
Heuristic Algorithms for Server Allocation in Distributed VoIP

Conferencing

R. Venktesha Prasad∗, H. N. Shankar#
∗Wireless and Mobile Communication,

Technical Univ. of Delft, The Netherlands.
vprasad@ewi.tudelft.nl
Tel: +31-15-2786795

TeleFax: +31-15-2781774

H. S. Jamadagni†, M. V. Rohith#, S. Vijay+

† CEDT, IISc, Bangalore.
PES Institute of Technology,

Bangalore, India.
+Esqube Communication Solutions Pvt. Ltd.

Bangalore, India.

Abstract

To allocate Audio Conference Servers (CS) [1] for
virtual conferencing over IP, we leverage Session Ini-
tiation Protocol (SIP) for signaling. We address
here the problem of facilitating seamless conference
amongst participants using CSs. This demands a
proper allocation of CSs to clients to maximize the
number of participants served and at a reduced cost.
Seeking a more realistic approach, we avoid over-
simplifying assumptions; hence the problem becomes
relatively harder. We present three heuristic algo-
rithms for these NP-hard problems and bring about
the effectiveness of their performance.
Keywords: VoIP Conference, Conference Servers,
SIP, Facility Location Problem, Heuristic Algorithms

1 Introduction

Traditional data differ from voice and video in aspects
of delay-constraints and packet loss tolerance. Hence
as time-sensitive voice and video applications are de-
ployed on Internet Protocol (IP), the inadequacy of
the Internet is exposed progressively. Virtual con-
ference (teleconference) facility is at the cutting edge
Internet Telephony. Audio and video conferencing on
Internet have advantages and are popular. Clearly,
most collaborative works demand audio conferencing
more frequently than video interactions [2]. It makes
sense to deal with audio conferencing first.

The bandwidth required for teleconference over the
Internet increases rapidly with the number of partici-
pants. Audio “quality” in a conference includes facil-

itating interactivity, i.e., allowing impromptu speech,
and spatialism [3, 4]. The critical implementation is-
sues are: 1.Packet delay; 2.Echo; 3.Customized mix-
ing of audio from selected clients [3]; 4.Automatic
selection of clients to participate in the conference;
5.Playout of mixed audio for every client; 6.Handling
clients not capable of mixing audio streams (such
clients are known as “dumb clients”); 7.Deciding the
number of simultaneously active clients in the confer-
ence without compromising voice quality.

As participants increase, intermediate servers must
serve to control, maintain and support a conference.
Many of the issues listed above are closely related
to server location vis-à-vis clients and assignment of
clients to servers.

The problem we tackle is set in the backdrop of Vir-
tual Conferencing Environment (VCE). The architec-
ture for VCE is shown in Fig. 1. We focus on large
audio VCE with several hundreds of users across the
Internet. Key issues here are: (1) the front-end con-
sisting of the application running on the computers of
end users; and (2) the back-end that provides other
applications that facilitate conferencing and confer-
ence service.

The domains and entities in a VCE are not fixed
apriori. We identify clients and CSs of domains. Once
a client is assigned to a domain the control messages
for conference setup and maintenance are between
SIPS and in turn CSs. We focus on finding a config-
uration of domains around possible locations of CSs
seeking ‘near optimality’. Optimality is governed by
delay, connection cost, etc. (vide Section 2.1).

Proceedings of the 10th IEEE Symposium on Computers and Communications (ISCC 2005)

1530-1346/05 $20.00 © 2005 IEEE

Clients

Clients

Figure 1: VCE architecture showing domains,
clients and servers

1.1 Constraints

Necessary constraints for a conference are: (1) CSs
locations are fixed; (2) CSs are software entities are
enabled only when necessary; (3) Clients are assigned
to a CS as and when conference service is requested;
(4) A client is assigned to only one CS; and (5) Only
one CS is opened at a location and if there is a need
for another CS there, it is deemed to be another lo-
cation with similar parameters with respect to the
network.

Cost formulation and the problem definition com-
prise Section 2. Section 3 has three heuristic algo-
rithms. Results are discussed in Section 4. We con-
clude in Section 5.

2 The Allocation Problem

Frequently asked questions and those addressed here
are: (a) If a client is in a remote domain, say, a dial up
link, how can that client be served? (b) Should a CS
be always opened in a SIPS domain or can a client
be assigned to a CS in another domain? (c) With
several clients in a small network neighborhood, is it
cost-effective to assign a new CS to that group?

Though a distributed conference system based on
CS is scalable [4, 1, 5] it requires allocating CSs to
clients. We consider choosing of CSs and CS group
formation. Scalability depends on the number of CS
domains. With more CS domains, communication
cost between CSs goes as O(ν2), with ν domains. The
costs of client connecting to a CS and of CS opening

and maintaining are pertinent.
A conference is controlled by distributed SIPS [6],

or by a centralized controller [4]. The servers can
allocate CSs to clients at the start of a conference if
the list of participants is known apriori. Else SIPS
has to reallocate CSs. The options are: (1) Only the
new client is allocated to that CS which reduces the
cost; (2) The new client is allocated to a nearest CS
and periodically, all clients are allocated afresh to CSs
available. We propose the second approach to avoid
frequent reallocations. In VoIP, the User Datagram
Protocol (UDP) packets carrying voice are sent to
the CS whose address is available with the client at
allocation time. Addresses can be changed as UDP
is not connection oriented.

This problem of allocation of clients to CSs, a Facil-
ity Location problem, is NP-hard [7], to which heuris-
tics offer attractive solutions.

2.1 Cost

Two components of cost, viz., of connection between
a client and a server, and of opening a CS, are perti-
nent here. They may be estimated by direct measure-
ment on networks. This paper is focused on demon-
strating the efficacy of our heuristic algorithms, we
refrain from cost estimation here.

2.2 Problem Formulation

Let FS be the set of m CSs and DC , the set of n

clients; locations of CSs and clients are known. Let
the cost of connecting a client j to CS i be cij , dj the
demand from Client j, fi the cost of opening CS i

and li the upper bound on the units of computation
by CS i.

yi = 1, if CS i is opened, else 0. xij = 1or0, ac-
cording as Client j is assigned to CS i or not. The
minimization problem (Pmin) is formulated as an in-
teger program as

min :
m∑

i=1

fiyi +
m∑

i=1

n∑
j=1

cijxij (1)

subject to

n∑
j=1

djxij ≤ li, (2)

2

Proceedings of the 10th IEEE Symposium on Computers and Communications (ISCC 2005)

1530-1346/05 $20.00 © 2005 IEEE

xij ≤ yi, (3)
m∑

i=1

xij = 1, (4)

xij ∈ {0, 1} and yi ∈ {0, 1} (5)

Constraint 2 limits the number of clients connected
to a CS depending on its limit. Constraint 3 ensures
that if there is an assignment of a client to a CS then
that CS must have been running. Constraint 4 en-
sures each Client j is assigned to a CS i, i ∈ FS and
j ∈ DC . Constraints 5 are part of integer program-
ming. Another constraint that a client is allocated to
only one CS is captured in the above constraints and
hence not mentioned explicitly.

3 Solution by heuristics

Two operations are involved here: (a) assigning
clients to CSs with less cost; and (b) opening least
number of CSs so that there is saving in supporting
the conference service. When demands are splittable,
i.e., they can be met by more than one server, solu-
tions by transhipment algorithms are suggested. In
case of splittable demands, solution by approximation
algorithms exist [8, 9, 10, 11].

In this problem of allocating CSs, there are in-
stances in which a solution may not exist. A case
in point is when the total capacity of CSs is less than
the total demand by clients. In these cases heuristic
algorithms definitely fail. Heuristic algorithms try to
find a near optimal solution, if there exists one.

3.1 Algorithms: Phase-I

The algorithm suggested here is divided into two
phases. The first one is the assignment phase. Here
the clients are assigned to CSs in set FG

S ⊆ FS . CSs
only in FG

S are considered; the algorithm considers
CSs outside this set as nonexistent. In the second
phase, the number of CSs is minimised by closing
some of them and clients previously assigned to the
recently closed CSs are reallocated to other CSs. Al-
gorithms of the first phase are given below.

Algorithm 3.1 Assignment Phase: Assign-

ment of clients to given set of CSs (FG
S)

Sort cij in list L(k) in increasing

order k = {1, 2, . . . , mn}. Consider assignment

of clients to a CS as AC [·], a row vector

that holds the CS identity i for each

Client j.

AC [j] is zero vector to start with.

k = 1. REPEAT

{

Step 1: Assign the Client j to CS i if

• For CS i, li ≥ dj, and

• Client j is not already assigned;

Step 2: li = li − dj, if Client j is assigned
to CS i. Update AC [j] = i and xij = 1.

Step 3: Stop if all clients are assigned; Re-
turn

∑
i,j cijxij and AC [j]. Break;

Step 4: Return ‘Infeasible’ if any client is
not assigned when k = mn.

Step 5: k = k + 1

}

The complexity of this algorithm is O(m2n2). The
advantage of this algorithm is that it is very easy
to implement. The next algorithm is an intelligent
assignment solution.

Algorithm 3.2 Assignment Phase: Assign-

ment of clients to given set of CSs (FG
S)

AC [j] is zero vector to start with.

Step 1: Find b(j) = mini{cij} for each j.
That is, finding the CS i ∈ FG

S that
results in minimum cost of assignment
to Client j.

Step 2: Update AC [j] = i by assigning
Client j to CS i found above and set
xij = 1.

Step 3: Find F
(OL)
S ⊆ FG

S , that are over-
loaded taking into account AC [j] and
li. If no CS is overloaded, goto Step 7.

Step 4: Find difference matrix [aij]
where aij = cij − b(j), i ∈ FG

S .
Mark ‘X’ in [aij] if Client j is allocated
to CS i in Step 2.

3

Proceedings of the 10th IEEE Symposium on Computers and Communications (ISCC 2005)

1530-1346/05 $20.00 © 2005 IEEE

Step 5: For each CS r ∈ F
(OL)
S , for clients

s ∈ D
(r)
C , i.e., clients assigned to

the CS r, find new CS-client pair (p,
q) corresponding to argmin(i,s){ais},
s ∈ D

(r)
C , i ∈ FG

S and i �∈ F
(OL)
S

and CS p is able to serve this new
client without overloading itself (aij’s
marked with ‘X’ are not to be consid-
ered)

Step 6: If a new CS is not found in Step 5,
Return ‘Infeasible’. Else, assign Client
q to CS p, i.e., AC(q) = p and xpq = 1.
Subtract the load dq from CS r. Update
AC [j] and F

(OL)
S taking into account

this change. Mark arq, the previous po-
sition of Client q, with ‘X’. Repeat Step
5 till F

(OL)
S = {}.

Step 7: Return AC [j] and cost of assign-
ment

∑
i,j cijxij.

Unlike Algorithm 3.1, Algorithm 3.2 does an intelli-
gent CS selection. It can be found that the worst case
complexity of this algorithm is O(mn2).

Algorithm 3.3 Assignment Phase: Assign-

ment of clients to CSs in (FG
S)

Algorithm 3.3 is a minor variant of Algorithm 3.2. It
is blind to overloading of CS in Step 5. Eventually
an overloaded CS transfers its client to another CS
such that transfer incurs minimal extra cost. Since a
client can move to all the m servers in worst case this
algorithm has worst case complexity of O(m2n2).

Remark: The relative merits of the al-
gorithms here is problem-dependent. The
strategy is to invoke all the algorithms and
carry forward the best at each iteration. We
can also find the solution with each first
phase algorithm – without mixing them to-
gether in the iterations – individually. The
solution can be compared later to select the
best one. We have selected the former.

3.2 Algorithm: Phase-II

Here we try to close CSs one by one using the cost
function

Ti =
fi

li
−

∑
i

∑
j

IC(j)cij (6)

The first term in the RHS of Eq. (6) pertains to the
cost of operating for unit capacity of the server. Later
we close the Server-L corresponding to highest TL.

The best of Phase-I and Phase-II algorithms is used
in the comprehensive Algorithm 3.4 below.

Algorithm 3.4 Allocation Phase: A heuristic

solution to the problem (Pmin)
Let F

(O)
S (i) be a vector that represents

whether a CS is open. It is found using

client assignment vector AC [j].

F
(O)
S (i) =

{
1 if CS i is serving any client

0 Otherwise

Total cost SOLN of any assignment is

found using

SOLN =
∑

i

F
(O)
S (i)fi +

∑
∀i,j

IC(j)cij (7)

where IC(j) =
{

1 if Client j is served by CS i
0 Otherwise

Note: The second sum is nothing but
∑

i,j xijcij

Step 1: Initialise AC [j] and F
(O)
S (i) ∀i, j

to zero, FG
S = FS and a set Z = {}.

Step 2: Find AC [j], F
(O)
S (i) corresponding

to a minimum SOLN , after using the
three Algorithms 3.1, 3.2 and 3.3 of
first phase.

Step 3: Find Ti, i ∈ FS, as defined below
and arrange in descending order.

Ti =
fi

li
−

∑
i

∑
j

IC(j)cij

Step 4: For k = 0
Do {

Temporarily close CS u that
corresponds to the highest Ti, u �∈ Z

(a) Find the best iSOLN using
Equation 7 (Here iSOLN means

4

Proceedings of the 10th IEEE Symposium on Computers and Communications (ISCC 2005)

1530-1346/05 $20.00 © 2005 IEEE

intermediate solution) out of three
returned assignments AC [j]’s of three
first phase algorithms with {FG

S −
{u}} as CSs open for assignment.

If (iSOLN < SOLN) then
permanently close CS u and FG

S =
FG

S − {u}; SOLN = iSOLN ;
Recalculate Ti as above with the

CS u closed and arrange in de-
scending order; Else, Z = Z ∪{u};

(b) k = k + 1; } Repeat till
k = m;

Step 5: AC [j] of SOLN corresponds to the
best assignment found by this algo-
rithm. The total cost is SOLN .

For example if we use all three Phase-I algorithms,
and taking best allocation returned by them, the re-
sulting complexity is O(m3n2).

4 Results and Discussions

LP formulation, hard but not NP, provides best solu-
tion relaxing the constraints. It is interesting to see
how Algorithm 3.4 fares for some test samples.

We generated the test cases randomly. The cost
cij ∈ [1, 1000] is generated arbitrarily. So also,
dj ∈ [1, 5] and fi ∈ [1, 1000] are chosen. li are
changed across test samples as per Table 1 (shown
here a sample of many test cases). As higher densi-
ties of clients can be seen in geographical proximities,
and each client may be billed differently, we refrain
from the use of triangular inequality on the physical
distance between CS and a client even though it may
reduce the complexity of the problem.In such cases
our algorithm converges faster than those with ran-
dom inputs

Table 1 is meant to give an overall picture for dif-
ferent test scenarios. It shows the ratio of perfor-
mance of LP to that of Algorithm 3.4. Algorithm 3.4
achieves results very close to the optimum solution
compared to using Algorithm 3.1 alone in assignment
(first) phase. The heuristic may not give a solution,
though one exists. Yet heuristic algorithms serve as a
good starting point to group clients. Moreover, with
many heuristics the possibility of finding a solution,

when one exists, is enhanced.
Now we shall get back to the question of how these

algorithms are used in our allocation of CSs. We sug-
gest that these algorithms be implemented on SIPS
in each domain. Once they receive information about
a new client added to the conference, the algorithm is
invoked. This requires information regarding the new
column in [cij] and the demand from the new client.
Since, this information can be exchanged across SIPS
while supporting the conference [5] unique alloca-
tion can be found at every SIPS. If the conference
is booked earlier this algorithm can be used only in
the beginning.

The allocation found using the above heuristics
should answer the questions raised in Section 2. Like-
lihood of success of allocation can also be increased
by some pragmatic assumptions. For example, in case
of an isolated client, the nearest CS can serve it and
multiple streams from CS to client can be mixed at
that CS to reduce the bandwidth. There are some
open issues here. One such issue concerns the method
of implementing this algorithm in the proposed dis-
tributed conference setup [6, 5].

5 Conclusions

The problem considered here is a hard problem and
not attempted in literature without relaxing some of
the constraints. The heuristic algorithms presented
here address problems involving (i) assignment of
clients to CSs that do not have unit demands and
hence not solvable using transportation problem; and
(ii) reducing the total cost by opening an ‘optimum’
number of CSs. Their performance is comparable to
LP solution, thus they are nearer to the optimal solu-
tion given by IP. They can be easily deployed. They
are portable to the generic class of Facility Location
problems as well as a host of End System Multicast or
Overlay Network applications. Custom tuning these
algorithms for online applications – when participants
join and leave conference at will similar to the case of
participants in a real conference hall – is one of the
next logical steps.

5

Proceedings of the 10th IEEE Symposium on Computers and Communications (ISCC 2005)

1530-1346/05 $20.00 © 2005 IEEE

Table 1: Comparison of Heuristic Algorithms with LP solution

Number Number Range
LP

Heuristic Algorithm 3.4 Ratio of

of of of with Phase-I Algorithm(s) Heuristic
CSs Clients li

Solution
3.1 best of (3.1 & 3.2) best of (3.1, 3.2 & 3.3) to LP

10 50 1-50 9707 10309 10309 10309 1.062
10 100 1-50 13000.4 13207 13037 13037 1.003
10 150 1-150 20439.6 22620 21155 21015 1.028
10 500 1-500 53541.5 57047 53876 53852 1.005
10 1000 1-1000 99698 102049 99951 99951 1.003
10 1000 1-800 100376 112422 101813 101734 1.014
10 1000 1-1000 105684 127217 111214 111420 1.052
10 1200 1-1000 174134 179141 174443 174443 1.002
12 1000 1-1000 93761.8 102985 94732 94732 1.011

References

[1] R. Venkatesha Prasad, Richard Hurni, H S Ja-
madagni, “A Scalable Distributed VoIP Conferencing
using SIP”, Proc. of the eigth IEEE Symposium on
Computers and Communications, Antalya, Turkey,
June 2003.

[2] E. Doerry, “An Empirical Comparison of Copresent
and Technologically-mediated In-teraction based on
Communicative Breakdown”, PhD thesis, Graduate
School of the University of Oregon, 1995.

[3] M. Radenkovic and C. Greenhalgh, “Multi-party dis-
tributed audio service with TCP fairness”, in Pro-
ceedings of the 10th ACM International Conference
on Multimedia (MM 02), Juan-les-Pins, France, pp.
1120, December 2002.

[4] R. Venkatesha Prasad, “A New Paradigm for Audio
Conferencing on Voice over IP (VoIP)”, Ph.D Thesis,
Indian Institute of Science, Bangalore, India, 2003.

[5] R. Venkatesha Prasad, Richard Hurni, H S Ja-
madagni, “A Proposal for Distributed Conferencing
on SIP using Conference Servers”, Proc. of MMNS
2003, Belfast, UK, September 2003.

[6] R. Venkatesha Prasad, Richard Hurni, H. S. Ja-
madagni, H. N. Shankar, “Deployment Issues of a
VoIP Conferencing System in a Virtual Conferenc-
ing Environment”, ACM symposium on Virtual Real-
ity and Software Techniques, Osaka, Japan, October
2003.

[7] S. Guha and S. Khuller, “Greedy strikes back: Im-
proved facility location algorithms,” Journal of Algo-
rithms, vol. 31, pp. 228–248, 1999.

[8] Martin Pal and Eva Tardos and Tom Wexler, “Facil-
ity location with hard capacities,” in Proceedings of
the 42nd Annual IEEE Symposium on the Founda-
tions of Computer Science, 2001.

[9] M. Mahdian, E. Markakis, A. Saberi, and V. Vazi-
rani, “A greedy facility location algorithm analyzed
using dual-fitting,” in In Proceedings of 5th Inter-
national Workshop on Randomization and Approxi-
mation Techniques in Computer Science, vol. 2129,
pp. 127–137, 2001. Lecture Notes in Computer Sci-
ence.

[10] K. Jain, M. Mahdian, E. Markakis, A. Saberi, and
V. Vazirani, “Greedy facility location algorithms an-
alyzed using dual fitting with factor-revealing LP,”
Journal of ACM, 2002.

[11] M. R. Korupolu, C. G. Plaxton, and R. Rajaraman,
“Analysis of a local search heuristic for facility loca-
tion problems,” ACM symposium on Discrete Algo-
rithms, pp. 1–10, 1998.

6

Proceedings of the 10th IEEE Symposium on Computers and Communications (ISCC 2005)

1530-1346/05 $20.00 © 2005 IEEE

