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ABSTRACT

High accuracy and device-free indoor localization is still a holy grail

to enable smart environments. With the growing privacy concerns

and regulations, it is necessary to develop methods and systems that

can be low-power, device-free as well as privacy-aware. While IR-

based solutions fit the bill, they requiremanymodules to be installed

in the area of interest for higher accuracy, or proper planning during

installation, or they may not work if the background has multiple

heat-emitting objects, etc. In this paper, we propose a custom-built

miniature device called LOCI that uses IR sensing. One unit of LOCI

can provide three-dimensional localization at best. LOCI uses only a

thermopile and a PIR sensor built within a 5x5x2 cm3 module. Since

IR-based sensing is used, LOCI consumes around 80 mW. LOCI uses

analogwaveform from the PIR sensorwith the gain of the PIR sensor

dynamically controlled through software in real-time to simulate

spatial diversity. LOCI proposes low-complexity techniques with

sensor fusion to eliminate the noise in the background, which

has not been handled in previous works even with sophisticated

signal processing techniques. Since LOCI uses raw data from the

thermopile, the computations are power-efficient. We present the

complete design of LOCI and the proposed methodology to estimate

height and location. LOCI achieves accuracies of sub-22 cm with a

confidence of 0.5 and sub-35 cm with a confidence of 0.8. The best-

case location accuracy is 12.5 cm. The accuracy of height estimation

is within 8 cm in majority cases. LOCI can easily be extended to

recognize activities.
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1 INTRODUCTION

Location-based context-aware services constitute an important

ingredient of smart indoor environments, such as assisted living

spaces (ALS) and smart buildings. Meanwhile, privacy-aware tech-

nologies are gaining more prominence than before with the intro-

duction of the General Data Protection Regulation (GDPR) by the

European Union [1]. Due to these regulations, localization tech-

niques that do not contain any user identifiable information are

preferred.

This eliminates the use of cameras, tags, smartphones or wear-

ables in conjunction with radio-frequency (RF) based technologies

such as RFID, Wi-Fi, Bluetooth and ultra-wideband (UWB) [2].

Moreover, smart semi-public buildings that are safety-critical, such

as banks or airports, induce an additional constraint that local-

ization systems must work without any dependency on infrastruc-

ture, in order to be operable in case of emergency situations such as

Figure 1: LOCI is of size 5x5x2 cm3 housing thermopile and

PIR sensors.

hostage crisis. Thus there is a demand for low-power and privacy-

aware systems that do not necessitate user involvement.

Device-free localization techniques that consider no tags, wear-

ables, or smartphones with the user are well-suited for this class

of applications. Several techniques using Wi-Fi, LiDARs, acoustics,

ultrasound and passive infrared (IR) based techniques have been

proposed [2, 3]. In general, these techniques trade-off either cost of

deployment or energy-efficiency for accuracy.

Why IR? Of the device-free techniques, IR based techniques have

shown the potential to be low-complexity, low power and have

good accuracy of ± 65 cm [4].1 Motion sensors, essentially IR sen-

sors, are becoming prevalent in older buildings as the first step

towards becoming smart; these sensors invariably will be part of

future smart buildings as well. Instead of just using them as human

presence detectors, the same sensors can be leveraged to provide

user location information to aid, for instance, smart HVAC systems

within the buildings to save energy. This would result in better

offerings for infrastructure services and cost savings as another

system/infrastructure for localization is not required.

Constraints.While IR sensors, such as thermopiles and passive

infrared (PIR), seem ideal candidates to localize humans, they are,

however, accompanied by several constraints. (a) IR radiation is also

emitted by other hot objects including pets, lights and hot water

bottles. (b) The radiation intensity is quite weak. This is aggravated

if the user wears warm clothing. (c) The signal characteristics in

PIRs are affected by the direction of movement, distance to the

sensor and movement speed of the user. (d) Either a single ther-

mopile or PIR cannot determine coordinates of a single user. (e) It

is impossible to always detect if there are multiple people by just

analyzing PIR signals, however, people counting up to a reasonable

accuracy can be achieved using thermopiles.

State of the art falls short. Several systems and localization tech-

niques have been developed that deal with the above constraints.

However, they exhibit one or more of the following shortcomings.

1Higher accuracies can be obtained by trading off cost of deployment.
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(1) Unscalable hardware. Many proposed systems require instal-

lation of a few sensor boxes to localize with reasonable accu-

racy [3–5]. Moreover, as in [3] each PIR can be tuned only to

a particular single range, thus it is necessary to carefully plan

the deployment of multiple PIRs for each space.

(2) Locating multiple persons. Existing systems do not offer local-

ization of more than one person with thermal sensors. The

systems, proposed hitherto, cannot be used for localization in

these cases except for people counting [6].

(3) Inflexible. Some works create zones that may differ from room

to room; some would require multiple towers placed at pre-

specified angles and so on [3]. Furthermore, with thermopile

arrays, manyworks choose to deploy their module on the ceiling

in order to get a planar view of the floor for localization [6]. The

accuracy of these solutions depend on the height of the ceiling,

and have an increased cost of deployment to cover large areas

due to limited FoV. These make the systems inflexible. Further,

this type of deployment can only count people.

Our proposal. In this paper, we propose a novel localization plat-

form, LOCI, that addresses these shortcomings by innovatively

leveraging the constraints to our benefit as outlined below. LOCI

is a combination of innovative and novel hardware and software

modules, as shown in Figure 1.

Unlike existing systems that need multiple sensors (thermopiles

or PIRs) to be carefully deployed for obtaining the user’s position,

we intend to deploy one LOCI per room to compute user’s loca-

tion with high accuracy. Our innovation is that we employ PIR as

a depth sensor in conjunction with a thermopile (Melexis 32×24
thermopile array). Such a combination of sensors also enables us

to localize multiple people. While this system is extensible to other

applications such as user movement tracking, fall detection (for

ALS), and height estimation, in this work we focus only on local-

ization of people (tested up to three people). However, we present

some results for height estimation too. Indeed fall detection is a

simple extension once we estimate the height in realtime; it is done

by identifying sudden height change in two successive frames.

We show that the output of a PIR sensor is a function of the

user’s distance, speed, direction, and the gain of the amplifier; the

implicit assumption that gain cannot be changed, negatively im-

pacts the accuracy. Another innovation of our system is that we can

dynamically control the gain of the PIR sensor through software.

This eliminates the need to create zones and enables us to achieve

higher accuracies, even in the presence of multiple people.

A common strategy for ranging with PIRs is using set of curves

of output voltage with respect to various distances, also per zone

if zones are being created, during deployment [3]. However, such

a strategy fails as the set of curves need to be obtained in every

location. We, therefore, leverage machine learning to train once

and deploy in any indoor location.

Challenges. LOCI aims to achieve significant progress in state of

the art, but has to clear several technical hurdles. As we intend

to deploy only one system per room, it is significantly difficult to

achieve a better localization accuracy in three dimensions even

with our fused sensor data from thermopiles and PIR.

• With the PIR being used as a depth sensor, it is extremely difficult

to discern a fast-moving person nearby from a slow-moving

person at a farther distance – even when there is only one person

in the field of view. This is because the incident IR radiation

falling on the PIR can be similar.

• Low-power and real-time computation – the output from ther-

mopile array requires heavy floating-point computation to con-

vert to usable temperature values. Higher the number of pixels,

higher is the required processing. On the other hand, the temper-

ature value from an individual element depends on its placement

in the thermopile array. The challenge is to directly use the ther-

mopile output.

• To use the low power computing platform the sampling rate

needs to be low to avoid heavy computations. However, the

location of the person should be computed when the person is

present at that spot rather than when (s)he is gone, as in [3],

which negates the whole purpose.

• Thermopile is extremely sensitive to slight disturbances in ambi-

ent heat. Thus removing the background hot objects and ambient

heat noise is mandatory for effective localization and height

estimation.

Contributions.We summarize our contributions as follows:

(1) This is the first work to achieve localization using two different

types of infrared (IR) sensors by sensor fusion. Furthermore,

this is also the first work to localize multiple people using IR

sensors with ease of deployment.

(2) We follow pre-processing steps including eliminating back-

ground noise due to hot objects (e.g., candle, monitors, lights

etc.) other than people, which has not been done in literature

in the context of IR sensors. Unlike in literature, our algorithm

is agnostic to the clothing worn (e.g., jackets, full-clothing, and

semi-clad).

(3) We make all the computation on the onboard low-power mi-

crocontrollers (MCU), including handling thermopile data and

the machine learning solution. To handle data from thermopile,

we derive equations that enable us to utilize the raw values

from thermopiles, unlike other works. We employ k-NN based

machine learning technique to make our solution to work seam-

lessly in most indoor locations.

(4) We demonstrate the accuracy of 12.5 cm in the best case and

less than 35 cm in the worst case in a large area of about 72m2.

(5) A miniaturized low power and low form factor and high FoV

system that can be easily mounted on a wall.

(6) Use of variable gain at PIR sensor to avail the spatial diversity

gain that helps in avoiding multiple PIR sensors (like in [3])

without complex deployment.

2 RELATEDWORK

Localization has been a very active area of research for decades

now, including privacy-aware, device-free techniques. Solutions us-

ing WiFi channel state information (CSI) [11], mmWave based [12],

ultra-wideband [13] and visible light based [14] do fall in this cate-

gory. As argued in Section 1, these methods require to trade-off cost

of deployment and/or energy efficiency for accuracy. For instance,

at least two devices are required to measure Wi-Fi CSI, one to trans-

mit and the other to receive and process [11]. A similar approach is

necessary for mmWave [12], ultra-wideband [13] and visible light
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Table 1: State of the art that use thermopiles and PIR sensors for human detection, tracking, and localization.

Work Type of sen-
sor/s

Coverage
area

Objective No. of
people

Accuracy Notes on deployment

Narayana et al. [3] 8 PIRs 8m x 8m Localization + Height
classification

1 30 cm Two sensor towers, having 4 sensors each, are placed at 90°

B. Mukhopadhyay et
al. [4]

4 PIRs 7mx 7.5m Localization 1 65 cm 4 PIRs placed on the edge of the experimental arena

W. Chen et al. [7] 2 Thermopiles 2.35m x 3m Fall detection + Local-
ization

1 13.39 cm 2 Two sensors attached to wall at 30°

C. Basu et al. [6] 1 Thermopile 2.5m x 2.5m Occupancy detection +
Tracking

5 Occu-
pancy, 1
tracking

22 cm Ceiling mounted

Z. Chen et al. [8] 1 Thermopile 2.4m x 1.2m Tracking 1 19 cm 3 Thermopile placed on a motor across the wall

J. Kemper et al. [9] 4 Thermopiles 4.9m x 6.2m Localization + Tracking 2 25 cm 4 sensors placed in 4 corners

M. N. Hock [5] 5 Thermopiles 4.6m x 2.7m Human detection 1 50 cm 2 sensors on one side and 3 on adjacent side

X. Liu [10] 4 Thermopiles 7m x 7m Localization 1 63 cm 4 4 sensors placed in 4 corners

LOCI 1 Thermopile
+ 1 PIR

9mx 8m Localization + Tracking
+ Height classification

3 12.5 cm Single device mounted on the wall

1,2 Proper comparison is not possible with the available information, this value is presumably the best case. 3 Best case is 12.5 cm. 50% < 22 cm and 80% < 35 cm.

based systems [14]. Furthermore, none of these techniques are low-

power solutions as the entire system’s power consumption will be

in the order of several 100s of mW.

On the other hand, IR based systems are low-power (typically in

the order of μW) and simple to use systems but with lower accura-

cies, typically sub-meter, than other systems mentioned above (e.g.,

visible light based [14]). These accuracy levels are sufficient for

smart building applications. Moreover, the ubiquity of IR sensors

in buildings and their cost (USD 38 for thermopiles) make them a

very attractive choice for developing localization system.

Table 1 summarizes the most important works on localization

using IR sensors. Narayana et al. presented a novel sensor tower

containing four collocated PIR sensors that can perform height

classification and localization of moving objects [3]. They estimated

the range between humans and the sensor tower by fixing different

gains for different PIR sensors to form various detection zones. Two

such towers placed spatially apart at 90° localize the moving warm

object. Mukhopadhyay et al. improved this work by reducing the

number of PIR sensors to one on each tower but by placing four

such PIR sensor systems to form a square inside which localization

can be performed [4]. Their algorithm exploits multi-lateration

and Support Vector Regression (SVR) based techniques to fulfil the

objective. Chen et al. make use of two thermopile array sensors,

placed at 30°angles, and 3.3m away for tracking elderly and to detect

fall [7]. The location of the human is obtained using the angle of

arrival (AOA) from each sensor. Occupancy detection and tracking

of people within an FoV of 2.5m x 2.5m is reported in [6]. Tracking

is performed using Support Vector Machine (SVM) classification

on connected component based features of the thermopile data.

Z. Chen et al. propose an activity recognition and human track-

ing system by using a low pixel infrared thermopile array [8]. They

present two feature extraction methods: manually-defined, and a

pre-trained convolutional neural network (CNN) model. An im-

plementation of Probability Hypothesis Density (PHD) filter is

presented by J. Kemper et al. to perform localization and tracking

using 4 thermopile array sensors. A method of using a network

of thermopile sensors distributed along the walls of a room to lo-

cate a person within the room is studied by M. Hock [5]. In total,

5 thermopile sensors require to localize a person in 4.6m x 2.7m

area. C. Shih et al. designed a ceiling-mounted thermopile array

sensor network to track gait of a moving person [15]. The tracking

algorithm is developed on a virtual run-time library called WuKong.

S. Lee et al. present a location-recognition system called PIR

sensor-based indoor location-aware system (PILAS) [16]. Different

sensing areas are created using 12 PIR sensors which are placed

on the ceiling. A threshold was set to turn the PIR sensor On or

Off depending on human movement. Using a ceiling mount 8 x 8

array thermopile sensor, D. Qu et al. present a system to perform

localization and tracking [17]. The algorithm utilizes the Kalman

filter to track a person in the detection region. X. Liu et al. introduce

a concept of ‘azimuth’ change that adopts a particle filter to solve the

issue of abundant training data collection in a PIR based system for

localization. The system involves 4 PIR sensors located at corners of

a 7m x 7m area [10]. Unlike LOCI, this concept requires more than

single sensor placed at pre-defined locations, hence, not flexible in

deployment. Moreover, all the sensors must be at the line of sight.

3 DESIGN OF LOCI

3.1 Design requirements

We set out with the following design requirements for LOCI that

would make the solution easily usable across buildings and use-

cases. D1: The solution must be one piece of hardware that is

convenient to deploy in a room. D2: The solution must be able

to localize people in the room; it must provide a 2D localization

and 3D localization at best. D3: The solution must work despite

changing backgrounds, warm objects, clothing of the users D4:

All the processing must be done in the box. Only the results can

be communicated outside using WiFi or another radio. D5: The

solution must be low-power and energy-efficient D6: The solution

must be deployable easily across rooms without requiring any zone

creations/data collection.

3.2 The hardware

Given the design requirement that we can have only one box of

sensors, we should be able to capture where the user is and how

far is (s)he from the box. We innovate by using an inexpensive low-

power PIR sensor, placed adjacent to the thermopile, to provide

depth information. Hence, we have designed a custom-made system

for our experiments called LOCI. The proposed hardware platform
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Figure 2: The proposed hardware system

Table 2: Comparison of different commercial thermopile sensors.

HTPA80x64d MLX90621 MLX90640 MLX90641 Grid-Eye

Manufacturer Heimann Melexis Melexis Melexis Panasonic

Resolution 80x64 16x4 32x24 16x12 8x8

Field of
View (FoV)

88°x 70° 120°x 25° 110°x 75° 110°x 75° 60°x 60°

Maximum
refresh rate

200Hz 512Hz 64Hz 4Hz 10Hz

Power
consumption

82.5mW 23.4mW 66mW 39.6mW 14.85mW

Approximate
cost

$315 $36.74 $37.48 $40.40 $17.54

* OMRON, a leading manufacturer of thermopile array sensors such as D6T-44L-06 dis-
continued most of its products.

that houses two collocated infrared sensors – a thermopile array

sensor and a PIR sensor placed one above the other as shown in

Figure 2. The distance between the center of thermopile and PIR

is fixed to be around 1 cm so that the FoV of the thermopile is not

blocked by the PIR sensor.

The overall dimension of the LOCI platform is 5 x 5 x 2 cm3 and is

developed in-house. The hardware also includes an ultra-low-power

ARM Cortex M0 MCU ATSAML21J18B [18], from Atmel’s pico

power series MCUs, for acquiring data from the infrared sensors

and process them. The data comprising of detection, localization,

and height of the person is transmitted to a central server using

an ESP32 WiFi module [19]. We outline the sensor selection and

variable gain amplifier in greater detail in the following subsections.

3.2.1 Selecting suitable sensors. We outline the reasoning for the

selection of the two sensors – thermopile and PIR.

Thermopile array sensor. To cover a reasonably large room (say

8×8m2), we would need a large field of view (FoV) – a minimum

of 90° FoV is required to avoid blind spots in a horizontal direction

when the sensor platform is placed at the corner in a room – and

good number of pixels for identifying location in one plane. As

human movement would not be at very high speed, a refresh rate of

8 – 16Hz would suffice. There are various commercial thermopile

array sensors available from manufacturers such as Panasonic,

Melexis, and Heimann Sensor GmbH, which we list in Table 2 with

relevant specifications. While sensor models, such as FLIR Lepton

provide high-resolution imaging and fall under thermal camera

category, they need high operating and processing power and are

quite expensive (≈$250). We choose MLX90640ESF-BAA FIR sensor

from Melexis in our platform as it provides large FoV of 110°x 75°,

good resolution of 32 x 24, a decent refresh rate of 64Hz, and cost of

$38 [20]. Furthermore, the sensor can measure object temperature

between -40°C to 300°C with a frame accuracy of ±1°C.
PIR sensor. We employ Zilog’s ZSBG446671, a dual-element PIR

sensor in our system because of its large FoV of 132° x 222° [21]. The

Figure 3: Circuit diagram of our system

detection area of a PIR sensor element is small and very sensitive

to the infrared energy. To strengthen the incoming infrared rays,

we placed a Fresnel lens in such a way that the center of the PIR

sensor coincides with the focal point of the lens. In our application,

we require identical detection from all the directions in the FoV of

the PIR sensor to estimate the distance of the moving object from

the hardware platform. Hence, we selected a generic golf ball lens,

shown in Figure 1, that containing multiple spot Fresnel lenses

on its circumference and concentrates the incoming raysonto the

PIR sensor elements. The FoV of the chosen golf ball lens is 150°x

150°, larger than that of the thermopile. Thus, the overall FoV of

the platform is limited by the FoV of the thermopile sensor, which

is the maximum FoV that our system offers. The ADC sampling

rate for PIR sensor was set to 16Hz, twice as that of the thermopile

sensor to meet the Nyquist criterion.

3.2.2 Variable gain setup for PIR sensor. The output voltage from a

PIR sensor is very weak and is in the order of μV. Hence, they need
to be amplified several thousand times in order to get a reasonable

signal that can be measured by an MCU. While most of the work

in the literature that use PIR involve working with binary output

as provided in the vendor reference circuits [10], there are a few

that utilize the PIR output in analog form [3, 22]. We make use of

the analog signals from a single PIR, read by the ADC pin of the

MCU, to estimate the distance of the moving object from the sensor.

The traditional way, as found in the literature, is to use fixed gain

amplifier stages by selecting suitable feedback resistors. On the

contrary, in this work, we facilitate the MCU to vary the gain of

each amplifier stage using digital potentiometers that are controlled

using I2C lines5.

Amplification gains of COTS amplifiers in one stage will not be

sufficient, leading to two-stages. We therefore select Texas Instru-

ment’s LPV802 dual channel nano-power amplifier in our design

as they consume only 1 μW. The circuit diagram of our hardware

platform is shown in Figure 3.

The amplified output Vo of the PIR sensor read by the MCU is

proportional to the overall gain given as,

Vo = −Vin
(
1 +

Rf1

R1

) (
Rf2

R2

)
, (1)

where Rf1 is fixed to 3MΩ, Rf2 is a 1MΩ dual channel digital poten-

tiometer, AD5242BRUZ1M from Analog Devices, whose resistance

can be varied in 255 steps between 0 and 1MΩ.We connect both the

5It should be noted that there are programmable gain amplifiers available commercially
but not in the gain range that we require. Hence, we used the variable resistors.
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Figure 4: Amplified output from the PIR

resistor channels in series to get a broader range of up to 2MΩ. Sim-

ilarly, R1 and R2 are 512 kΩ digital potentiometers, AD5272BRMZ

from Analog Devices, that can be varied in 1024 steps between 0

and 512 kΩ. By adjusting these resistor values dynamically, our

algorithm is able to vary the overall gain of the PIR output between

≈ 2x10−6 to 6x1012 in ≈ 537x106 steps, hence customizing the de-

tection range of the PIR sensor. The analog output from the PIR is

similar to a sine wave and produces negative voltage. As the MCU

is not capable of measuring negative voltages on its ADC pins, we

introduce fixed resistors R3, R4, and R5, R6, as shown in Figure 3,

to scale and shift the PIR output voltage before fed to the ADC pin

of the MCU. We fix R3 = 510 kΩ, R4 = 240 kΩ, R3 = 10 kΩ, and R3 =

2.4 kΩ to get a full PIR output swing between 0.2 V and 3.25 V. A

sample amplified output from the PIR sensor is shown in Figure 4.

3.3 The software

Capturing the signals from the sensors can easily be programmed.

In this section, we look at clearing the hurdles to compute location

information on the onboard MCU.

3.3.1 Efficient processing of thermopile data. The MLX90640 does

not output the absolute temperature values but 16-bit raw values

read by each pixel. These values correspond to the amount of in-

frared energy falling on each pixel. The raw values can be converted

to the temperature values using [20],

(2)To(i , j ) =
4

√
VI R(i , j )COMP

αcomp(i , j ) ∗ (1 − KsTo2 ∗ 273.15) + Sx (i , j )
+Ta−r

− 273.15,
where,

Sx (i , j ) = KsTo2 4

√
α3
comp(i , j )

∗VI R(i , j )COMP
+ α4

comp(i , j )
∗Ta−r .

To(i , j ) is the temperature reading for pixel i, j,∀i ≤ 32, and j ≤
24, i,j∈ N , VI R(i , j )COMP

is the offset compensated raw value for

each pixel, αcomp(i , j ) and KsTo2 are constants corresponding to
each pixel, and Ta−r varies with the ambient temperature. These
parameters are calculated using various constants and pixel offset

values6 that are stored in the EEPROM of the sensor.

The calculation indicated in Equation 2 involves complex com-

putation of multiple floating point numbers to turn the raw pixel

data into temperature data. This demands a minimum SRAM of

150 kb and ≈100MHz processing power to process the raw data at

8Hz [23]. Further, running the localization algorithm and wireless

data transmissions require high power micro-controllers as the host

6Each pixel will be provided with a correction factor when the manufacturer calibrates
the sensor.

Figure 5: MLX90640ESF-BAA frame is divided into three

zones depending on the measurement accuracy [20].

Figure 6: (a) Image with warm objects such as human, incan-

descent light, hot kettle,monitor (b) Rawvalues output from

the thermopile sensor (c) Absolute temperature obtained us-

ing Equation 2 (d) Raw compensated value calculated using

Equation 3.

platform. As we desire to design a low-power solution, we simplify

the calculation by working with the relative difference between the

pixel data rather than computing the absolute temperature data.

The MLX90640ESF-BAA frame, containing 768 pixels, is divided

into three zones, Zones 1 to 3, based on the measurement accuracy

of the pixels. The different zones of a frame associated with raw

values from the sensor when there is no warm body in front of the

sensor are shown in Figure 5. For an object in front of the sensor

with temperatures between 0°C and 50°C, Zone 1 has the highest ac-

curacy of ±0.5°C, Zone 2 with ±1°C and Zone 3, the least with ±2°C.
Additionally, IR sensors in Zone 3 produce more noise compared to

that in Zone 1.We observe in the image with raw values that there is

a temperature gradient from Zone 1 to Zone 2 even if there is no hot

object in front of the sensor. However, these pixel offsets or errors

between different zones can be corrected using offset calculations

that result in Equation 2. Due to the paucity of space, we refer the

readers to [20] for details regarding the calculation of these param-

eters. We analyzed the range of VI R(i , j )COMP
, αcomp(i , j ), KsTo2,

and Ta−r for To(i , j ) ∈ [−20°C, 125°C]. VI R(i , j )COMP
has the range

[−79, 427], αcomp(i , j ) in the range [−3x10−8, 1.23x10−7], KsTo2 is
in the order of −2x10−4, and Ta−r in the range [4x109, 2.3x1010]
for ambient temperatures between 0° C and 100° C. Looking at the
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Figure 7: Values represented by all 768 pixels in a frame for

the images displayed in Figure 6.

above ranges,KsTo2 and Sx (i , j ) can be neglected. Finally, we deduce
the relation,

(3)RAW(i , j )comp =

(
VI R(i , j )COMP

αcomp(i , j )
+Ta−r

)
x10−9,

whereRAW(i , j )comp is the compensated (for offset and irregularities

in zones) raw value which is of much lower complexity and can be

run on our onboard MCU.

We evaluate how good the gradients are preserved by our sim-

plified raw value from Equation 3 as compared to the absolute

temperature gradients as obtained by Equation 2. Figure 6 shows

an image with, (a) warm objects such as human, incandescent light,

hot kettle, and a monitor; (b) a frame displaying raw values in the

form of gradient map; (c) the same frame with absolute temperature

calculated; and (d) the same frame after raw values are processed

using our technique. We observe from the images that our approach

preserves the temperature gradient as if the raw data is converted

to temperature. We also tested our approach in the presence of the

light bulb at the top left corner, hot kettle and monitor, and person

in front of the sensor, and found that our approach indeed preserves

the gradients.

Figure 7 shows the values represented by each pixel (Pixel-1 cor-

responds to top left of the frame and incremented column-wise) for

the frame displayed in Figure 6. We observe in the figure that raw

compensated value varies with the same pattern as of absolute tem-

perature. Complete processing is done on our hardware platform –

reading EEPROM data and acquiring raw data from the thermopile

sensor at 8Hz, reading PIR data at 16Hz, execute our algorithm,

and transfer the data over WiFi to a centralized server. Recall that

we used an ultra-low-power MCU ATSAML21J18B, executing at

16MHz with 32 kB RAM, and consuming ≈2mA current. The maxi-

mum power consumption of the platform is around 80mWwithout

WiFi transmission, and around 460mW when WiFi chip is transmit-

ting at 0 dBm. The power can still be reduced if the transmission

power is reduced, or different protocols such as Bluetooth is used

for communication.

3.3.2 Localization. The algorithm for computing the location of

multiple persons is presented in detail in Section 5. Before we

proceed to the algorithm, we present the characterization of the

sensors, which forms the basis for the design of our algorithm.

(a) Human with thin cloth (b) Human with thick jacket

Figure 8: Temperature recorded by MLX90640 for a human

at 2m from the sensor with and without jacket

4 CHARACTERIZATION OF SENSORS

4.1 Thermopile sensor

From our experiments with thermopile on LOCI, we made the

following observations that can be utilized in our algorithm to

perform localization and height estimation.

(1) As the distance between the warm body and the sensor in-

creases, the temperature read by the sensor decreases. This

holds with the theoretical model provided in [5] that says

T ∝ 1
d2
, where T is the temperature recorded by a pixel and d

is the distance of the warm body from the sensor.

(2) As the personmoves away from the sensor, the number of pixels

used to indicate the object decreases. Hence, if the height of the

person is known, the distance between the object and the sensor

can be estimated as the vertical FoV and the total pixel count

in the vertical dimension is known. Similarly, if the distance is

known, the height of the person can be estimated.

(3) One of the important observations is the spatial-temporal changes

in the number of pixels covered by the moving object. When a

person walks in front of the thermopile array, in any direction,

the number of pixels traversed horizontally and vertically in a

specific duration is proportional to the speed of the movement

and distance of movement from the sensor. This provides a new

relation,

Pt (h,v) ∝ s

d
, (4)

where Pt (h,v) is the number of pixels traversed horizontally (h)
and vertically (v) in time t , s is the speed of the movement, and
d is the distance of person from the sensor.

(4) The static hot objects such as bulbs, computers, and heaters that

contributes to the background noise do appear in the thermopile

output frames.

(5) Any hot object such as kettle carried by a human is detected by

the sensor and is considered as part of the human.

(6) A human can be detected even if (s)he is wearing thick clothing

such as a jacket (see Figure 8).

(7) Head, chest and waist are the parts of the human body that

exhibits high gradients compared to the rest of the body.

4.2 PIR sensor

Considering the generic models from [3] and [24], we can portray

the relationship between the peak to peak voltage Vp−p generated
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(a) Speed 0.5m/s (b) Speed 1.2m/s

Figure 9: Peak to peak voltage generated by the PIR sensor

for different gains at different speeds.

by the PIR sensor and the amplifier gain G as,

Vp−p ∝ I G

s2 d2
, (5)

where I is the infrared energy from the moving person incident on

the PIR sensor, s is the speed, and d is the distance of the person

from the sensor. We characterized the Vp−p against different speed,
distances and gains. In Figure 9, we show the Vp−p generated by
the PIR sensor for different gains at different speeds. It must be

observed that large gain is required to see the same person at a

farther distance at a constant speed. Similarly, as the movement

speed increases at a constant distance, the gain has to be increased

to observe the same levels of signal.

From our other experiments, wemade the following observations

that can be utilized in our algorithm.

(1) As the distance of the person from the sensor increases, the

peak to peak voltage generated by the amplifier stages decrease,

and vice versa, provided that the speed, body temperature and

the amplifier gain remains approximately the same.

(2) Provided that a person moves at a specific distance with a con-

stant speed, the peak to peak voltage generated by the amplifier

output can be varied by changing the overall gain G of the

amplifier stages (see Figure 9a and Figure 9b).

(3) The peak to peak voltage output from the amplifier stages de-

creases as the speed of the movement at a specific distance

increases (see Figure 9a and Figure 9b).

(4) The peak to peak voltage output from the amplifier stages for a

person moving at distance d1 with speed s1 may be same as the
output for the same person moving with speed s2 at distance
d2, where d1 < d2 and s1 > s2. This is because the duration and
amount of IR rays falling on the sensor reduce as the speed of

the moving object increases. Similarly, converse also holds.

(5) Static hot objects such as hot kettle, computer, light bulbs do

not affect the output of the PIR sensor.

5 LOCALIZATION

In this section, we explain how the features from the thermopile

and PIR sensor presented in Section 4 can be exploited to perform

localization. The principal idea behind the fusion of two sensors –

thermopile array and PIR in our system is that thermopile sensor

can be used to estimate the location in two dimensions (across

the FoV cone axis, and height of the object, when deployed on the

walls), and PIR can be used to estimate the range between the sensor

platform and the object, thus providing the location information in

the third dimension. As we intend to ensure seamless operations in

Figure 10: Flowchart of our proposed localization technique

Figure 11: Voltage - Gain curve obtained for movement with

speed 0.5m/s at 2m in front of the sensor

most indoor locations without (re-)collecting data in every room,

we employ machine learning techniques. Since we consider k-NN,

a supervised classification method, there are two steps involved

in achieving this: obtaining training data that forms the training

phase, and online computation in the deployment phase. Several

pre-processing steps are also employed to improve the accuracy,

which are explained in this section. The flowchart of our proposed

steps to localize is shown in Figure 10.

5.1 Training Phase

In this phase, we collect training data that comprises of curves

obtained from the PIR sensor, and pixel data from thermopile array.

The training data can be collected in a typical room/setting similar

to deployment and need not be the target place of deployment itself.

We tested LOCI in different rooms after collecting training data

(see Section 6).

Curvesets from PIR sensor:We gather peak to peak voltage

measurements Vp−p (represented by Equation 5) against all depen-
dent parameters - all possible amplifier gains G, various speeds
s , and at different distances d . We accomplish this by varying the

amplifier gain from the maximum to the value at which there will

not be any detection (peak to peak voltage equivalent to the noise
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level) when a person is moving at a constant speed at a given dis-

tance7. The obtained peak to peak values Vp−p for various gains
G are stitched together to form Voltage - Gain curve (V-G curve)

(see Figure 11 for an example). Similar such curves are recorded

for different people moving with speeds between 0.1m/s and 2m/s

(we assume, 2m/s is the maximum walking speed of human in

indoor scenarios for our test cases, however, this can be extended

to higher speeds if need be). Hence, a single V-G curve spans over

three dimensions with speed, distance and incident infrared energy

(different people with distinct clothing), that addresses all the vari-

ables in Equation 5. Since there is a clear relation between speed,

distance, and the output voltage generated by the thermopile array

and PIR sensor, it is possible to generate training data for some

cases by interpolating between two existing training data sets [3].

However, it is tedious to perform the same for different clothing

and people. We represent the training data from the PIR sensor as,

Vp−p = f(s ,d ,I )(G), (6)

where gain G is varied from maximum to the minimum detection

level, I represents infrared energy from different people with differ-

ent clothing. While direction can be a factor, it only influences the

phase of the signal, not the V-G curve [3]. Hence, it has not been

considered here. Moreover, the direction of the movement can be

identified using the thermopile sensor.

Datasets from thermopile array: In the case of thermopile

sensor, there are two factors - movement speed and distance - that

affect the number of pixels traversed by the moving person as

indicated by Equation 4. Hence, the dataset from thermopile array

comprises of Pixel Traversed data (P-T data) in horizontal and

vertical direction recorded for different speeds s at distances d .
Hence, each P-T data is of four dimensions. The datasets from both

PIR and thermopile sensor are recorded concurrently so that both

the datasets represent the same event. We represent the training

data from thermopile sensor as,

pt (h,v) = (i, j)(s ,d ), (7)

where pt (h,v) is the pixels traversed in horizontal and vertical

direction with i ≤ 32, and j ≤ 24. While (6) represents a curve, (7)

is represented by four numerical values.

Dataset with multiple people: The training data is also col-

lected for multiple people (tested up to 3, but can be extended)

walking randomly at different speeds, direction, and distance, sim-

ilar to that of a single person. This forms another set of PIR and

thermopile array data. Hence, there will be two sets of PIR and

thermopile training data - one for a single person, and another for

multiple people.

5.2 Experiment

Once the training data is available, localization and tracking are

performed with the following steps. To explain the steps, we con-

sider a sample case wherein a human, light bulb, and a monitor is

present in a room as shown in Figure 13b.

5.2.1 Detection of movement. There is no need to begin localization

unless presence is detected by the PIR sensor. To capture slightest

of the movements in FoV, the amplifier gain is set to the maximum.

7The speed is maintained ±0.1m/s, also measured and calibrated with a smartphone
app.

(a) Two cases with human in front of the

sensor at two different distances

(b) Test scenario

Figure 12: Estimation of virtual position

The human presence is indicated when Vp−p > 0.02, as 0.02 is the
mean noise amplitude at the highest possible gain8. Simultaneously,

snapshots of a frame from the thermopile sensor are taken periodi-

cally that forms the background frame. When there is a movement

detection in the PIR sensor, the background estimation process is

stopped. Figure 13a shows the background frame wherein light

bulbs, monitor, and a hot water kettle is detected. To save power,

thermopile can be duty-cycled when there is no activity detected.

5.2.2 Background and noise removal. Warm objects, such as lights,

can invariably be part of the room of deployment. To be robust, we

will need to eliminate these static objects as background. To this

end, we utilize the background frame captured in the previous step.

We represent the background frame Bi , j as,

Bi , j =
1

8

8∑
k=1

Fk (i, j), (8)

where i ≤ 32, and j ≤ 24, and Fk (i, j) represents a single frame
containing 768 pixels.

When a movement is detected (shown in Figure 13b), the back-

ground frame is subtracted from each thermopile frame that is being

read. Figure 13c shows the frame from thermopile corresponding

to the scenario shown in Figure 13b. The resultant background re-

moved frame is shown in Figure 13d wherein the human presence

is persistent.

Even though the static warm bodies and background noise are

removed from the data, there may be a few pixels present that do

not represent the human. This is usually white noise [25]. Such

pixels can be neutralised using two-dimensional Gaussian filter

G(x ) as,

G(i, j) =
1√
2πσ

e
− i2+j2

2σ 2 , (9)

where σ is the standard deviation, which we found out empirically

to be 1.5 in our application to get better smoothing. The filtered

frame is shown in Figure 13e.

5.2.3 Interpolation of thermopile data. To get better accuracy, the

filtered data is interpolated once in each dimension to get a frame

of size of (32 x 2) x (24 x 2) = 3072 pixels. Further interpolation leads

to false detection (see next sub section). The interpolated image is

shown in Figure 13f.

8We observed during our experiments that the amplified PIR output does not include
high-frequency noise that can trigger false detection. This may not hold always with
PIR sensors from other manufacturers. In this case, a low pass filter may be required.
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Figure 13: Steps involved in localization: (a) Background frame (b) Test scenario (c) Typical thermopile frame (d) Background

subtracted image (e) Image obtained after applying Gaussian filter (f) Interpolated image (g) Image after edge detection

5.2.4 Estimation of virtual position in one dimension. The next

step is to identify the position of the person in one dimension, i.e.,

horizontal. To perform this, the pixels forming the outline that

represents the person has to be detected. This is done using Canny

edge detector as it involves low complexity processing compared

to other edge detection techniques, and is widely applied in vari-

ous computer vision systems [26]. This is a multi-step technique

that detects edges as well as suppresses noise at the same time. Fig-

ure 13g shows the position of the human in the frame after applying

an edge detection algorithm. It should be noted that interpolating

the frame more than once resulted in multiple closed loops for a

single person. This is because of the low amplitude noise in the

background multiplies with interpolation leading to false detection.

We consider the centroid of the shape as position ’Xv ’ (red line
in the image is passing through the centroid) from Column 1 of the

frame. This position is ‘virtual’ due to the rectangular projection

that enlarges as we move farther away from the sensor. To explain

this, we consider two cases: (a) the person is nearer to the sensor

and (b) further away (see case 1 and case 2 in Figure 12a). Because

of conical FoV of the thermopile array, the projected image on it

in both the cases may be the same, i.e., the person on the frame is

’p’ pixels away from the leftmost column, as shown in Figure 12b.

Hence, to identify the true position of the person, it is necessary to

know his distance from the sensor. We estimate this distance using

the PIR sensor.

Multiple people: In the case of multiple people in the sensor

FoV, more than one closed shapes are formed after passing the

thermopile frame through Canny edge detector. The number of

closed shapes indicates the count of the people and their virtual

position is the distance between Column 1 of the frame and the

centroid of the respective closed shape.

5.2.5 Distance estimation using machine learning. The next step is

to find the distance of the people from the sensor platform. This

is where the variable gain feature of our system is utilized. We

consider two cases - one with a single person in the FoV, and the

other with multiple people.

Case 1 - Single person in the sensor FoV: As soon as a human is

detected (Section 5.2.1), the gain of the amplifier is reduced from

the maximum to the level at which the peak to peak amplitude

of the output is just above the detection level. Note that the gain

can be reduced to the minimum but the outputs for gains set be-

low the detection level contain only the noise. For each gain set

in the range between the detection level and the maximum, the

Vp−p is recorded to form a V-G curve. This has to be performed as

soon as possible (within a second or two), before the movement

speed and/or distance is changed by the person. The V-G curve

thus obtained forms the test data. Similarly, the pixels traversed

test data (P-T data) from thermopile is recorded at the same time

when the test V-G curve from PIR is computed. Now, we have a

pair of V-G curve and P-T data, and a training dataset containing

paired sets of V-G curves and P-T data. As explained in Section 5.1,

each V-G curve in PIR training dataset has its pair in P-T data in

thermopile dataset. We compare the testing V-G curve, P-T data

pair with each pair in the training dataset to obtain the closest

match. We perform the matching by employing machine learning

technique - k-nearest neighbours (k-NN) classification [6]. First,

we compute Euclidean distance between each point in testing V-G

curve and each V-G curve in training data. We consider k=7 (found

empirically) curves to be compared. Next, we compare the corre-

sponding test P-T data with the data in trained P-T dataset for the

number of pixels traversed. We consider the nearest match as the

solution, providing distance and speed. Indeed, it is possible to esti-

mate the location (once the range is estimated using PIR) with the

subsequent thermopile images using any signal processing tools

such as, least squares method, covariance of the images, or other

regression techniques. However, we chose to limit the complexity

of the signal processing by considering just the pixels traversed in

subsequent frames. Additionally, the proposed technique provided

the best accuracy and less operational overheads compared to the

least squares method.

Case 2 - Multiple people in the sensor FoV: Localizing multiple

people with PIRs as there is no way to know the count of people

or compute their horizontal position [3]. This is the first work that

realizes localizing multiple people and is done with the same com-

plexity as of the single user case. In this case, the same procedure

as in Case 1 is performed but training dataset corresponding to

multiple people is considered for machine learning. The count will

indicate which dataset to use. Now, with the distance of a (or each)

person from the sensor is known, the virtual position ‘Xv ’ (Section
5.2.4) can be used to find the true position ‘X ’ using the relation,

X = (No. of pixels covered from column 1 to Xv )

× (2 sin(110°/2) × Distance of the person from the sensor).

5.3 Height classification

To obtain a 3D localization, we should also estimate the height of

the person, once the person is localized in two dimensions. With

the estimated range (Y ) of each person from the sensor platform is

known, the height of the person can be estimated using the number

of pixels covered by the person in a thermopile frame in vertical

direction. We know that there are 24 pixels vertically, with the

thermopile sensor FoV of 75°. To obtain a right triangle, we need to

bisect this angle; then we use basic trigonometric identities (tan)

and divide by 12 (=24/2) to obtain Ph , the height per pixel at range
Y . Thus the height ‘Ph ’ of each pixel projected at distance ‘Y ’ can
be calculated as tan(75°/2)/12 * Y = 0.06394 ∗ Y m.
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(a) Experimental setup cov-

ering the area 9m x 8m

(b) FoV of the sensor plat-

form

Figure 14: Experiment setup for localization and tracking

Assuming that the person is perpendicular to the FoV cone axis,

the height H of the person is given by,

H = Ph x No. of pixels representing the person vertically, (10)

6 PERFORMANCE EVALUATION

We evaluated LOCI and the algorithm in real world scenarios. We

also considered the factors such as background noise, static warm

objects, obstacles, and more number of people, that affects the local-

ization accuracy. In this section, we first explain our experimental

setup and then present the results and observations.

6.1 Experimental Setup

The layout of the rooms is not of a major concern for our platform.

However, the number of the sensor platforms required to cover a

room may differ depending on the layout and size of the room. For

our experiments, we choose rectangular rooms. Figure 14 shows

one of our experimental setups with area of 9 x 8m2. Concentric

circles from 0.25m to 9m with the sensor platform as the center

were drawn at 0.25m increment (see Figure 14b). Points at every

0.25m were marked on the circumferences. The sensor platform

was placed at a height of 1.2m, however it can also be placed higher

if required.

The training data was collected from 20 different people with and

without wearing jackets, and different types of clothing on different

days. At different speeds from 0.2m/s to 2m/s in increments of

0.5m/s, V-G curves and corresponding P-T data were recorded in

the FoV. Several V-G curves were recorded for single person and

multiple people (up to 3) in FoV. The movement direction included

walking perpendicular to the FoV cone axis, parallel to the cone axis,

along circumference of the circles, diagonal to the FoV cone axis,

and random. using this training dataset, we tested the performance

of our algorithm at several different locations and different people.

The deployment of the sensor platform was preferred to be at the

corners of the wall so that the FoV of the sensor can cover a larger

area.

6.2 Localization accuracy

6.2.1 Single person in FoV. We tested LOCI in different rooms. The

rooms had obstacles such as table and chairs, and static warm ob-

jects such as monitor and light bulbs. The testing was performed in

the same rooms in which the training data was collected. Ten people

were asked to walk randomly, not just along the circumference, in-

side rooms at different speeds and move from one room to another.

In total, 20 recordings were done for each person. The ground truth

(a) Single person in FoV (b) Multiple people in FoV

Figure 15: CDF of absolute localization error for different

number of people

was recorded in a video and manually tabulated. Figure 15a shows

the CDF of absolute localization error with respect to the ground

truth. An undesired outlier was observed from the results that the

maximum error of 1.62m was seen at 0.5m distance from the sen-

sor platform. The reason is that at such close proximity, the entire

human body is not visible to the sensors and are out of the conical

FoV. Hence, the pixels traversed by the person and his speed cannot

be measured by the sensor accurately. As the distance increases,

the human movement is completely visible to the sensors, resulting

in better accuracy (maximum error of 0.24m at 4.5m). However, as

the person moves farther away, the person covers less number of

pixels and the error starts to increase. The best localization accuracy

obtained was 100 % in the grid resolution of 0.25m x0.25m. The best

case tracking accuracy obtained was 100% in the grid of 0.25m x

0.25m. The maximum deviation obtained was 0.6m. We observe

that 80% of the times, the error is within 35 cm.

6.2.2 Multiple people in FoV. We use the proposed algorithm to

also count people and use it to localize multiple people. We first

present the counting the results in Figure 17. In ideal cases, as

presented in the figure, we can count almost precisely. As we do

not take exhaustive steps, as it is not the main focus of this work,

cases when one person is behind the other, our counting results are

not precise. Figure 15b shows the CDF of localization error obtained

with more than one person (two and three people) in the sensor FoV.

The persons were asked to randomly move around, not just along

the circumference. From the plot we observe that 82% of the times

the localization error is within 88 cm. Compared to single person

tracking, the error in localizing multiple people is more as the signal

captured by the PIR sensor depends on the speed and distance of

the people, and all curvesets for such random walking cannot be

captured. Furthermore, a precise counting mechanism will also help

improve the accuracy. The idea we propose and demonstrate is that

first the people counting step identifies ‘x’ number of people in

the frame, then our system localizes those ‘x’ people. Indeed this

works well when there is sparse occupation in the room. However,

accuracy of people counting is less if significant portions of contour

of two or more persons overlap. In literature, to avoid this problem,

there are people counting algorithms using thermal images when

the sensor is placed on the ceiling but not when mounted on a wall.

6.3 Impact of obstacles

To analyze the impact of obstacles, we present a case that is typical

of office rooms – a plant and a chair that covers the lower part

of the person, and a board that covers upper part of the person.

The obstacles were placed 2.5m away from the sensor platform as
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(a) Before plant (b) Before plant -

thermopile frame

(c) Behind plant (d) Behind plant -

thermopile frame

(e) After plant (f) After plant -

thermopile frame

(g) Behind chair (h) Behind chair -

thermopile frame

(i) Behind board (j) Behind board -

thermopile frame

Figure 16: Experiment to analyze the impact of obstacles

Figure 17: People counting. (a)Multiple people in FoV as cap-

tured by the thermopile; (b) Outlines of people after apply-

ing the steps outlined in Section 5.2.1.

shown in Figure 16 along with the corresponding frame from the

thermopile. A person walking behind the obstacles was tracked and

localized continuously. In all the cases when the person was com-

pletely visible to the sensor, the person was tracked and localized

with almost no error (best case, 100 % accuracy). In the presence

of obstacles, such as in Figure 16d, 16h and Figure 16j, there was

an abrupt increase in the error in ‘Y’ direction, i.e., the distance

between the sensor platform and the person. This is because, the

number of pixels traversed by the person changes when the person

is behind an obstacle, misdetecting that the person is far away from

the sensor. This also affects the accuracy of height estimation. As

we observed, the highest localization error of 42 % in accuracy was

observed in the case of board, followed by the plant with 31 %, and

chair with 22 %, the least. In the case of chair, the infrared energy

from the person was not completely blocked. It is impossible to

eliminate the effects of the obstacles as they cannot be detected by

our sensors. Our system needs line of sight in order to function

properly and provide a good accuracy. If a person is completely

behind an opaque object where the body heat is blocked, the system

will not recognize the person.

6.4 Height classification accuracy

To evaluate our approach on height classification, we considered

10 people with different heights in the range 1m to 1.94m. The

height classification was performed for each person at different

distances varying between 1m and 8m in steps of 1m. Figure 18

shows the box plot of errors in height classification at different

Figure 18: Box plot showing error in height classification

distances. We observe from the figure that the average error is

8 cm and the maximum error was seen at the extremes - i.e., at

1m and 8m. It is obvious that at proximity, the complete height

of the person is not visible to the thermopile. Similarly, at farther

distances, the number of pixels covering the person decreases. For

distances between 2m to 7m, the maximum error is 14 cm.

7 DISCUSSIONS

Our system preserves privacy as we do not use a camera. While PIR

sensors are fully privacy preserving, a thermopile array with a low

resolution (such as 768 pixels) may solely provide the signature/gait

of the person, but not his/her actual image. As seen in Figure 6, just

by sensing the temperature it is impossible to identify or even get a

decent identifiable contour of the person. Hence it does not reveal

any private information.

Tracking: An additional feature of tracking users can be imple-

mented. Once localization is completed, tracking can be performed

by localizing the person in subsequent thermopile frames. From

Section 5.2.5, we get the absolute positions of people in two dimen-

sions. The trajectory of the movement can be estimated using the

subsequent localization snapshots. This scheme works well for a

single person but may result in erroneous results for more persons,

for e.g., (i) when two persons cross each other, or when they walk

towards each other, meet at a point, and turn back – in these scenar-

ios, we lose the track with respect to the particular person as the

system is privacy aware. (ii) when one person is walking behind

another – here, it is difficult to distinguish between the two.
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Device lifetime: The entire hardware is powered by a 1600mAh,

3.7 V battery embedded inside the enclosure. The idea is to charge

the battery using Photo Voltaic cells mounted on the LOCI enclosure.

A simple calculation shows that it is possible maintain the working

of LOCI. When all the subsystems are ON continuously (including

transmission), the battery would last for 11 hours (covering most

of the day time) with single charge. Considering 33 cm2 of solar

panel area at 20 % efficiency, the battery would be fully recharged

in approximately 5 hours [27] even in indoors. However, if we duty-

cycle WiFi (100ms ON every second), then the battery would last

for 43 hours and thus even continuous operation is possible.

Deployment: Our system is robust to deployment variations as

long as the the box is placed perpendicular to the ground plane

and that there is line of sight (placing at corner of walls is also

possible). Varying the height may lower the height classification

accuracy. However, the height of deployment does not affect the

accuracy of localization much. Our system is flexible enough to

mount on the ceiling or on thewall. Our system is the first to provide

such flexibility. As seen in the literature, localization, tracking, and

people counting by placing multiple thermopiles or PIRs on the

ceiling have been attempted. Our system, being compact, low power

and multi-tasked, can also be used to perform these tasks. The

evaluations that we presented are with the wall deployment. For

ceiling deployment, we can implement the algorithms presented in

[15, 17, 28] on our sensor platform.

8 CONCLUSIONS

Due to the high demand for smart buildings and smart person-

alized applications the context-awareness is highly sought after.

Localization, one of the major component of context-aware ser-

vices, which is being addressed in the last two decades. In this

paper, we addressed the need for a device-free, privacy-aware, low-

power localization in semi-public places. We custom-built a highly

miniaturized platform (5x5x2 cm3) called LOCI that could be easily

deployed on a wall. We addressed many challenges such as a single

system to localize as well as estimate height in 9m x 8m room.

Using sensor data from PIR and thermopile jointly we showed that

we can accurately localize and track persons in real-time. LOCI uses

80mW for estimating the location and height. Using thermopile

we removed the background hot objects and ambient heat noise.

Comparing with the literature, LOCI is agnostic to the clothes worn.

In this work, we focused on joint height estimation and localization

with a single platform. We proposed many novel techniques such

as variable gain for creating spatial diversity gain with a single PIR

sensor. LOCI achieves 50% of the times <22 cm accuracy and 80%

of the times <35 cm. By showing the best-case location accuracy

of 12.5 cm, we outperform the state of the art location accuracy by

1 cm. The height estimation accuracy is within 8 cm in majority

cases. The next step is to make the system robust and provide easy

installation and usage methods including other services.
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