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! In this work, we confine
SCy-Phy spaces to indoor
environments such as
home or office.

2 We assume that the
nodes run only on the har-
vested energies and do not
have secondary energy
sources like batteries.

ABSTRACT

Context awareness is one of the building
blockS of smart applications that constitutes
smart spaces. With the emergence of cyber phys-
ical systems, it is now possible to create spaces
that are truly adaptable and smart. In these
spaces, contextual parameters are captured by
many wireless sensor nodes. This collected data
is processed to understand the context in real
time. Since a large number of sensors are
deployed, processing all the data is a big task.
Moreover, since the sensors are powered by bat-
teries, they have a limited lifetime. Sensing only
when there is a context event can save energy as
well as reduce data processing. To make sensor
nodes operate perpetually, ambient energy har-
vesters can be used. Typically, the energy har-
vesting source of a sensor is related to the
physical parameters the sensor is measuring. We
propose exploiting this property to develop a
context-event triggering mechanism in this arti-
cle. We also adapt the context-aware application
framework for incorporating context-event trig-
gers by harvesters. A Smart-M3-based architec-
ture is also proposed. Through a real-world use
case, we illustrate significant energy savings and
reduced data processing in our proposed
approach.

INTRODUCTION

With rapid advancements in embedded systems
and wireless technologies, the vision of Mark
Weiser is becoming a reality. In his momentous
work [1], he envisioned “ubiquitous computing,”
that is, personal computers integrate seamlessly
into a person’s environment and enrich his/her
everyday life by automating many routine tasks
and providing information relevant to the con-
text. Context is any information that can charac-
terize the situation of a user or an entity in
general [2]. Employing contextual information in
applications to enrich user experience has led to
powerful ideas such as smart spaces [3]. The
smart space is a paradigm based on ubiquitous
computing, where environments are impregnated
with embedded devices to capture the context
and adapt the ambiance around the user accord-

ingly to improve his/her experience. Cyber physi-
cal systems enable connecting “things” (physical
objects) and controlling them [4]. Hence, smart
spaces move on to become smart cyber physical
(SCy-Phy) spaces. SCy-Phy spaces not only adapt
to the environment and/or respond according to
the context of the user, but also enhance safety
and quality of experience for the user. Obvious-
ly, smart spaces are a subset of SCy-Phy spaces.
An overview of SCy-Phy spaces is shown in Fig.
1, where both information and communications
technology (ICT) objects such as sensors and
non-ICT objects such as appliances can be moni-
tored and controlled based on context. SCy-Phy
spaces integrate smartness across various
domains such as homes, offices, buildings, trans-
portation, logistics, and cities.

The core idea of SCy-Phy spaces! is to gather
various contextual information (location of the
user, user movements, temperature of the room,
etc.) and then act appropriately based on the
derived context. The most popular approach to
collect these data is by using wireless sensor net-
works (WSNs). Nodes in WSNs are low-power,
battery-operated, tiny embedded devices that
have a sensor(s) and a radio transceiver. Typical
WSNs are ad hoc networks where a multihop
approach is used for communication between
the nodes and a sink to conserve energy. The
nodes report the sensor data periodically to the
sink. The sink then processes the data received
from all the nodes to determine the context
and/or change in the situation.

This classical approach of periodic sampling
has some problems:

* Sensor nodes drain their batteries quickly.

* A sink needs to process huge amounts of

sensor data generated by all the nodes.

Many research efforts have targeted energy con-
servation on sensor nodes and lifetime extension
of the network. Recently, there has been tremen-
dous growth in energy harvesting technologies
targeting perennial lifetime for WSNs [5, 6]. In
energy harvesting WSNs (EH-WSNs),2 nodes
scavenge energy from ambient sources like light,
heat, water flow, and vibrations. While harvest-
ing alleviates the first problem of the classical
approach to an extent, it does not solve the sec-
ond one. To address the second problem, the
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sink should be notified only if a context changes
(i.e., a context-event triggering mechanism is the
need of the hour).

In EH-WSNG, if a node begins to harvest
energy, it indicates that there is a change in the
environment. In many cases, the energy harvest-
ing source for a node will be related to the phys-
ical parameter that the sensor is measuring. For
instance, a light sensor should have a photo-
voltaic harvester that harvests energy, which is
directly proportional to the intensity of light.
Therefore, in this article, we propose to exploit
this property of energy harvesters to detect
change in the context. We further design a con-
text-event triggering framework and architecture
based on Smart-M3 [7] for SCy-Phy spaces. This
article demonstrates the above concepts and the
framework with a real-world use case.

The remainder of this article is organized as
follows. First, we briefly describe context-aware
systems. We then describe a context-event trig-
gering mechanism through energy harvesting. A
novel framework for a context-event triggering
system is discussed. Next, we demonstrate our
proposal with a use case along with energy sav-
ings compared to other approaches. We describe
the challenges to be addressed for a robust sys-
tem. Finally, we conclude the article.

CONTEXT AND CONTEXT
AWARENESS IN SCY-PHY SPACES

The widely accepted definition of context is “any
information that can be used to characterize the
situation of an entity. An entity can be a person,
place or an object that is considered relevant to
the interaction between the user and the appli-
cation.” [2] Since any information can be contex-
tually relevant according to the definition, it is a
huge task to process all data in real time. Hence,
to reduce this complexity, context sources? are
grouped into dimensions [8], which are then
weighted to pick the most relevant sources. The
major dimensions of context are listed below.

Ambient dimension: The set of sources that
are in the proximity of the user. This also
includes real-time raw sensor data about the
user and his/her ambiance. Examples include
room temperature and user location.

User and social dimension: The set of sources
that characterize the user’s preferences. Here
the user’s social graph members and their pref-
erences may also play a role in determining the
context. Examples include a user’s shopping
information and recommendations.

Derived dimension: The information is
obtained from external sources — the web, cal-
endars, weather, traffic information, and so on
— and may play a role in identifying the current
situation of the user.

Of the different dimensions, the ambient
dimension plays the most significant role since it
is close to the user and can capture the user’s
action and environment in indoor SCy-Phy
spaces. In SCy-Phy spaces, a large number of
sensors are deployed to capture the user and
ambiance information.

A context-aware system [9] determines why
the situation is occurring based on the contextu-
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Figure 1. An overview of a smart cyber physical (SCy-Phy) space.

al information. The system can then either adapt
the environment or react to the situation. For
example, in an indoor SCy-Phy environment, the
temperature of a room in which the user is pre-
sent can be adapted according to his/her prefer-
ence. If s/he moves to another room, the
context-aware system reacts to this action by
adjusting the temperature in the new location.

A generalized framework for context-aware
systems [10] in SCy-Phy space is shown in Fig. 2.
The architecture consists of three layers: the
sensing, modeling, and application layers. Each
module in the architecture is briefly explained
below.

Context providers furnish data about the con-
textual parameters. These can be sensors, user
preferences, or external entities that provide
data such as temperature, humidity, light, RFID,
location, shopping preferences, social prefer-
ences, calendars, and weather and traffic infor-
mation.

A context interpreter harmonizes the data
given by heterogeneous context providers. This
is required since the data will be of diverse data
types, formats, and values.

A context reasoner infers the big picture from
the context information. A context reasoner con-
siders the relevance and quality of the contextual
information gathered. A reasoner employs infer-
ence and rule-based mechanisms. Thus, context
reasoners can derive new high-level contextual
information by employing rules based on the
current context information. Context reasoners
can use additional resources (location, time, user
information, etc.) for deriving this new high-level
contextual information.

A context modeler and storage is used to rep-
resent contextual information in a machine
understandable format. Context information can
be modeled using a variety of approaches such

3 Any source that captures
information about a user
and can provide this
information to the sink for
deriving context is referred
fo as a context source.
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Figure 2. Generalized framework for context-aware systems.

4 Energy saving is also
required in EH-WSNs to
mitigate the variability in
harvested energy and
enable operation under
low-energy conditions.

as key-value, object-oriented, logic-based, and
ontology-based models. In a key-value pair
model, the value of context information is pro-
vided to the application as an environment vari-
able. In object-oriented models, context is
represented as an atomic value from a flat infor-
mation model. Ontology-based models support
heterogeneity and interoperability in context
representation. Ontology-based context model-
ing has several advantages: flexibility, extensabil-
ity, being generic, and supporting easy querying
and retrieval of data that are crucial for context-
aware systems.

Finally, the context model is used by the
applications to adapt and/or respond to the
user’s situation. It is apparent that a huge
amount of data is gathered and processed, most-
ly because of periodic data collection. Therefore,
in the following section, we propose a method
that triggers a context change event to aid in
spotting only the moments when data gathering
should be done.

CONTEXT-TRIGGERED SENSING

ENERGY HARVESTING
WIRELESS SENSOR NETWORKS

Of context providers, WSNs play a crucial role
[11]. The ambiance dimension of the context is
typically determined by analyzing periodic data
from these sensors. Hence, a large number of sen-
sors are deployed to monitor various parameters.
The sensors are usually powered by batteries
and are expected to run for long periods of time.
To conserve energy, several strategies such as
data aggregation and event detection at the node
and network levels are adopted, as described in
[12]. However, even with sophisticated energy
conservation techniques in these sensors, their
batteries burn out quickly. Frequent battery
replacement is labor intensive in some cases; in
many other situations, battery replacement is
impractical due to harsh physical or deployment

conditions. The other associated problems of
batteries, such as increased size for increased
capacity and higher leakage, make them
unattractive.

A promising approach for perpetual network
operations is to harvest energy from ambient
sources, such as light, radio frequency, thermal,
wind, water, salinity gradients, and motion/
mechanical movements [5]. The sensor nodes
are completely dependent on the harvested
energy. The characteristics of nodes that use
energy harvesting differ from those with conven-
tional power sources. Ambient energy sources
do not provide constant power, and the harvest-
ed energy from these sources varies drastically
over location and time. The harvested energy is
sometimes very low and sometimes in excess of
the storage capacity of the nodes. Table 1 sum-
marizes the sources and power that can be har-
vested from these sources.

While harvesting energy alleviates the life-
time problem, it can also detect a change in con-
text. This is described in the following section.

CONTEXT-EVENT TRIGGERS
THROUGH HARVESTERS

We propose to use harvesters as context-event
triggers since the energy harvesting source for a
sensor will most often be related to the physical
parameters that the sensor measures. Here the
harvester behaves like a sensor. For example, a
shoe insert measures the distance walked/run
and thereby the calories burned by the user. A
shoe insert energy harvester gets triggered only
when there is user movement, and the total
energy harvested is directly related to the calo-
ries burned. Therefore, instead of periodically
sensing for user activity even when s/he is sta-
tionary, the sensor can now only be activated
when the harvester generates energy. At this
point, a context event is triggered and reported
to the sink.

Another example is when a luminosity mea-
suring sensor has a PV harvester. When there is
change in light intensity, the energy generated by
the PV harvester changes proportionally. This
change can be used to trigger context-event noti-
fication and initiation of other sensors for fur-
ther monitoring. Many such examples can be
easily envisioned in the SCy-Phy spaces, includ-
ing smart homes, smart transportation, smart
cities, advanced energy metering infrastructure
[14], and so on. Table 2 summarizes the possible
contexts generated by different harvesters in
indoor SCy-Phy spaces.

Therefore, the harvester can be used to derive
initial high-level contextual information. Unlike
the classical method of periodic sensing to detect
context changes, now we can rely on harvesters
to detect context changes and use sensors to pre-
cisely monitor all the changes occurring from
then on. If need be, the sensors can operate on a
low sensing frequency until a context change is
detected. Consequently, all the sensor nodes
deployed can save energy.* Thus, energy harvest-
ing sensor nodes not only support perpetual
operation of nodes, but also assist in deriving
contextual information.
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Energy source Harvesting technology Amount of energy harvested Example usage in indoor SCy-Phy space

Sunlight Solar (photo-voltaic) cells 100 mW/cm? (direct sun) Sensors near windows

Ambient light Solar (photo-voltaic) cells 100 pW/ecm? (illuminated office) Sensors in rooms

Wind Anemometer 1200 mWh/day (@5 m/s wind) In AC ducts

Water Water (hydro) turbines 1 W/ltr In kitchens, toilets, and showers

Temperature gradient

e bk aiied] In heaters and on human bodies

Thermo-electric 60 uW/cm? (@40°C gradient)

In wheelchairs, appliances like washing

Vibrations Piezoelectric 0.2 mW/cm? : :

machines, refrigerators
Push buttons Magnetic coils 50 wW/N Wireless switches, remote controls
Shoe inserts Microgenerators 300 pW/cm3 In shoes

Table 1. Characterization of energy sources [5].

Energy harvester Events detected

Contextual information derived

Photo-voltaic (indoor) Lights turned ON/OFF

Hydro

Thermo-electric (on
body sensor)

Piezoelectric :
on wheelchairs

Wireless switches Lights ON/OFF

Shoe inserts Movement

User presence; usage of water

Change in body parameters

Appliance usage; movement

Occupancy in the room; life sign

advanced metering

Indicates probable change in other body parameters, advanced metering

Indicates life sign for elderly using wheelchairs; also, appliances with this

type of harvester detect usage patterns

User location (range)

Life sign; indicates energy spent and change in body parameters

Table 2. Events detected and contextual information from harvesters.

A NOVEL FRAMEWORK FOR
CONTEXT-EVENT TRIGGERED
SYSTEMS

We propose a novel framework for context-event
triggered systems using energy harvesters. We
then describe the architecture using Smart-M3
adapted for our framework.

FRAMEWORK

With our proposed context-event triggering sys-
tem through energy harvesters, we notice that
energy harvesters can directly provide high-level
contextual information. At a basic level, the
energy harvesters replace the batteries in WSNs.
Therefore, they act as any other sensor node in
collecting contextual data. For example, a light
sensor can be powered through a PV harvester.
The context reasoner has the responsibility of
inferring high-level context from the sensor data.
For example, consider the case of a user walking
into his/her bedroom and turning on the light. In
the classical approach, WSNs periodically send
all the luminosity values to the sink. At the point

when luminosity values jump, the reasoner deter-
mines the high-level context: the user walked
into the bedroom at that instant. In our pro-
posed method, when the PV harvester generates
more energy, the sensor node concludes that a
light is “on” in the bedroom. The sensor can
then directly report the reasoned context to the
sink. Thus, the reasoner is not required to col-
lect and process huge amounts of data. The con-
text information generated by the harvester can
then be sent to the context modeler. This calls
for a cross-layer design as compared to the tradi-
tional framework. Figure 3a shows the frame-
work adapted for context-event trigger systems.

ADAPTED SMART-M3 ARCHITECTURE

In our framework, we adapt the Smart-M3 [7]
architecture that was proposed for semantic
information interoperability. Smart-M3 (multi-
part, multidevice, and multivendor) consists of
two important entities: knowledge processors
(KPs) and semantic information brokers (SIBs).
KPs are entities that either produce or consume
information. An SIB is an entity that maintains
high-level contextual information. There can be
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Figure 3. Proposed framework and architecture: a) framework for context-event trigger systems;
b) adapted Smart-M3 architecture with energy harvesting sensors.

more than one SIB, where information is dis-
tributed among various SIBs. KPs communicate
with the SIBs using access methods that are
defined by the Smart Space Access Protocol
(SSAP). SSAP includes access methods for vari-
ous communication technologies such as WiFi,
Bluetooth, Zigbee, and NFC. SSAP provides a
set of primitives that enable KPs to join an SIB,
leave an SIB, and access the information (insert,
retrieve, or query) in the SIB.

Typically with Smart-M3 architecture for con-
text-aware applications, the KPs reside in the
sink node. The KPs perform the interpretation
and reasoning based on the aggregated sensor
data. The SIBs store the high-level contextual
information. In our adapted Smart-M3 architec-
ture, nodes with energy harvesters that directly
generate high-level contextual information can
themselves act as KPs. Therefore, this informa-
tion is directly sent to SIBs, as shown in Fig. 3b.
Applications/services subscribe to KPs to be
notified when there is a change in data pro-
duced. Through this subscription, other sensors
in the ambience can be triggered to monitor the
changes in context. Consequently, SIBs are
updated and applications in that space adapt
based on this new information.

Use CASE:
INDOOR SCY-PHY SPACES

In this section, we describe a simple use case
where we demonstrate how our proposed
method and framework can be employed in real-
life scenarios. We then show the benefits of our
proposal in terms of energy savings and data
processing.

Bob is an early adopter of SCy-Phy spaces. In
his house, he has a fitness room for physical
exercise activities. He has converted his fitness
room into a SCy-Phy space. This room is
equipped with wireless switches, motion, temper-
ature, humidity, and light sensors, and an Inter-
net access point that also acts as a sink to the
wireless sensors. He bought a wireless pulse rate

monitoring device that can be worn on his wrist
or shoe. All the wireless devices, except the
pulse rate monitoring device, are equipped with
suitable energy harvesters. The pulse rate moni-
tor is battery operated. The shoe has a shoe
insert energy harvester, and the wireless switch
has a linear motion harvester. The motion, tem-
perature, humidity, and light sensors have PV
harvesters equipped as the energy source.

Consider the following scenario: Bob enters
his fitness room and presses the light switch.
Immediately, the wireless switch harvests energy
and sends a notification to the sink, which then
turns the light on. The sink also notes that Bob
is in the room, and the motion sensor is turned
on. The change in light conditions triggers the
temperature, humidity, and light sensors’ PV
harvester. They conclude a person’s presence in
the ambience and start recording values. Bob
then wears his pulse rate monitor and the shoe.
Since he likes springboard jumping, he begins
his routine exercise of jumping. The moment he
starts jumping, the shoe insert detects a signifi-
cant change in harvested energy. It immediately
notes that Bob is performing a physical activity
and sends this contextual information to the
sink. The shoe needs to trigger body sensors to
monitor the changes. Thus, it broadcasts a notifi-
cation to body sensors indicating that they should
start monitoring at a higher sensing frequency.
In this case, the pulse rate monitor picks up this
message and then begins noting his heart rate.
At the end of the exercise, the shoe again detects
the change in Bob’s activity and thus notifies the
sink. It also notifies the body sensors, here the
pulse rate monitor, to switch off.

We compare our method to the classical
approach and constant sensing approach for this
scenario. In our approach, the motion sensor,
after being turned on, samples every 30 s. In the
classical approach, the sensor periodically mea-
sures the data and sends them to the sink regard-
less of any activity performed. For this approach,
we assume that the motion sensor measures
every 5 s to detect entering the room. In the
constant sensing approach, the sensing frequency
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of all the sensors is 1 s, and this data is sent to
the sink. The pulse rate monitor senses at the S

. T T
rate of 1 s for all the approaches considered. B Classical

We classify Bob’s activities into two parts: B Proposed
* Bob’s presence in the fitness room is detect- ® Constant

ed.
* His pulse rate is monitored. 1500 1
We performed a simulation by considering the
described use case. We assumed that Bob per-
formed the above activities at random times dur-
ing 24 h. For the sake of simplicity, we neglected
the time of day implications in the scenario. We
use energy consumption values for various sen-
sors in this use case from [11, 12].

Figure 4a shows the energy consumption of
the sensors. As evident from the figure, our pro-
posed method consumes less energy for detect-
ing the contexts. The localization event detection
in our method takes 61.73 percent less energy
than the classical approach. In this use case both TR e e TR m R T
the classical and constant approaches consume @)
the same amount of energy for heart rate moni-
toring. Compared to those approaches, the pro-
posed method consumes 68.95 percent less
energy. Note that the energy harvesting is not
considered in the above comparisons of energy
consumption. 51

Figure 4b shows the energy consumption for
pulse rate monitoring in the classical and pro-
posed approaches. The plot is for a random 60
minutes of Bob’s activities. In the plot, we see
flat portions and positive slope portions in the
energy consumption of our approach. The flat
portions indicate that Bob is stationary. The pos-
itive slope portions indicate that Bob is exercis-
ing and his pulse rate monitor is on. As expected,
energy consumption by our approach is much
lower than the classical approach, since the pulse 1L
rate monitor is turned off during Bob’s inactivi-

1000

Energy consumption (J)

500 B

x 104
6
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—— Proposed
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w
T

The number of data packets generated in all
approaches is shown in Fig. 4c. As expected, the
number of packets in our approach is significant-
ly less than the other approaches for both activi- (b)
ties.

1
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Time (min)

x 104
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CHALLENGES =) et

W Constant

As demonstrated in the previous section, our
proposed method can detect and report the con-
text instead of raw sensor data in the classical
approach. This saves significant amounts of
energy. Moreover, a distributed context-aware
application can be designed by employing our
method. However, there are a few challenges
that need to be addressed.

Quality of contextual data: In the classical
approach, sensors can provide fine-grained data
on a user’s activity. However, in our approach
we need to design smart applications [13] that
try to match the requirements. In applications
where fine-grained activity is critically required
(e.g., in ambient assisted living for the elderly),
context-triggered sensing needs to be used in Detecting user presense Pulse rate monitoring
conjunction with the classical approach.

Detection of events with harvesters: The ©

Number of data packets generated

detection of events in our approach is highly

dependent on the sensitivity of the harvesters to Figure 4. Comparison of different approaches: a) energy consumption for
the energy sources. In current harvesting sys- Bob’s activities; b) energy consumption by pulse rate monitor; c) data
tems, the sensitivity is quite low. For example, packets generated by sensors.
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in harvesting
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detection can be
made robust.
We believe that
using harvesters as
context-event
triggers Is the
approach for
designing a truly
distributed context-
aware application in
smart cyber
physical systems.

solar panels cannot detect minor changes in illu-
mination, especially when the panel is exposed
to sunlight. Similarly, other harvesters also have
a tipping point before which no energy is har-
vested. Making harvesters detect events robustly
is an important challenge. With rapid develop-
ment in harvesting technology, this problem can
be addressed.

Reliability of detection in real time: Since all
the nodes are run by harvested energy, some
nodes may be in sleep state. Hence, making the
system reliable enough to transfer the context
event in real time to the sink is a major chal-
lenge in EH-WSNs.

Density of sensors: From the above chal-
lenges, we note that reliability needs to be guar-
anteed in such systems. Since energy harvesting
is not guaranteed to always provide “enough”
power, the density of such nodes need to be esti-
mated correctly to support reliable context-event
detection. Generalizing density estimation for
many scenarios is a hard problem.

Distributed architecture: Having a distribut-
ed architecture facilitates the nodes, especially
with our proposed method, taking distributed
actions for context-aware adaptation of the envi-
ronment. This makes our system scalable.

Learning over time: It is possible that a con-
text change occurs due to more than one reason.
For example, a PV harvester next to a window
will trigger when sufficient sunlight falls on it.
The same PV harvester will also trigger a con-
text event when a user switches on the light in
the room. Typically, when there is such ambigui-
ty in context, the nodes are configured to report
the event to the sink. The sink queries other sen-
sors and derives the actual context. However, the
nodes are required to “learn” over time to
resolve such ambiguities in order to reduce
latency and help realize a real-time system.

There is one drawback in the proposed
approach. Not every physical parameter change
can be context triggered through a harvester.
For example, there is no harvester that can trig-
ger an event due to a change in CO; concentra-
tion levels. Another example is that an
accelerometer sensor can be used to get the ori-
entation of the device. Unfortunately, this
change cannot be used to harvest energy, so this
event cannot be captured through a harvester.

CONCLUSIONS

Context awareness in applications is one of the
most sought-after technologies with the growth
of the Internet of Things and SCy-Phy systems.
With the current technology for context-event
detection, sensors need to report their measured
values periodically. However, such a system is
not scalable due to the facts that sensors gener-
ate huge data, and periodic data transmissions in
sensors drain their battery. Ambient energy har-
vesting mechanisms can be exploited to address
both of these issues together. We propose to
exploit the harvesters to detect contextual
changes in SCy-Phy spaces, and act as context-
event triggers. Therefore, both data processing
and energy consumption are reduced. We also
adapt the context-aware framework and Smart-
M3 architecture for our proposed method. We

demonstrate the usefulness of our system with a
real-world use case and compare our proposal
with the current approach. With advancements
in harvesting technologies, event detection can
be made robust. We believe that using harvesters
as context-event triggers is the approach for
designing a truly distributed context-aware appli-
cation of Scy-Phy systems.

In this space there are abundant opportuni-
ties to innovate in many ways. We have listed
some important challenges, which are only the
tip of the iceberg. This article provides only the
beginning of highly ambitious new inter-disci-
plinary research.
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