
Optimal Task Scheduling Policy in Energy

Harvesting Wireless Sensor Networks

Vijay S. Rao, R. Venkatesha Prasad, Ignas G. M. M. Niemegeers

Embedded Software, Faculty of EEMCS

Delft University of Technology, the Netherlands

{V.Rao, R.R.VenkateshaPrasad, I.G.M.M.Niemegeers}@tudelft.nl

Abstract—Ambient energy harvesting for Wireless Sensor Net-
works (WSNs) is being pitched as a promising solution for long-
lasting deployments in various WSN applications. However, the
sensor nodes most often do not have enough energy to handle
application, network and house-keeping tasks because amount of
energy harvested highly varies spatially and temporally. More-
over the ambient source cannot be assumed to be continuously
available. When harvested energy is in excess, it is desirable that
the nodes take up higher loads. The nodes should switch to highly
energy efficient schemes when the energy is not sufficient. Hence
harvesting-aware scheduling of tasks is required. The two most
important challenges for harvesting-aware scheduling are (a) to
determine the amount of energy to be expended in a time slot,
and (b) to utilize this energy for execution of tasks maximally.
To increase energy utilization for task execution, we decompose
application level tasks into subtasks, some of which can be
executed concurrently. In this article, we propose a dynamic
optimization model, based on Markov Decision Process (MDP)
that takes into account priorities and deadlines of the tasks, and
stored and harvested energy to derive an optimal scheduling
policy. Since the complexity of the MDP is intractable in real-
time, we propose a greedy scheduling policy. We compare its
performance with the optimal policy.

I. INTRODUCTION

Wireless sensor networks (WSNs) have been deployed for a

wide variety of applications. They are designed and expected

to run for considerably long periods of time. A major drawback

of these networks is the limited lifetime of the nodes, since

they are typically powered by batteries. Frequent battery

replacement is labor intensive in some cases. In many other

situations, battery replacement is impractical due to physical

or deployment conditions. The other associated problems of

batteries, such as, increased size for increased capacity, higher

leakage, etc., make them unattractive.

A promising approach, for perpetual network operations, is

to harvest energy from ambient sources, such as light, radio

frequency, thermal, wind, water, salinity gradients and moving

objects [1]. Unfortunately, merely replacing the batteries with

harvesters does not work. Ambient energy sources do not

provide constant power. While the harvested energy can at

times be very low, it can be in excess of the storage capacity

of the nodes at times. For instance, statistics show that

the difference among the available solar power in shadowy,

cloudy and sunny environments can be up to three orders

of magnitude [2]. The harvested energy from these ambient

sources varies drastically over location and time. Therefore,

nodes across the network may not have the same energy levels.

Consequently, energy harvesting in these devices necessitates

a redesign of algorithms, communication techniques, network

protocols, and transceiver hardware to achieve energy neu-

trality while offering perpetual operations [3]. The foremost

step in building towards an energy harvested wireless sensor

networks (EH-WSNs) is to manage the power on a single node.

Scheduling tasks on EH-WSN node has been an active topic

of research [1], [4], [5], [6]. Moser et al. [4] propose an

optimal scheduling algorithm called Lazy Scheduling Algo-

rithm (LSA). However, this algorithm requires the tasks to

be preemptive. Moreover, the algorithm necessitates that the

future incoming energy is predicted accurately. DEOS [5] is a

dynamic scheduler for energy harvesting sensor networks. In

DEOS, tasks are decomposed and combined when they can

be, and concurrent execution is adopted on these tasks. Nodes

look at being energy efficient while maximizing utility. While

LSA considers the future energy arrivals, it does not maximally

utilize the energy. On the contrary, DEOS maximizes the utility

but does not consider energy arrivals. Therefore, the node may

die if there is no incoming energy.

When scheduling tasks for EH-WSNs, two fundamental

questions need to be answered together:

i How much energy should be expended in the current time

period?

ii How to utilize this allocated energy maximally?

In this paper, we address these questions, which have not

been considered together. We model the incoming energy as

a stochastic process [6], [7]. Since we consider future energy

arrivals in the system, the problem at hand is to dynamically

optimize the energy expenditure while maximizing the utility,

given the variations in harvesting energy. To solve this stochas-

tic dynamic optimization problem, we model our problem

based on Markov Decision Process (MDP). We compute the

optimal policy to maximize the average utility over infinite

time horizon. The model has high execution complexity since

all possible combinations need to be evaluated on an embedded

device. Hence, we propose a low-complexity policy that can

be executed on the nodes and compare its performance with

the MDP’s policy. Our contribution of this paper:

• we propose an MDP based model for generating optimal

scheduling policies. Through this model, we can deter-

Scheduler

Ambient
Energy

Microcontroller
Energy Source

Sensor Radio Flash

State of Charge
Measurement

Modeling
Energy Harvester

Supercapacitor

Tasks

Memory

Fig. 1: Block diagram of the system

mine (a) energy to expend with the knowledge of future

energy arrival and (b) maximal set of tasks to execute.

• we propose a suboptimal Greedy Policy since the com-

plexity of the MDP model is high.

The remainder of the paper is organized as follows. In

Section II, we present the system under consideration and

the assumptions made. In Section III, we introduce Markov

Decision Processes, discuss our model based on MDP for

generating optimal policies and also propose a suboptimal

policy. Section IV demonstrates the usability of the model and

policies through results. In Section V, we describe the state of

the art scheduling mechanisms in EH-WSNs. We present our

conclusions in Section VI.

II. SYSTEM MODEL

Figure 1 depicts the system model of an energy harvesting

sensor node. An energy harvesting circuit scavenges energy

from the ambient source and charges a supercapacitor. The

supercapacitor powers a microcontroller, which controls the

operation of the sensor node and other components connected

to it namely, sensor, radio and flash memory. The microcon-

troller manages and schedules the access to the components,

and hence, the energy consumption of the device.

We specifically consider a supercapacitor as the energy

storage buffer due to its high energy density and theoretically

unlimited charge-discharge cycles, unlike rechargeable batter-

ies. Moreover, the remaining energy in the supercapacitor can

be estimated by E ≈ CV 2/2, where C is the capacitance of

the supercapacitor and V is the voltage1. We discretize the

energy in the supercapacitor. Different possible energy levels

are denoted by E = {e0, e1, . . . , emax}. e0 is the zero energy

state. We define emin ≥ e1 as the minimum amount of energy

required to keep the node operational. We model the harvesting

source as a stochastic process. Many works have assumed on-

off processes and Poisson arrivals of energy. Markov chains

based synthetic (solar and wind) data generators have been

demonstrated to have good accuracy [4], [7], [9].

A task is a sequence of operations that are executed on

a node. Tasks, for example, can be ‘report measured sensor

values’, ‘forward a packet’, ‘update routing table’ etc. We

assume the task arrival is also modeled as a stochastic process.

1Other types of storage elements such as rechargeable batteries may be
used, however, estimating their charge in real-time is an issue. Sophisticated
techniques such as [8] are being developed and can be used in the model
when available.

III. MDP MODEL AND POLICIES

A. Preliminaries

In Markov Decision Process (MDP) [10], a decision maker

makes decisions for a probabilistic system at regular inter-

vals of time (discrete version of the MDP). The system is

represented by a set of states. The decision is to perform an

action that maximizes his/her goal (or reward) with respect

to some predetermined performance criterion. As a result of

choosing an action in a state, two things happen: the decision

maker receives a reward, and the system evolves to a possibly

different state at the next decision epoch. Both the rewards

and the transition probabilities depend on the current state and

the choice of action, and not on states occupied and actions

chosen in the past (Markov property). A policy is a sequence

of actions. The goal of the MDP (and the decision maker) is

to choose a policy that maximizes the reward.

Formally, a MDP is defined as a quintuple:

{Λ, S, As, pk(·|s, a), rk(s, a)}, (1)

where, Λ = {k, 2k, . . .K} are the decision epochs; S is the

set of states of the model; As is the set of allowable actions

in state s ∈ S. rk(s, a) is a real-valued function, defined for a

s ∈ S and a ∈ As, that denotes the reward. The system state

at the next decision epoch is determined by pk(s, a), which is

the state transition probability.

Let π = {d1, . . . , dK−1} denote a policy where dk denotes

the decision rule for an action to be taken in epoch k. The

value of the policy π is defined as

V π = E
π

[

K−1
∑

k=1

rk(sk, a)

]

,

where E is the expectation operator and K is the horizon over

which the decisions are to be made. The goal is to find a policy

π∗ such that V π is maximized, that is,

V π∗ = argmax
π

E
π

[

K−1
∑

k=1

rk(sk, a)

]

. (2)

The above formulation is a finite horizon MDP; an infinite

horizon MDP can also be defined. In this case, the value of a

policy π thus becomes

V π∗ = argmax
π

lim
K→∞

E
π

[

∑

k

rk(sk, a)

]

. (3)

The optimality equation for a given start state s, also known

as Bellman’s equation, is given by

V π(s) = max
a∈As

{

r(s, a) +
∑

l∈S

p(l|s, a)V (l)

}

. (4)

The optimal policy is π∗ that has the value V π∗(s) ≥
V π(s) ∀π ∈ Π, where Π is the set of all policies. Without loss

of optimality in Eqn. 4, we only consider the set of policies

that results in an average reward independent of the initial

state.

Before we describe the MDP based model, we discuss

briefly about tasks and utility.

B. Tasks, subtasks and utility functions

A task τi is characterized by (ζi, δi, ρi, Ri, ǫi), where i ∈
{1, . . . , N}. Here, ζi is the time of arrival, δi is the deadline,

ρi is the priority, Ri is the resources required for execution of

the task. Each task τi consumes ǫi amount of energy.

Decomposition of tasks into subtasks. Typical WSN appli-

cations have tasks such as ‘report sensor values’, ‘relay data’,

‘in-network processing of data before forwarding’, ‘update

routing table in the flash’, etc. It is possible to divide them

into subtasks, and execute them. For example, ‘report sen-

sor values’ can be split into sense and transmit. Similarly,

‘relay data’ can be decomposed into receive and transmit;

‘in-network processing before forwarding’ can be split into

receive, compute and transmit. Thus the set of all possible

subtasks is {sense, transmit, receive, write, read, compute}.

All the tasks can be split into a combination of these in a

sequence.

A task τi is decomposed into τi = {τi1, τi2, . . . , τim}.

Each subtask τij can be characterized by (ζij , δij , ρij , Rij , ǫij).

The subtasks derive the values for arrival time and priority

from their parent task. Rij points to the resource the subtask

requires i.e., radio, sensor, flash memory etc. Energy required

for a subtask is determined from a lookup table, which can

easily be constructed from the datasheet of the component.

Without the loss of generality, we assume the total amount of

energy consumed by the task τi is ǫi =
∑m

j=1
ǫij .

Some subtasks can be executed in parallel for e.g., sensing

a physical parameter and receiving a packet can be executed

concurrently. This concurrent execution makes efficient use

of resources and reduces energy consumption. However, de-

pending on the hardware, some subtasks cannot be executed

simultaneously. For example, in the popular Tmote Sky mote,

a radio operation cannot happen in parallel to a flash read/write

operation [11]. Such mutually exclusive cases need to be

taken into consideration. While decomposing of tasks has been

proposed in DEOS [5], this work distinguishes itself from it

in the manner of combining the tasks. Moreover, we consider

the future incoming energy for task scheduling.

An example of splitting and combining subtasks is shown

in Figure 2. Task 1, denoted by ‘T1’, is ‘report sensor value’

i.e., Sense and Transmit. Task 2, denoted by ‘T2’, is ‘report

a stored value’ i.e., Read and Transmit. A case in point

for energy saving through this method is illustrated here. In

Figure 2a, the tasks are executed one after the other i.e., T1

followed by T2. When the tasks are split, the sensing subtask

and the reading subtask can be executed together, followed

by transmission subtasks. This is shown in Figure 2b. This

saves time, allowing the microcontroller to be put in sleep

state earlier, and hence is more energy efficient. Apart from

decomposition and efficient utilization of the components and

energy, we can also see the precedence constraints in this

example. The transmission subtasks are not executed until

the sensing and reading subtasks complete even though the

����
����
����

����
����
����

���
���
���
���

���
���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

Flash

Radio

Sensor

T1

T2

T1 T2

Time

(a) Normal execution of tasks

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

���
���
���

���
���
���

���
���
���

���
���
���

TransmitReadSenseLegend:

Flash

Radio

Sensor

T1

T1

T2

Time

T2

(b) Execution with subtasks

Fig. 2: Example of splitting and combining tasks for execution.

radio resource is free. We represent the order of execution of

the subtasks in a directed acyclic graph and the subtasks are

selected accordingly.

Utility functions: Typically utility maximization frameworks

have been defined in the context of fairness, but can be

extended to applications such as scheduling [7]. To compare

tasks and to make choices, we define utility of a task τi as

a function of the deadline, priority and energy consumed for

the task i.e., υi = f(δi, ρi, ǫi). In general, the utility function

is defined as υ : τ → R
+ [12]. A utility function should

satisfy the following two properties: (a) completeness, which

means every task τi has a utility value υi defined by the utility

function, and (b) transitivity, which means if υx ≥ υy and

υy ≥ υz , then υx ≥ υz . Such functions can be defined. For

example, the function υ(·) = log((·)) can be used to describe

the utility of a task. The function satisfies both the conditions

of completeness and transitivity. We extend the utility function

for subtasks rather than tasks, since we seek to construct

policies for scheduling subtasks.

C. Proposed MDP based model

In a causal system, the problem of task scheduling would

have been to maximize utility subject to energy availability

in the supercapacitor. However in our non-causal system, we

need to find both how much energy should be spent and

then maximize the utility. To tackle this dynamic optimization

problem, we model the problem with Markov Decision Process

(MDP).

To this end, we define a policy π as admissible policy

if there exists at least one procedure or sequence in which

all subtasks selected according to the policy π adhere to

the precedence and mutual exclusion constraints, and can

be scheduled on the sensor mote. We denote the set of all

admissible policies by Φ.

For the sake of simplicity, we consider a slotted system2,

where subtasks have to be scheduled at the beginning of each

2We assume the slots are big enough for any type of subtask to be executed.

slot. The beginning of the timeslots are the decision epochs.

The state space S is defined as S = E × QA × QB × · · · ×
QX . Γ = {A,B, . . .X} represents the set of type of subtasks,

e.g., A could represent the sensing subtask. QA represents the

queue of sensing subtasks i.e., queue of subtasks of type A.

The queue lengths are finite.

Let PI denote the harvested energy arrival process and let

Pτ denote the task arrival process. Since these processes are

independent of each other, the state transition probabilities can

be computed by their product.

The maximum number of elements is qAmax. dAk ∈ {0, 1}
denotes the decision taken at decision epoch k.

In our model, we use utility functions to calculate the

rewards. With all elements defined for the model, the problem

is to find an optimal policy π∗ according to

Uπ∗ = argmax
π∈Φ

lim
K→∞

E
π

[

K
∑

k=1

U(sk, a)

]

. (5)

The optimal policy corresponds to optimal scheduling policy

for choosing subtasks at each epoch. The optimal policy is the

solution to both the questions raised before. The explanation

is as follows: for this MDP formulation, a particular action

is chosen for any given state. An action here corresponds to

executing a set of subtasks. The action is chosen such that the

reward is maximized in the long run. That is, if the transition

probability to state with higher energy level is significant

(indicates more energy is expected), then MDP chooses more

subtasks since the reward will be maximized. On the contrary,

when chances of ending up in a state with lower energy levels

(indicates lesser or no energy is expected to be harvested)

is higher, then MDP chooses the ‘right’ set of subtasks such

that the reward is maximized over time. In this way, in the

optimal policy, the amount of energy to be expended and the

set of tasks to be executed are chosen so that optimal reward

is obtained.

The optimal policy can be obtained by policy iteration al-

gorithm. For an infinite horizon MDP formulation, the optimal

policy will be a stationary one [10].

It can be proven that there exists a threshold utility uth

such that (a)
∑

U(sk, a) ≥ uth i.e., subtasks are selected to

obtain a utility greater than or equal to the threshold, or (b)

no subtasks are selected. The intuition behind this lemma is

that given the current energy value and the incoming energy

profile, it is rewarding to execute a set of subtasks only if their

total utility is above a certain value. It is possible that some of

the subtasks are not executed when in low energy state. This

model looks at maximizing the utility at infinite horizon taking

into consideration the incoming energy profile.In the long run,

not executing lower priority tasks when low on energy will still

lead to optimal utility.

The complexity of the MDP model grows exponentially

with increasing number of subtasks and queue length for each

subtask. The search space for optimal policy can be reduced

by carefully choosing the reward function (i.e., in our case

the utility function) to be a monotonic concave function [10].

We choose the following function as our utility function for a

subtask j:

υj(k) =

{ ρj

k−δj
log(1 + ǫj) for k > δj

0 otherwise
(6)

The reward function r(s, a) i.e., U(s, a) can be calculated as

the sum of utility functions of the selected subtasks. It can be

proven that such a reward function is optimal since it is both

concave and monotonic.

D. Greedy Policy

While the search space is reduced for policy iteration

algorithm, the ‘curse of dimensionality’ [10] problem still

exists. This necessitates development of low complexity policy

albeit suboptimal.

We propose a greedy policy in which we maximize the

utility in each decision epoch while taking into account the

energy arrivals. We neglect the task arrivals since the policy

is greedy. We exploit the structure of this problem in defining

the policy. Notice that each task was split into subtasks based

on the type of resource required. Hence, it is sufficient to

look at each subtask queue, which reduces the complexity to

O(MN), where M is the number of subtask queues and N
is the number of tasks in the node. Based on this, we propose

the suboptimal greedy policy that maximizes the immediate

expected reward in slot k:

πg = argmax
b∈qγ

υb(sk)p(l|sk, a) ∀γ ∈ Γ (7)

s.t. e(k + 1) ≥ emin (8)

The above equation says that, in a given state, for every

subtask pick the one that gives maximum utility under the

condition that outage does not occur. We update the transition

probabilities for energy arrival at the end of the slot. Clearly

the worst case complexity of this suboptimal policy is O(MN)
since we search each of the M queues based on the utility and

select the desired subtasks.

IV. RESULTS AND DISCUSSIONS

To evaluate the policies, we simulated the system using

Markov Decision Process toolbox [13] in MATLAB. We

considered four tasks ‘report sensor data’ (sense and transmit),

‘relay data’ (receive and transmit), ‘respond to query’ (read

and transmit) and ‘update value’ (receive and write), and

the energy values were taken from [11]. We set the task

arrivals to follow uniform distribution. We considered a solar-

powered sensor node with 12 mJ supercapacitor as storage.

For simulation purposes, we discretize this value in multiples

of 200 µJ. We do not consider leakage and retransmissions in

this simulations.

We constructed an energy arrival process with the solar

dataset from CONFRRM [14] for the month of July 2011 and

calculated the energy harvested by considering a 1 m2 solar

panel. We constructed the transition probabilities based on

this data. Based on this information, we computed the optimal

policy using the MDP toolbox.

Report Sensor Value Relay Data
0

20

40

60

80

100

120

Task type

N
u

m
b

e
r

o
f

ta
s
k
s
 e

x
e

c
u

te
d

Optimal Policy

Greedy Policy

Fig. 3: Comparison of optimal and greedy policies for a

random day

First, we considered a random day in July 2011 (July 28,

2011) and executed the optimal policy and the greedy policy

for this sample path. We executed ‘report sensor value’ and

’relay data’ tasks. The comparison is shown in Figure 3. The

result from MDP shows that the average number of tasks

selected for execution (i.e., both subtasks must be selected

for the task to complete). One of the reasons for the optimal

policy to have executed lesser number of tasks than the greedy

policy could be the energy arrival for the considered day as

compared to the energy distribution used in the MDP. From

the figure, it seems that the MDP model expected lower energy

arrivals and hence was conservative in executing tasks.

To demonstrate the decision making process in the policies,

we did the following. From the CONFRRM dataset, we

considered a good period (good sunshine with no major/abrupt

changes in harvesting process) of a day (July 10 2011).

Figure 4a shows the comparison of the MDP and the greedy

policy. However, when a bad period (high variations in the

energy harvesting process) of a day (July 17, 2011) is consid-

ered, the greedy policy fails to adapt quickly to the changes

while the MDP performs well as shown in Figure 4b.

V. RELATED WORK

There is a growing body of literature on scheduling in en-

ergy harvesting sensor networks. In [15], the authors propose

an utility optimal scheduling of transmissions using Lyapunov

functions. Online algorithm is proposed to manage the energy

and allocate power to transmissions jointly. However, the

scheduler disregards the energy profile of the source, and

hence, this may lead to outages in the future time slots.

Moser et al. [4] look into the problem of real-time scheduling

and proposes an optimal scheduling algorithm called Lazy

Scheduling Algorithm (LSA). In this scheduler, all tasks are

preemptive. The tasks are delayed in order to harvest energy

as much as possible. With energy clairvoyance, they prove that

LSA is the optimal scheduler. The algorithm is simple albeit

the future incoming energy should be predicted accurately

0 5 10 15 20

No

Yes

Time slots

D
e

c
is

io
n

s

(M
D

P
)

0 5 10 15 20

No

Yes

Time slots

D
e

c
is

io
n

s

(G
re

e
d

y
 P

o
lic

y
)

0 5 10 15 20
600

800

1000

Time slots

E
n

e
rg

y
 (

µ
J
)

(a) Decisions in a good period

0 5 10 15 20

No

Yes

Time slots

D
e

c
is

io
n

s

(M
D

P
)

0 5 10 15 20

500

1000

Time slots

E
n

e
rg

y
 (

µ
J
)

0 5 10 15 20

No

Yes

Time slots

D
e

c
is

io
n

(G

re
e

d
y
 P

o
lic

y
)

(b) Decision in a bad period

Fig. 4: Decisions made by Optimal Policy (MDP) and Greedy

Policy on sample paths.

and the tasks should be preemptive. While some tasks are

preemptive, a task such as packet transmission cannot be

preempted. Moreover, only task can be executed at a time,

which implies lower utility.

Audet et al. [6] consider recurring tasks on the nodes and

generate equivalent virtual tasks. With considerations to the

stochastic nature of the energy source, they propose schemes

to adapt power levels of execution. These schemes can be

used with other schedulers like LSA. However, all tasks to be

executed are known beforehand, which is restrictive. Authors

of [16] consider joint dynamic voltage and frequency selection

and task scheduling. None of the above important works

provide a dynamic scheduling framework while considering

the stochastic energy profile of the source.

Markov Decision Process has been used to derive opti-

mal transmission policies over one hop in energy harvesting

sensor networks [17], [18]. In [17], the energy consumption

and replenishment are modeled with a Markov chain as a

birth-death process. Energy for replenishment is modeled as

Poisson process. Messages to be transmitted arrive also as

Poisson process each with a value V , which also represents

the immediate reward. An optimal policy is to determine

a threshold vector, where a threshold at a decision epoch

determines the minimum value of a message that is allowed to

be transmitted in that epoch. The optimal policies are found for

various energy storage models. [18] considers a solar source

and models the battery states using 2D Markov chain i.e.,

different battery levels under three states of the solar source

(viz. cloudy, sunny and night). The MDP model has been

limited to finding effective transmission strategies while much

more can be achieved with it, as will be shown in this article.

DEOS [5] proposes a dynamic scheduler for energy har-

vesting sensor networks. In DEOS, tasks are decomposed

and combined when they can be, and concurrent execution is

adopted on these tasks. Nodes look at being energy efficient

while maximizing utility. An admission control procedure

is also described. This approach reduces the possibilities of

node deaths, however, the utility is reduced since they do not

consider the incoming energy. DEOS also does not answer the

question of how much energy to expend in a time period.

VI. CONCLUSIONS

In this paper, we brought up the two important challenges

to be handled in a harvesting-aware scheduling for an energy

harvesting wireless sensor node: (a) the amount energy to be

expended and (b) maximizing the utilization of the energy.

To address both the issues, we proposed a model based on

the popular dynamic optimization methodology i.e., Markov

Decision Process. This model generates an optimal policy for

scheduling. The optimality is reached subject to the condition

that the energy arrival process is well-modeled. Since the

complexity of the MDP model is high, we proposed a greedy

policy for scheduling and compared it with the MDP model.

The suboptimal greedy policy is necessary since (a) it can

easily be implemented on the nodes and (b) it learns and

updates the transition probabilities, thereby adapting to the

immediate variations in the ambiance. The greedy policy

performs sufficiently well and, with a suitable sized storage

element the performance can be guaranteed.

REFERENCES

[1] R. V. Prasad, S. Devasenapathy, V. S. Rao, and J. Vazifehdan, “Reincar-
nation in the Ambiance: Devices and Networks with Energy Harvesting,”
IEEE Communications Surveys & Tutorials, vol. 16, no. 1, pp. 195–213,
2014.

[2] M. Rahimi, H. Shah, G. Sukhatme, J. Heideman, and D. Estrin, “Study-
ing the feasibility of energy harvesting in a mobile sensor network,” in
2003 IEEE International Conference on Robotics and Automation (Cat.

No.03CH37422), vol. 1. IEEE, pp. 19–24.
[3] A. Kansal, J. Hsu, S. Zahedi, and M. B. Srivastava, “Power management

in energy harvesting sensor networks,” ACM Transactions on Embedded

Computing Systems, vol. 6, no. 4, Sep. 2007.
[4] C. Moser, D. Brunelli, L. Thiele, and L. Benini, “Real-time scheduling

for energy harvesting sensor nodes,” Real-Time Systems, vol. 37, no. 3,
pp. 233–260, Jul. 2007.

[5] T. Zhu, A. Mohaisen, and D. Towsley, “DEOS: Dynamic energy-
oriented scheduling for sustainable wireless sensor networks,” in 2012

Proceedings IEEE INFOCOM. IEEE, Mar. 2012, pp. 2363–2371.
[6] D. Audet, L. C. de Oliveira, N. MacMillan, D. Marinakis, and K. Wu,

“Scheduling Recurring Tasks in Energy Harvesting Sensors,” in 2011

IEEE Conference on Computer Communications Workshops (INFOCOM

WKSHPS). IEEE, Apr. 2011, pp. 277–282.

[7] M. Gorlatova, A. Wallwater, and G. Zussman, “Networking Low-
Power Energy Harvesting Devices: Measurements and Algorithms,”
IEEE Transactions on Mobile Computing, vol. 12, no. 9, pp. 1853–1865,
Sep. 2013.

[8] L. Zhang, B. Tiwana, Z. Qian, Z. Wang, R. P. Dick, Z. M. Mao,
and L. Yang, “Accurate online power estimation and automatic battery
behavior based power model generation for smartphones,” in Pro-

ceedings of the eighth IEEE/ACM/IFIP international conference on

Hardware/software codesign and system synthesis - CODES/ISSS ’10.
New York, New York, USA: ACM Press, Oct. 2010, p. 105.

[9] A. E. Susu, A. Acquaviva, D. Atienza, and G. De Micheli, “Stochastic
modeling and analysis for environmentally powered wireless sensor
nodes,” in International Symposium on Modeling and Optimization in

Mobile, Ad hoc and Wireless Networks and Workshops (WiOPT), LSI,
EPFL, Lausanne. IEEE, Apr. 2008, pp. 125–134.

[10] M. Puterman, Markov Decision Processes: Discrete Stochastic Dynamic

Programming, 2nd ed. John Wiley & Sons, 2005.
[11] Moteiv, “Telos B Datasheet,” p. 28, 2004. [Online]. Available: http:

//moss.csc.ncsu.edu/∼mueller/rt/rt11/readings/projects/g4/datasheet.pdf
[12] A. Mas-Colell, M. Whinston, and J. Green, Microeconomic Theory.

New York, NY: Oxford University Press, 1995.
[13] I. Chades, G. Chapron, M.-J. Cros, F. Garcia, and R. Sabbadin,

“MDP Toolbox,” 2012. [Online]. Available: http://www7.inra.fr/mia/T/
MDPtoolbox/MDPtoolbox.html

[14] “CONFRRM - Cooperative Networks For Renewable Resource
Measurements.” [Online]. Available: http://rredc.nrel.gov/solar/new\
data/confrrm/

[15] L. Huang and M. J. Neely, “Utility optimal scheduling in energy
harvesting networks,” in Proceedings of the Twelfth ACM International

Symposium on Mobile Ad Hoc Networking and Computing - MobiHoc

’11. New York, New York, USA: ACM Press, May 2011, p. 1.
[16] S. Liu, J. Lu, Q. Wu, and Q. Qiu, “Harvesting-Aware Power Manage-

ment for Real-Time Systems With Renewable Energy,” Very Large Scale

Integration (VLSI) Systems, IEEE Transactions on, vol. 20, no. 8, pp.
1473–1486, 2012.

[17] J. Lei, R. Yates, and L. Greenstein, “A generic model for optimizing
single-hop transmission policy of replenishable sensors,” Wireless Com-

munications, IEEE Transactions on, vol. 8, no. 2, pp. 547–551, Feb.
2009.

[18] M. A. Murtaza and M. Tahir, “Optimal data transmission and battery
charging policies for solar powered sensor networks using Markov deci-
sion process,” in 2013 IEEE Wireless Communications and Networking

Conference (WCNC). IEEE, Apr. 2013, pp. 992–997.

