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ABSTRACT
Wireless sensor networks are used in scenarios where many
sensors need to collect data and exchange with a central
base station. These battery powered devices are expected to
have a long lifetime as frequent battery replacement is labor
intense and in some cases may not be possible due to deploy-
ment constraints. Ambient energy harvesting is a promising
approach to replenish the energy. However, the current day
harvesters typically the size of the sensor node, cannot pro-
vide perineal power to sensor nodes and thus energy-neutral
operation is non trivial due to the spatio-temporal varia-
tions in the source and the low efficiencies of the harvesters.
A smart approach is to adapt the system according to the
incoming energy.

In this paper, we aim to predict the solar energy with the
assistance of a discrete time Markov chain. The base station
conveys the diurnal and seasonality cycles of the source to
the sensor nodes. The nodes use this data to predict and
budget their energy. This approach is a practical one since
base stations exchange data periodically with nodes and are
capable of heavier computation and storage. The accuracy
of our method is evaluated with data from CONFRRM.
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1. INTRODUCTION
Wireless sensor networks have been conceived and de-

ployed in wide variety of applications. A major drawback
of these WSNs is the energy-constraint, since they rely on
portable sources like batteries for power. In many cases
replacement of batteries in these networks is restricted by
physical or deployment conditions. Hence, just relying on
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batteries are not sufficient for perennial operation of WSNs.
Recent advances in ambient energy harvesting technol-

ogy have made it a promising alternative source of energy.
Possible sources for energy harvesting are light, vibration,
thermal and wind. Each of these sources has a different en-
ergy harvesting profile, and rate of energy harvested from a
source varies over location, time and size of the harvester.
Of all the sources, solar source provides the highest power
density [9]. Hence, the solar harvester is the most common
harvester used with WSNs.

The goal of the WSN design is to achieve energy neutral
operation [3]. However, even with a solar harvester it is dif-
ficult to achieve perennial operation due to the varied chal-
lenges posed by the system: (a) Ambient energy sources do
not provide continuous energy; and (b) energy harvested by
these sources vary drastically over location and time. For
instance, statistics show that the difference can be up to
three orders of magnitude among the available solar power
in shadowy, cloudy and sunny environments [10]. A bet-
ter way towards energy neutral operation is to adapt the
system’s energy consumption according to the incoming en-
ergy. A further improvement over this method is to know
the incoming energy and then adapt the system’s operations
accordingly. This method increases the efficiency of the sys-
tem. Thus, a major challenge is to predict the energy source
for better power control and scheduling optimizations.

Solar source has been studied the most with respect to
its prediction. However, there is a lack of simple model
yet accurate model that can be used in real-world WSN
scenarios. In this paper, we aim for solar source prediction
using a first order 3-state discrete time Markov chain for an
infrastructure WSN.

The paper is organized as follows: Sec. 2 describes the
previous work on solar energy predictors. Sec. 3 proposes a
simple method to predict based on a 3-state Markov model.
Sec. 4 discusses the results of prediction and Sec. 5 concludes
the paper.

2. LITERATURE REVIEW
Solar energy is the most stabilized one among the set of

ambient energy micro-harvesters. However, due to weather
changes, the power from the energy source changes from
time to time. Many works have looked into predicting the
solar source. Few important ones are described in this sec-
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Figure 1: 3-state Markov chain

tion.
A simple time-series prediction is moving average and ex-

ponential smoothing [2] [4]. These methods are not the
best predictors given diurnality and seasonality of the so-
lar data, though they are computationally feasible on the
sensor nodes. A better predictor is proposed in [7], which
uses artificial neural network based prediction.

Markov modelling for solar powered energy harvester has
been investigated in [6]. The proposed stochastic model
is used to investigate QoS performances for different sleep
and wakeup strategies with respect to average queue length,
average battery capacity, average delay etc. The Markov
chain model considers wind speed, cloud size and proba-
bility of having a cloud cover, making it a not-so-simple
model for WSN. In [11], a software is used to generate the
Markov models. The number of states are not fixed, and
may vary depending on the length of statistical data avail-
able. The transitions are allowed only between consecutive
states ignoring the fact of cloud cover by passing clouds that
can have an immediate effect on the amount of energy har-
vested. Markov models are also proposed in climatology
literature. In [8], twenty years of data was analysed and 20
state Markov chain was created - each state with a step of
0.05 of clearness index over the previous state.

As can be seen, a light-weight yet accurate model for pre-
diction is missing. We propose one such model in this paper.

3. PROPOSED MARKOV MODEL
We assume a infrastructure based WSN i.e., a sensor net-

work in which the nodes communicate with a base-station.
This communication can be either single-hop or multi-hop.
We assume the base-station is capable of heavy computa-
tion and has higher memory capacity. We also assume the
base-station is always on and powered through mains.

The base-station has all the historical data over different
months and years. This data is divided into twelve - one
per each month. Further, each day is divided into 3 parts
- morning, mid-day and evening (see Fig. 2). This divi-
sion is necessary due to diurnality i.e., during mornings, the
transition probability to state high energy is higher. Simi-
lary, during evenings, the transition probability to state low
energy is higher. The base-station creates three transition
probability matrices for a day for a 3-state Markov chain as
depicted in Fig. 1. We assume no harvesting is done dur-
ing nights (due to ambient light) and no prediction is done.
Each morning the base-station sends a transition probabil-
ity matrix to the WSN nodes. The nodes use this matrix
to predict the energy over the next slot. At the same time,
the energy haversted in the next slot is recorded and the
transition matrix is updated. At the beginning of mid-day
the updated matrices are uploaded to the base-station which
updates its own matrices. Then the base-station sends in a
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Figure 2: Day divided into 3 periods shown over two

different days

new set of transition probability matrix for the next period
of the day.

The prediction in the nodes is done by calculating the
expected hitting times of the states from the current state.
It is done as follows: Let τi be the expected time to hit state
j starting in state i. Hitting time for i is 0, and for other
states:

τj = E(time to hit j|start in i)

= 1 +
∑

k∈S
pikτk

where pik is the transition probability from state i to k, and
S is the set of states. Obviously, the state j with minimum τj
is the next possible state. A threshold is used to distinguish
whether the transition was to the same state or to a different
one.

4. RESULTS
We use CONFRRM data [1] collected by Elizabeth City

State University in North Carolina (NC), USA for simula-
tions. The data is collected in real-time and then averaged
over five minutes. Several solar data elements are measured
and reported by the CONFRRM sites including global hor-
izontal irradiance (GHI), direct normal irradiance (DNI),
diffuse horizontal irradiance (DHI), and global horizontal ir-
radiance measured with a LI-COR pyranometer. Certain
other meteorological data are also measured like air temper-
ature, relative humidity, pressure, wind speed, wind direc-
tion and peak wind speed. However, for our simulations we
consider only the GHI.

We use the data starting from 2006 upto 2010 for the
month of July. Sun rises at 06:15 (±10 minutes1) and sets at
20:20 (± 5 minutes) on a typical day of July in NC. Accord-
ingly, we divide the day into morning starting from 06:15 to
10:00 hours. From 10:00 to 15:00, we call it mid-day and
from 15:00 to 19:30 we call it the evening period. Note, we
do not consider the data after 19:30 hours since the har-
vested energy is negligible. With this data, and the sensor
nodes equipped with appropriate transition probability ma-
trices, we try to predict what state will the node be over the
next 5 minutes.

With the data of 2006 to 2010, we built up the transition
probabilities for the three different periods of the day. We
then try to predict for July 2011. For a random day, the
results are tabulated in Tab. 1.

A graph for number of errors for the month of July for
the evening period is shown in Fig. 4. To demonstrate the
implications of a good predictor, we devise a simple schedul-
ing mechanism. The scheduler uses the prediction to deter-
mine the incoming energy to decide whether a current task

1due to the sun movement



Period Number of accurate predictions/Max. data points
Morning 45/47
Mid-day 55/60
Evening 50/54

Table 1: Predicted accuracy on a random day
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Figure 3: Better energy management with a predic-

tion based scheduler

should be executed or not. We emphasize that there are
better schedulers like Lazy Scheduling Algorithm [5] which
can better utilize the prediction. As can be seen from Fig. 3,
a simple scheduler using the previously descibed prediction
mechanism outperforms the same scheduler without any pre-
diction mechanism with respect to energy management. A
better energy management leads to longer lifetime of the
network, and also higher chances of completion of the tasks.
The number of tasks successfully completed is higher with
prediction based scheduler, as can be seen in Table 2.

5. CONCLUSIONS
Battery powered WSNs are critically limited by the en-

ergy. However, battery replenishment may not be possible
due to various constraints. Current advances in technol-
ogy have made ambient energy harvesting a possibility to
replenish the battery in certain cases. With energy harvest-
ing, energy neutral operation is desired. However, due to
the spato-temporal variations in the source and the low ef-
ficiencies of the harvesters, it is not a possibility. A smart
approach is to adapt the system according to the incoming
energy.

In this paper, we proposed a simple 3-state discrete time
Markov chain to predict the solar energy. The approach
is simple enough to be deployed in a infrastructure based
WSN. This approach is a practical one since base stations
are capable of heavier computation and storage, and the base
station and the nodes exchange data periodically. The nodes
use this data to predict and budget their energy. The accu-
racy of our method is evaluated with data from CONFRRM,
and it is shown the prediction method produces fewer errors.
We built a simple scheduler to demonstrate the performance
enhancement that can be derived from the predictor on the
energy management of the sensor node. It was also shown
more number of tasks can be completed using such a sched-
uler. As future work, we wish to work on improving the
prediction method and test it with near-optimal schedulers

With prediction Number of tasks not completed
Yes 12/51
No 17/51

Table 2: Performance of prediction based scheduler
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Figure 4: Number of errors in prediction in evening

period for the month of July

like LSA to improve the performance and lifetime of WSN.
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