the performance of the system in
a live deployment with real traffic. We have used the model
trained with m = 4 and MF=3 during our deployment.

A. Data collection and processing

Figure 10 shows the setup with the camera installed next
to the mmWave sensor. The mmWave point cloud data and
the camera images have been collected over a continuous
duration of 72 hours. The data collection was done in the
second week of September in Amsterdam with temperatures
varying between 15°C' and 29°C. We configured the camera to
capture one picture every minute. Thus, a total of 4320 pictures
were collected. Sixty-five of these pictures (equivalent to one
hour of data) had to be discarded due to insufficient clarity.
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Fig. 16: Performance during deployment.

For the remaining 4255 pictures, we compute the count in each
picture manually with the help of a group of volunteers. We
consider this camera count as the true count. The mmWave
radar continuously collects and stores the point clouds during
this period. The time stamps of the camera pictures are
recorded and the radar frames corresponding to these time
stamps are extracted. The point clouds undergo clustering,
cluster identification and count aggregation to finally provide
a count of people corresponding to the scene at each time
stamp as explained in Section V-C. The camera timestamp has
a resolution of one second. In cases where multiple mmWave
frames correspond to the same timestamp, we compute the
number of people for each mmWave frame and consider their
average as the count for that time instant. The estimated count
is rounded to the nearest integer and compared with the count
obtained from the camera pictures. We observed that nearly
88% samples show zero count. To avoid skewing our results by
these samples, we separately analyze scenes where either the
camera or mmWave count zero people. Thus, our approach
could be divided into two stages. First, presence detection
functionality, where we identify if the scene is empty or has at
least one subject. Second, people count functionality, where we
estimate the number of people on scenes where both sensors
indicate presence.

B. Presence detection

Figure 16a plots the confusion matrix for presence detection.
We observe that the accuracy of presence detection is greater
than 96%. This implies that there are no significant false
detections by mmWave confirming the efficacy of the noise
rejection mechanism during clustering.

C. People count

We analyze the 12% samples (513 images) where the
number of people counted by the camera and mmWave sensor
is non-zero. Figure 16b plots the number of samples for each
of the counts and Figure 16c¢ plots the normalized confusion
matrix. The overall accuracy is 68.62%. Further, we observe
again that in the case of misclassification, the probability that a
cluster is misclassified to an adjacent class is higher. Also, the
true people count across all the scenes is 1005, and the number
estimated by the mmWave sensor is 980 - an undercounting of
only 2.48%. This reaffirms that the errors are balanced. Next,
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(a) 3 people with a trolley (b) 1 person with a pet counted
counted as 4. as 2.

Fig. 17: Overcounting due to additional objects the model did
not encounter during training.

(a) 2 people walking together (b) 3 people walking together
counted as 1. counted as 2.

Fig. 18: Undercounting due to occlusion.

we compare the camera images with the corresponding point
clouds to investigate the reasons for misclassification.

D. Analysis and Future enhancements

To the best of our knowledge, this is the first work that
deploys an mmWave sensor in real-life conditions and ana-
lyzes the errors observed in the deployment. This provides
meaningful insights for the further development of mmWave
sensing for people counting. We derive future directions based
on these analysis.

Overcounting due to new objects: During the actual
deployment, the system encountered many objects that it has
not been trained on. Figure 17 shows two such examples
where the presence of a trolley and a pet led to overcounting.
Similarly, people carrying garbage bins, and bicycles with
child trolleys caused overcounting. This suggests the need for
more training under diverse deployment conditions.

Undercounting due to occlusion: Figure 18 shows two
examples where occlusion has caused undercounting. In such
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(a) 6 people standing together (b) Sitting and standing sub-
counted as 2. jects together counted as 1.

Fig. 19: Undercounting due to no movement.

cases, one or more people are blocked at the time the camera
and mmWave sensor record the data. However, it is likely
that they appear unoccluded in a frame a few seconds later.
This provides us a future direction to consider the temporal
information while counting. Machine learning frameworks
such as LSTM could be explored to sense the scene over a
longer duration leading to more accurate inference.

Undercounting due to lack of movement: As discussed in
Section VI-C, for people counting, we only consider frames
with points that have velocity greater than zero. Figure 19
shows scenarios where undercounting occurs because peo-
ple do not move. The implementation from TI [26] partly
addresses this problem through an algorithm that tracks the
clusters and holds the count for a certain time if the objects
turn static. We plan to integrate a similar approach to enhance
the correctness of our count.

The above scenarios from the real deployment are insightful
but have not been considered or reported in the related
literature [13]. These inisghts suggest that the performance
of the radar sensor could be further improved by focusing on
the limitations encountered under practical situations.

E. Comparison with count from image recognition algorithm:

The images captured by the camera are processed by an
open source crowd monitoring algorithm developed by the
city [31]. We calibrated the algorithm after the camera was
deployed with around 100 images across diverse lighting
conditions. Figure 20 shows the comparison of errors across
the three days. The average error for the camera is 0.3,
higher than the -0.02 error reported by the mmWave. The
corresponding standard deviations are 0.7 (for the camera) and
0.33 (for the mmWave). We see that especially during nights,
the mmWave radar performs better than the camera. While
it may be possible to minimize the camera errors by using
better state of the art vision algorithms, our work highlights
the challenges faced by camera based systems under low light
conditions. Vision based algorithms must be trained across
a large sample size and more diverse lighting conditions for
accurate estimation. On the other hand, the performance of
mmWave is not affected by light, lowering the demand for
samples under different lighting. In our case, the model was
trained with samples collected only during the day, however
it performed equally well during the night.

IX. RELATED WORK

Based on our literature survey, there are not many studies
evaluating the performance of mmWave for outdoor people
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Fig. 20: Error comparison for the image recognition algorithm
and mmWave radar. Blue indicates the error for the camera and
red the error for the mmWave error.

counting. Table X summarizes the most relevant works we
came across in this domain. Most studies [11], [18], [26], [32]
demonstrate people counting with mmWave in indoor deploy-
ments. Since indoor scenarios have minimal background noise
and do not require placing a radome around the sensor (no
extra attenuation), their approach cannot be mapped directly
to our application. Further most of these works are carried out
in controlled scenarios.

The two most relevant works, evaluated outdoors, are [12]
and [13]. Our earlier work [12] deploys the mmWave radar
enclosed in a radome at a university campus. However, due
to coverage inconsistencies between the camera system and
the mmwave sensor, the accuracy could not be measured in
an reliable manner. In this work, we deploy a more robust
setup to compare against camera systems. Further, we achieve
better presence detection (96% in our case as compared to
85% for [12]) and people counting (68% accuracy with no
aggregation in our case as compared to 60% accuracy with 15-
minute aggregation for [12]). Also, the work in [12] uses the
algorithm provided by Texas Instruments for counting. That
algorithm cannot estimate the number of people inside a point
cloud cluster. The authors in [13] address this shortcoming by
focusing on disaggregating the cluster. That work takes the
radar cube as input and passes the features from the range-
azimuth map together with cadence velocity diagrams to a
statistical classifier for estimating the count in each group. The
evaluation was performed in an outdoor scenario but under
controlled settings and without a radome. As discussed in
Section VI, the radome is central in an outdoor deployment
but causes attenuation, making the sensing process more
challenging. Our work addresses the shortcomings of [12] and
[13] by developing a network model to accurately identify the
count in a group of people and investigating the performance
of radars under real traffic conditions.

X. CONCLUSION

We demonstrate a novel method to count people in a
privacy-friendly manner using an mmWave sensor. We care-
fully craft the parameters of a clustering algorithm and train
a deep-learning model for better noise rejection and accurate
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Title Envir t Input Deployment Approach
TI lab for people counting [26] Indoor Point cloud | Controlled environment Group trackerA approach tracking
a group of point clouds
A Field People Counting Test Using Millimeter Indoor Point cloud Real deployment in Not stated (Perhaps default TI
Wave Radar in the Restaurant [11] a restaurant algorithm)
m!d:' Tracking and identifying people with Indoor Point cloud | Controlled environment Deep learning based
millimeter wave radar [18]
Improved People Counting Algorithm for . Vital sign verification using micro
Indoor Environments using 60 GHz Radar [32] Indoor Radar cube | Controlled environment doppler signatures.
A Long-Term Study Of mmWave Sensing Outdoor . . .
In An Outdoor Urban Scenario [12] (with radome) Point cloud | Real deployment in campus Default TI algorithm
Grouped People Counting Using mm-wave Outdoor . . Statistical clustering with range-
FMCW MIMO Radar [13] (without radome) Radar cube | Controlled environment azimuth and cadence velocity diagrams
Our current work Ou‘tdoor Point cloud | Real deployment across a street Clustering with DBSCAN fmd N
(with radome) neural network for group size estimation.

TABLE X: Summary of related works.

counting inside a point-cloud group. After deploying the radar
across a street and evaluating its performance, our results
show that our system performs better than the camera system
currently used as a pilot by the city of Amsterdam. This
outcome shows that an mmWave system can not only be more
privacy-friendly but also more accurate. Our real evaluation
also exposes new challenges that have not been reported in
prior SoA studies, which are based on more ideal setups.
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