
1

DaRe: Data Recovery through Application Layer
Coding for LoRaWAN

P. J. Marcelis, N. Kouvelas, Student Member, IEEE , V. S. Rao, Member, IEEE , R. V. Prasad, Senior
Member, IEEE

F

Abstract—Long-Range Wide-Area Network (LoRaWAN) is an energy-
efficient and inexpensive networking technology that is rapidly being
adopted for many Internet-of-Things applications. In this study, we
perform extensive measurements on a new LoRaWAN deployment to
characterise the Spatio-temporal properties of the LoRaWAN channel.
Our experiments reveal that LoRaWAN frames are mostly lost due to the
channel effects, which are adverse when the end-devices are mobile.
The frame losses are up to 70%, which can be bursty for both mobile
and stationary scenarios.

Frame losses result in data losses since the frames are transmitted
only once in the basic configuration. To reduce the data losses in
LoRaWAN, we design a novel coding scheme for data recovery called
DaRe that works on the application layer. DaRe combines techniques
from convolutional and fountain codes.

By implementing DaRe, we show that 99% of the data can be
recovered with a code rate of 1/2 when the frame loss is up to 40%.
Compared to the repetition coding scheme, DaRe provides 21% higher
data recovery and can save up to 42% of the energy consumed on a
transmission for 10-byte data units. We also show that DaRe provides
better resilience to bursty frame losses.

Index Terms—LoRaWAN, LPWAN, network measurements, forward
error correction, data recovery, erasure coding, application layer coding,
fountain codes, convolutional codes

1 INTRODUCTION

The miniaturisation of computing and communication de-
vices has led to an exponential increase in the number of
sensors used in our daily lives in recent years. With the rise
and projected scale of the Internet of Things (IoT), many
technological solutions are proposed for various smart ap-
plications such as smart street lighting, smart cities, and
infrastructure monitoring [2]. Many early adopters of IoT
used short-range radio technologies for their sensors that
required multiple hops before reaching the Internet. How-
ever, recent advances have enabled a simpler technological
solution called Low Power Wide Area Networks (LPWAN)

This article was presented in part at The 2nd ACM/IEEE International
Conference on Internet-of-Things Design and Implementation [1].
P. J. Marcelis, N. Kouvelas, and R. V. Prasad are with the Embedded
and Networked Systems group of the Faculty of Electrical Engineer-
ing, Mathematics and Computer Science, Delft University of Technol-
ogy, The Netherlands. V. S. Rao is now with Cognizant Technology Solu-
tions, The Netherlands. E-mail: pjmarcelis@gmail.com, and {N.Kouvelas,
R.R.VenkateshaPrasad}@tudelft.nl.
Manuscript received XXXX; revised XXXX.

Fig. 1: Schematic overview of a LoRaWAN network.

that offer low energy communication over several kilome-
ters, allowing sensors to send data to a central server over
just a few hops.

LoRaWAN (Long Range Wide Area Network) is one of
the several competing LPWAN technologies with, amongst
others, SigFox, NB-IoT, and Weightless [3]. LoRaWAN has
been the most successful of these technologies in providing
an easily accessible LPWAN [4]. The open LoRa Alliance [5]
is developing this protocol. In comparison with other LP-
WAN technologies, LoRaWAN claims to provide an inex-
pensive, secure, and power-efficient communication method
for applications with small end-devices that have to send
small amounts of data at large time intervals. Therefore, it is
essential to study LoRaWAN and characterise it in practical
deployment.

LoRaWAN is based on the LoRa physical layer, which
describes a chirp spread spectrum modulation. This modu-
lation technique is said to give LoRa an excellent resilience
to interference, multipath and Doppler effects [6], [7]. The
topology of a LoRaWAN deployment is shown in Figure 1.
A LoRaWAN frame can be received by multiple gateways
that forward the frame to a central LoRaWAN network
server. The network server checks the device policy, de-
crypts the frame payload, removes duplicates, and forwards
the data to the corresponding application server.

Since LoRaWAN communication takes place over long
distances, frames can be lost due to propagation and other
physical phenomena such as shadowing, reflection, and
scattering due to urban clutter. Frame loss leads to a loss
in data. Since an IoT application is often data-driven, the
data loss must be minimal, so it is desired to recover the lost
data. Several constraints need to be met for a LoRaWAN
data recovery mechanism:
1) LoRaWAN targets to serve up to 15,000 devices per
gateway. Automatic Repeat Request (ARQ) with acknowl-
edgment (ACK) mechanism is an option in the LoRaWAN

2

protocol [8], [9]. However, ACK requires downlink com-
munication and also introduces communication overheads.
With a large number of devices in a LoRaWAN network,
the transmission of ACKs for each packet seems improbable
due to the duty-cycle limits (1% for gateways in Europe),
and also that the gateways are typically half-duplex, which
will lead to frame losses in the uplink communication [10].
Hence, ACKs are not a suitable method.
2) The solution must not need any change in the gateways
since such a solution is expensive for existing deployments.
3) The solution must be able to deal with bursty frame
losses, as we show in Section 5, that is, due to the unreliable
LoRaWAN channel.

Considering these constraints, we focus our research on
a technique that should operate at the application layer
such that the solution can work with already deployed
LoRaWAN networks. Therefore, we aim to find the best
method for increasing data reception while trading off en-
ergy consumption. We identify the main research question
as follows:

What application layer solution can provide data recovery
from lost LoRaWAN frames with minimal additional energy
consumption?

To address this question, we sub-divide it into the fol-
lowing questions:

1) How much frame loss can be expected in a LoRaWAN
network?
2) Which coding method would guarantee sufficient data
recovery for the given requirements?
3) What performance (in terms of data recovery ratio and
latency) can be expected from the implementation of this
coding method?

We address these questions in this article. This extended
article includes a more in-depth discussion on implemen-
tation, choice of the optimal degree, and new results with
respect to bursty channels that were not part of the con-
ference version of this paper. Specifically, our contributions
through this work are as follows:
1) To study and characterise frame loss, we perform real-
world measurements with a LoRaWAN network. We have
collected data extensively (around 23,000 frames) over sev-
eral days in stationary and mobile scenarios. Since the
network was still in development, the LoRaWAN services
were not yet open for the general public. This allowed us
to do a first of its kind measurement of the LoRaWAN
deployment in an almost collision-free network. To the best
of our knowledge, we are the first to perform such a large-
scale measurement of a LoRaWAN network, which will be
hard to do in the future.
2) We characterise both spatial (i.e., frame loss over distance)
and temporal (i.e., burstiness of frame loss) properties of
the channel using the datasets. With the collected data, we
observe that there is a significant amount of frame loss
that occurs as the end-device moves farther away from a
gateway. We observe a loss of up to 53% when the end-
device is around 6 km away from the nearest gateway. We
find that the channel can be bursty even when the end-
device is stationary.
3) To recover data from the lost frames, we propose a novel
application layer coding technique called DaRe, based on

convolutional and fountain codes. The need for such a
scheme is further motivated by the ALOHA-type medium
access technique employed in LoRaWAN, which will in-
evitably cause many collisions leading to frame loss. DaRe
does not intend to recover the lost frames, but it enables
the recovery of the data from lost frames using forward
error correction on the application level. We use an algebraic
framework to describe and simulate the coding technique.
Since the coding method will be implemented on embed-
ded devices with low computational capabilities, we design
DaRe to be of low complexity.
4) We develop an implementation of DaRe for LoRaWAN.
We evaluate this implementation by (i) emulating results
for theoretical channels, (ii) emulating DaRe on the datasets
collected during the network measurements, and (iii) per-
forming frame and data loss measurements with a device
running DaRe. DaRe can recover up to 99% of the data
when up to 40% frame loss with a code rate of 1/2. With
a code rate of 1/5, we can recover 99% of the data when
up to 68% frames are lost. Furthermore, we show that the
solution has minimal energy overhead compared to other
low-complexity solutions.

The rest of the paper is organised as follows. In Sec-
tion 2, existing research on LoRaWAN and erasure coding is
discussed. In Section 3 a brief introduction on LoRaWAN
is given. The method of data collection is explained in
Section 4. An overview of the frame loss characterisation
of LoRaWAN is provided in Section 5. In Section 6, DaRe
and the algebraical framework is introduced. The perfor-
mance of DaRe is assessed through numerical evaluation
in Section 7. In Section 8, an implementation of DaRe is
proposed and in Section 9, DaRe is evaluated. We conclude
in Section 10.

2 RELATED WORK

In this section, we briefly discuss existing studies on LoRa,
LoRaWAN, and erasure coding to position our work.

2.1 LoRaWAN
Bor et al. [3] has done extensive research on the various
IoT radios, and they conclude that LoRa has longer com-
munication ranges and other interesting features over other
solutions, such as SigFox and Weightless. Aref et al. [11] per-
formed free space range measurements with LoRa by testing
different physical layer configurations. They concluded the
Semtech SX127x LoRa radio family shows significant bene-
fits for range, robustness, and battery lifetime compared to
competing technologies.

Centenaro et al. [4] tested the coverage range of Lo-
RaWAN in an urban setting (in Padova, Italy). They per-
formed stress tests by putting devices in elevators and
other challenging locations, and LoRa passed all their tests.
They found a nominal coverage range of 1.2 km for indoor
environments. Petäjäjärvi et al. [12] looked into the coverage
range of LoRaWAN in indoor environments as well. In
their test setup, a minimum of 96% frames was received
indoors for distances up to 420 m. They also looked into the
range of LoRaWAN outdoors [13] and observed a maximum
communication range of 15 km on the ground, and close to
30 km on water.

3

Mikhaylov et al. [14] researched the capacity and scalabil-
ity of LoRaWAN, analysing the limits of device and gateway
throughput, giving the first insights on potential LoRaWAN
network performance. They concluded that a LoRaWAN
network shows high coverage and satisfactory scalability
under low uplink traffic. The drawbacks were low reliability
and the potentially poor performance for an increasing load.

Augustin et al. [15] did a comprehensive study on the
properties of LoRa and LoRaWAN, finding it suitable for
low-power, low-throughput, and long-range networks. In
simulations on collision rates, they stated that acknowl-
edged messages significantly reduce the successful through-
put in a LoRaWAN network and should, therefore, be
avoided.

In the existing studies, LoRaWAN is considered a good
solution for an LPWAN in general. However, the reduced
communication reliability for an increasing number of de-
vices is identified as a challenge. The conducted measure-
ments in the literature involve only setups with a single
device, or the spatial properties of a single gateway [16], [4],
[13], [17]. The primary goal of Petajajarvi et al.’s work [13]
was to find the maximum transmission range with respect
to one gateway. They also perform a frame loss characterisa-
tion but do not study the effect of mobility or the temporal
properties of the channel. The work of Rathod et al. [17]
comprises of preliminary experiments inside the campus
for short ranges. Again, they do not consider mobility or
temporal properties of the channel. On the behaviour of
LoRaWAN networks, only simulations have been done [15],
[14]. In this article, measurements are presented on a Lo-
RaWAN network with multiple gateways. Also, we conduct
the first analysis of LoRaWAN communication with frame
loss of bursty nature.

2.2 Erasure Coding
Erasure channels characterise and model communication
channels, describing how transmitted messages are either
received or erased (lost). A specific type of communication
error is the erasure. While a simple error is a misinterpreted
piece of information, erasure is a lost piece of information.
A channel in which parts of information are erased is called
an erasure channel. An erasure channel is considered as
binary-based or packet-based, depending on what is erased
(bits or frames). Since the proper protocol data unit name
for LoRaWAN is a frame, LoRaWAN is a frame erasure
channel. In error channels, messages are altered, but the
frames are still received, unlike in erasure channels. For
the sake of readability, we shall refer to erasure as frame
loss and erasure channel as frame loss channel henceforth.

In communication theory, majorly, two methods exist to
deal with frame losses: Automatic Repeat reQuest (ARQ)
and Forward Error Correction (FEC) [18]. The former em-
ploys error detection schemes in communication but relies
on frame retransmission to correct errors, which is inefficient
because of data overhead and more collisions. In FEC,
redundant data is transmitted that helps in detecting and
correcting a limited number of errors. An FEC method can
be used to add robustness in LoRaWAN communication.

Erasure/frame loss coding deals with frame loss chan-
nels. We also find frame loss coding in distributed data stor-
age, where information is stored redundantly over different

disks or servers. This allows the loss of storage media while
preventing data loss. In applications communicating over
packet-switched networks, like media streaming [19], frame
loss coding is employed to handle packet loss without data
loss.

The earliest erasure codes are Reed-Solomon codes [20],
introduced in 1960. Reed-Solomon (RS) codes are, for in-
stance, found on CD-ROMs, to withstand physical damage
to the disk. RS-codes, however, requires complex compu-
tations and are resource expensive [21]. Thus, they are not
suitable for LoRaWAN.

In 1962, Gallagher developed the concept of Low-density
parity-check codes (LDPC codes) [22]. With LDPC codes,
data blocks are supplemented with parity bits before trans-
mission to enable error/frame loss detection and correc-
tion. LDPC codes are, for instance, used in the current
DVB-S2 standard [23]. RS-codes and LDPC codes provide
error/frame loss detection and correction. In LoRaWAN,
frame loss detection is done separately from correction.

2.2.1 Fountain Codes
In Fountain codes, error detection is presumed given. Thus,
the coding scheme is designed entirely for erasure correc-
tion. In fountain codes, codewords are calculated as linear
combinations of data fragments [24]. The principle of a
fountain code is that any random combination of sufficient
codewords can be used to decode the information [21].

Fountain codes were introduced by Luby [25]. Examples
of fountain codes are LT-codes [26], Raptor codes [27] and
Online codes [28]. In fountain codes, the idea of producing
an infinite number of code words, instead of a fixed number,
was introduced (rateless codes). Fountain codes are Block
codes , like LDPC codes. The mathematical principles of
fountain codes can be used to recover data loss in Lo-
RaWAN. The content of frames can be viewed as data
fragments. Linear combinations of these data fragments can
be transmitted as well to provide redundant information.
The redundant information needs to be spread over multiple
LoRaWAN frames.

2.2.2 Convolutional Codes
An alternative to Block codes is the convolutional codes,
which encode with a sliding window. This means the
dataset used to calculate codewords changes over time,
while for a block code the dataset is constant. An example
of a convolutional code is the class of Turbo codes [29].
Turbo codes are iterative, with messages being sent along
with parity bits computed in a recursive manner.

In our application, we have periodically generated data.
Using a block code (e.g., fountain codes), we would have to
wait for some data to be generated before coding could take
place. On the other hand, in convolutional codes, coding can
already be done from the first piece of generated data.

The principle of a sliding window can be applied
on fountain codes, making a convolutional-fountain code.
There are already some works on combining fountain codes
and convolutional codes [30], [31]. Also, there has been
research done on applying fountain codes in a windowed
manner [32]. These existing studies do not apply foun-
tain codes on a sliding window in a convolutional man-
ner. A convolutional fountain code would provide a suit-

4

able coding method for our problem statement. Sandell
et al. [33] also studied the combination of convolutional-
fountain codes for LoRaWAN, in which they analysed our
work on DaRe [1] focusing on the effect of the code rate on
the system performance.

2.2.3 Forward Error Correction in other IoT Technologies
IoT communication technologies, involving Bluetooth and
IEEE 802.15.4 devices, utilize FEC in combination with
interleaving for data recovery. In 802.15.4 networks, the end-
devices employ FEC mainly to tackle the interference of
powerful Wi-Fi signals [34], [35], [36]. Furthermore, they em-
ploy FEC to recover corrupted bits/data from erroneously
received frames. FEC and ARQ mechanisms are also used by
Bluetooth separately or in hybrid schemes [37], [38], again
to recover corrupted bits from frames received with errors.

These works do not target to recover data but frames.
There are two main differences between the works em-
ployed in 802.15.4 and Bluetooth networks and our consid-
eration in LoRaWAN: (a) The channels are bi-directional,
and ARQ with ACKs are commonly used; and (b) FEC is
mostly used to avoid ARQ through the recovery of frames
and be energy-efficient. However, the lack of a feedback
channel in LoRaWAN, due to the regulations, allows us
with one choice to increase reliability. Furthermore, as entire
frames are lost in the channel (Section 5.1), adding more
redundant bits in a frame will not help, which is already
being done by LoRaWAN specifications. Hence, we focus
on application layer coding for LoRaWAN.

3 AN OVERVIEW OF LORAWAN
In this section, we briefly introduce LoRaWAN. A Lo-
RaWAN network has a star of stars topology: the data
transmitted by the end-devices may be received by one or
more gateways, which in turn connect directly to a central
network server. A schematic of this network topology is
shown in Figure 1. The network server removes duplicate
messages and forwards them to an application server.

LoRaWAN operates in the license-free industrial, scien-
tific, and medical (ISM) band. The 915 MHz, and 868 MHz
bands are used in the USA and Europe, respectively. The
band in Europe has certain regulations [39]. We refer the
reader to [4] for details on the listen-before-talk option
and the regulations in the rest of the world. In Europe, a
maximum transmit power of 14 dBm is allowed on the end-
devices when LoRa modulation is used, and the maximum
allowed transmit duty cycle is 1% (up to 10% on one
channel), which applies to the gateways as well.

Devices communicating over LoRaWAN have three op-
erating classes –A, B, and C– with increasing order of
downlink communication (i.e., from a gateway to a device).
Class A is the default class of operation. A device in this
class adopts an ALOHA-like scheme to send a LoRaWAN
frame. After a Class A device has transmitted a frame,
it goes into ‘listening’ mode for two-time slots. Only in
these time slots can the device receive data. Class B extends
Class A by adding extra receiving-slots at preset times. The
‘extra listening’ duration is specified by the gateway using
beacon frames that are transmitted to the end-device. A
Class C device will always be in receiving mode unless it is

Fig. 2: Gateways are deployed such that the maximum
distance for an end-device from its closest gateway is 7.5 km.

transmitting. Class A is the most preferred operating class
for battery-powered devices since it has the lowest energy
consumption.

A LoRaWAN frame is transmitted with a certain spread-
ing factor (SF). The spreading factor ranges from SF7 to
SF12, expressing the number of chirps used to encode a
symbol (i.e., 2SFchips = 1 symbol). A higher spreading
factor has a longer transmission time and lower data rates
but will give a longer range. LoRaWAN supports the au-
tomatic setting of the spreading factor with Adaptive Data
Rate (ADR). The network server monitors the quality of the
uplink communication and informs the device on the best
spreading factor to use.

The LoRa physical layer employs a soft hamming block
error-correcting code with a code rate 4/5 to reduce bit
errors. However, this does not eliminate frame loss com-
pletely. The reception of a LoRaWAN frame relies primarily
on detecting the preamble of a frame [40]. If the receiver
does not detect the preamble, the complete frame is not re-
ceived. This makes the LoRaWAN communication channel
a frame loss/erasure channel. Frames are either completely
received, or not received at all.

LoRaWAN packets also offer the option of a header with
a 16-bit cyclic redundancy check (CRC) for error detection.
Message-integrity is preserved employing a 32-bit message
integrity code (MIC). This MIC also guarantees message au-
thenticity, since it is a cipher-based message authentication
code (CMAC), calculated with a device-specific key.

4 SETUP AND DATA COLLECTION SCENARIOS

In this section, we describe our data collection setup, sce-
narios, method and the datasets collected for the analysis of
the LoRaWAN communication channel.

4.1 Measurement Setup
4.1.1 Network
The LoRaWAN network used for our research was in devel-
opment, so there were only a handful of devices transmit-
ting data on the network. Therefore, we consider frame loss
as a result of collisions to be negligible. Furthermore, the
configuration of the network was still being improved and
the gateways were positioned only for (close to) line-of-sight
coverage.

While the measurement devices adhered to the duty
cycle limits, they were exempted from any usage limits on

5

Fig. 3: The data collection device. A Sodaq Mbili Rev. 4 [41]
with EMB-LR1272E LoRaBee module, DHT11 thermometer
and GY-NEO6MV2 GPS module.

the number of messages. We use Thingpark Wireless Log-
ger1 to log the LoRaWAN frames received by the network
server. Wireless Logger stores payload and metadata of each
received frame. As explained before, multiple gateways can
receive a single frame. Unfortunately, only up to three re-
ceiving gateways per frame are shown in the logger. That is,
only the three gateways that received the LoRaWAN frame
with the most reliable received signal strength indicator
(RSSI) can be identified in the logs. This complicates a per
gateway analysis of frame reception.

All the gateways in the LoRaWAN network are situated
at an average height of 27 m. The antennas have a gain of
11 dBi. The gateways are positioned on an average of 8 km
apart. Furthermore, the maximum distance between an end-
device and its closest gateway is 7.5 km as the gateways are
carefully positioned, as shown in Figure 2.

4.1.2 End-Device
The end-device used for data acquisition is a Sodaq Mbili
Rev. 4 [41], shown in Figure 3. The antenna has a gain of
2 dBi2. The device operates in Class A.

To characterise the LoRaWAN communication channel,
spatio-temporally, measurements were done at multiple lo-
cations. To perform the analysis after data collection, we
need the location from which each frame was transmitted.
A first version of the device did not include a GPS module,
so the location of every transmitted LoRaWAN frame was
matched to a GPS track created with the mobile application
Strava3 using timestamps. The final version of the device
included a GPS module, so the coordinates were sent in the
frame payload itself.

The LoRaBee module was a separate component and
was connected to the Sodaq Mbili with a serial interface. The
serial interface was used to transmit data, retrieve the re-
ceived data, and to set MAC parameters. The sub-band and
bandwidth were set to comply with ETSI standards [42]. The
bandwidth was 125 kHz for all transmissions. Furthermore,
we set the transmission power to the maximum allowed
value of +14 dBm.

1. http://www.thingpark.com/
2. A gain of 2 dBi antenna is within the European regulations,

which states that the maximum effective radiated power should be
14 dBm [42], [43]

3. https://www.strava.com/

The SF is controlled by the ADR mechanism since the
device does not support a fixed value. However, the most
significant part of the frames (∼95%) was transmitted using
SF12. Only these frames have been used for data analysis.

The SF and the coordinates of the unsuccessful frames
were interpolated on a straight line between the neighbour-
ing received frames. The SF for the missing frames was
taken to be the lowest SF of the neighbouring received
frames.

4.2 Data Collection Scenarios

We identify two scenarios for our data collection: data
from stationary locations and data when the end-device is
moving (mobile data). All the data was collected with the
end-devices placed next to a window or outdoors.

4.2.1 Stationary data

The stationary datasets were generated with the end-devices
transmitting mostly at every 10 minutes or 15 minutes. A
small part of the dataset contains frames transmitting at 15 s
interval. During measurements, the devices were in a fixed
position and orientation. The stationary dataset (∼18,000
frames) was collected at different houses (locations) in the
city of Delft, The Netherlands, which forms a typical ur-
ban scenario. While the gateways were positioned to be
for LoS coverage, the urban clutter cannot guarantee LoS
transmissions at all locations. The set of rich data captures
the complex propagation environment in urban scenarios,
including non-line of sight transmissions.

4.2.2 Mobile data

The mobile datasets were collected using the device shown
in Figure 3. During data collection, the device was battery
powered. Measures were taken to ensure that the battery
was sufficiently charged and operational during the entire
duration of data collection. For generating mobile data, we
chose two methods to make it mobile: by bicycle (bike) and
by car.

A bike has been ridden with an average speed of
22 km/h for approximately 300 km in total. The farthest
distance to the closest gateway is 7.5 km, and the average
distance to the closest gateway is 3.2 km. The end-device
was also taken in a car for approximately 350 km in total.
The average speed was around 80 km/h (mainly on high-
ways). The selected terrain was flat. Among the 5,000 Lo-
RaWAN frames contained in the mobile data, approximately
80% were transmitted from rural areas and the rest were
sent from an urban area which included non-line of sight
transmissions. The datasets were generated with the end-
devices transmitting every 15 s.

5 FRAME LOSS CHARACTERISATION

Before we present our coding scheme we first provide an
overview of the analysis of the datasets in order to char-
acterise the frame losses. A more detailed analysis of the
channel model and the frame losses can be found in [1].
Note that the characterisation presented here also holds for
class B and C end-devices for the uplink channel.

6

0 5 10 15 20

Distance to gateway [km]

0

0.2

0.4

0.6

0.8

1

F
R

R

Bike

Car

Stationary

Fig. 4: Frame Reception Ratio (FRR) as function of the dis-
tance to a gateway for bicycle, car and stationary datasets.

5.1 Frame Loss over Distance

We use the bike dataset to determine the parameters of the
path-loss channel model with shadowing [44] between the
sender (end-device) and the receiver (gateway), since the
dataset provides measurement points at different distances.
The Doppler effect is negligible because of the relatively
low speed. Since the bike data is collected from all different
routes, we can negate the effect of permanent shadowing
and other effects due to surroundings.

Using the analyses of the dataset as in [1], we estimate
the path-loss exponent to be 2.71, and the shadowing fol-
lows the log-normal distribution with a mean of 0.56 and
standard deviation of 7.11. With these parameters and the
receiver sensitivity of the gateway (-137 dBm), we can esti-
mate the cell outage probability [44]. The outage probability
for the farthest distance of 7.5 km is found to be 0.004,
indicating that the coverage of the current deployment is
sufficient. While the frame loss characteristics would be
typical as reported here, the path-loss exponent and the
shadowing distribution may be affected by several factors
including gateway location, gateway height, antenna gains,
and terrain. A method to determine optimal deployment
using satellite imagery has been proposed in [45].

To characterise the frame loss or erasure of frames, due
to the channel effects, we analyse the data from all our
datasets. We first consider frame loss as a function of the
distance between the end-device and the gateway. To ac-
count for location estimation inaccuracies, we consider bins
of 1.5 km in which we calculate the average frame reception
ratio (FRR). Figure 4 shows the FRR with respect to the
distance of the end-device from the gateway. It is evident
from the figure that more frames are lost as the distance
to the gateway increases. While the outage probability is
quite low at 7.5 km, the frame loss is significant at that
distance: almost 70% of the frames are lost around that
distance. This seems counter-intuitive as the coverage was
found to good theoretically. This is due to the fact that
the theoretical calculations were based on a simple path-
loss model and not considering the complex propagation
environment. We can observe another interesting aspect
in this figure because the datasets are collected at different
moving speeds. The dynamics of the channel is pronounced
when the end-devices are mobile due to varying channel
fading and multipath fading, which is the main reason
for the increased losses as the end-devices move at higher
speeds, especially for higher SFs (due to longer airtimes).

Stationary Mobile
0.4

0.5

0.6

0.7

0.8

0.9

1

H
u
rs

t
e
x
p
o
n
e
n
t

Fig. 5: Box plot quantifying the burstiness in the two differ-
ent dataset types using the Hurst exponent.

Finding #1: Frame loss is quite significant in LoRaWAN
despite an almost collision-free channel.

Finding #2: Frame losses are higher due to the dynamics
of the channel when the end-devices move at high speeds.

5.2 Burstiness

We analyse the frame loss pattern over time in LoRaWAN.
While some datasets exhibited uniformly random frame
losses, other datasets showed more consecutive erasures
than to the expectation for an independent and identically
distributed (IID) frame loss probability. This prompted us
to look at the burstiness of the frame losses. Burstiness
is a temporal property of the channel. The channel shifts
between poor and good states with a correlation between
the frame delivery events. This results in frame losses being
closer to each other for a bursty data stream compared to a
non-bursty data stream. While burstiness in wireless links
has been studied extensively, a metric to express burstiness
is not standardised. We take a simple and effective measure
to quantify the burstiness, using the Hurst exponent, or the
self-similarity parameter, H [46].

This exponent is used to reveal self-similar streams of
data, i.e., data patterns over smaller intervals, which are also
present over longer intervals. Considering a binary time-
series, where a 1 corresponds to a received frame, and a 0
to a lost frame, data sets with burstiness will show lower
self-similarity than data sets without burstiness, for which
H ∼ 0.5. The burstiness increases with any increase in the
Hurst exponent, and if H > 0.6, a dataset is characterised
as bursty. In Figure 5, a box plot of the calculated values
for the Hurst exponent for the different types of datasets
(stationary and mobile) is shown.

We observe that the mobile data sets show more bursti-
ness on average (Hbike = 0.6) and higher deviation than the
stationary data sets (Hstat = 0.56). Burstiness in the mobile
dataset is due to mobility, while burstiness in stationary
datasets is the result of channel effects.

Finding #3: LoRaWAN channel is also prone to lose
frames in bursts due to channel effects and mobility.

For the design of the data recovery method, it is essential
to know if burstiness occurs. When burstiness is present, the

7

data recovery method should spread redundant information
more over time.

5.3 Modelling the Frame Loss Channel
Around half of our datasets show uniformly distributed
frame loss. So the frame loss probability of a frame can
be considered to be IID. A valid channel model for these
datasets is a Bernoulli channel model with frame loss
probability pe. We define this as the default LoRaWAN
communication channel.

For the datasets that show burstiness, we use the Gilbert
Elliot model [47], [48], [49]. The Gilbert Elliot model is based
on a Markov chain with two states: a good state where there
is no frame loss and a bad state in which a frame is lost
with probability ploss. The probability of transition from the
good state to the bad state is expressed with pGB , and the
probability of transition from the bad state to the good state
is expressed with pBG. The channel model has an average
frame loss probability pe that can be calculated with pe =
ploss/(1 + pBG

pGB
).

The parameters of the model used to simulate the be-
haviour of this dataset can be determined empirically. For
example, the empirically calculated Gilbert Elliot model
parameters that describe the burstiness of the car dataset
are (pGB , pBG, ploss) = (0.25, 0.21, 0.85).

6 DARE: DATA RECOVERY IN LORAWAN
DaRe is an application layer coding technique, which is a
combination of both convolutional and fountain codes. To
the best of our knowledge (as mentioned in Sec. 2), DaRe is
the first such coding technique. DaRe can be applied to any
application transmitting over a lossy transmission medium,
however, with some fine-tuning. DaRe has been tuned for
the unique properties of LoRaWAN. The main constraints
are due to the packet size limitations imposed by the SFs
(specifically for SF12), and the regulations on duty cycle.

Most applications of LoRaWAN use the class A mode in
which an end-device transmits its sensor data periodically
but infrequently using an ALOHA-like protocol. We refer to
the sensor data that needs to be transmitted as a data unit.
This data is at the heart of the IoT applications. Since frame
loss leads to data loss, frame loss must be minimised.

In the previous section, we have demonstrated that the
frames transmitted over LoRaWAN can experience signifi-
cant frame loss. As mentioned in Sec. 1, frame ARQ mecha-
nisms using acknowledgement are possible over LoRaWAN,
but cannot be employed for all frames. Gateways can only
acknowledge a limited number of frames as the gateways
must obey the ISM-band duty cycle limit. Even if a work-
around is used by employing other channels, retransmis-
sions are still not scalable since the frames may collide in the
uplink with the increasing number of devices. Furthermore,
acknowledgement and ARQ mechanisms increase the en-
ergy consumption for the end-devices, which is undesirable.

This necessitates a solution to minimise data loss due
to frame loss without employing acknowledgements. As
mentioned in Sec. 1, there are several requirements for such
a solution: (a) No changes to the LoRaWAN specifications
or network should be needed in order to operate with an al-
ready deployed infrastructure; (b) increase in transmissions

Fig. 6: A schematic explanation of DaRe. In this example,
R=1/2, W=4, ∆=0.75. The code words for the frame at time
instance t = 8 are calculated by concatenating the data units
from t = 8 and a parity check of previous data units from
t = 4, 5, 7.

must be minimal so as to be scalable and have minimal
overhead in terms of energy; and (c) the solution must be
of low complexity at the transmitting side since the end-
device is an embedded device with limited computational
and energy capabilities.

To this end, we propose a coding technique, called
DaRe (Data Recovery), that borrows from both fountain and
convolutional coding techniques, and operates at the appli-
cation layer. For data recovery, an existing set of data units
should be extended with redundant information, such that
the original set of data units can be recovered even if only a
subset of the transmitted data units is received. LoRaWAN
operates on a packet frame loss channel, i.e., frames are
either received or wholly lost. Thus, DaRe must spread the
redundant information from the data in one frame across
other frames. Thus, a lost frame can be recovered using
redundant information from other frames.

The redundant information included in a frame is a
parity check of randomly selected previous data units. A
parity check is a vector of parity bits for each bit position
in the data units. Traditional fountain codes perform the
coding over a data block. But since we want the redundant
information to be calculated in a convolutional manner, we
use a sliding window approach with a finite window.

Since we intend to keep the complexity low for em-
bedded devices, we work only with Galois Field 2 (GF(2)).
This implies that the multiplications and additions are bit-
wise ‘AND’ and ‘XOR’ operations, respectively. A schematic
explanation of determining the frame payload using DaRe
is shown in Figure 6. The coding parameters are explained
more in detail in the following section.

6.1 Coding Parameters

There are three parameters in the context of DaRe: code rate
(R), window size (W) and degree (∆). We define them and
discuss their influence on the coding scheme in this section.

6.1.1 Code rate

The code rate (R) is the ratio between the size of origi-
nal data and the size of the data actually transmitted. It
expresses the amount of redundant information added in
transmission, and is calculated with the following equation:

8

R =
number of data bytes

number of transmitted data bytes
. (1)

If we have data units of size y bytes, the size of the frame
content after adding the redundant information will be y/R.
A lower valued code rate is expected to provide higher data
recovery percentages.

If the size of the data units, y, is one byte, the code rate
can only be of the form 1/(y + x), where x is the number
of redundant data units appended to the frame. This is
because the smallest unit that can be easily processed on
an embedded device is one byte. If y is more than one byte,
data units can be split into k fragments if y is divisible by
k. Then the code rate can be of the form k/(k + x). In this
case the calculation of the parity checks is done at the data
fragment level instead of data unit level. This allows for
a higher number of code rate values, including code rates
higher than 1/2, making the transmitted frames smaller
with some redundancy.

Since the code rate determines the size of a transmitted
frame, the code rate is limited by the maximum possible size
of the frame. In LoRaWAN, the maximum allowed frame
content is 51 bytes at SF12 and 242 bytes at SF7. The other
SFs have a size between these two extreme values.

6.1.2 Window Size
The window size (W) expresses the number of previous
data units to consider for calculating the redundant infor-
mation. The window size is limited by the available memory
on the end-device. Larger window size will spread redun-
dancy for a single data unit over more frames, increasing
the recovery probability of this data unit. Larger window
size will also increase the maximum length of consecutive
frame losses that can be recovered. However, increasing the
window size will also increase the recovery delay of the data
unit. Theoretically, there is no limitation on the maximum
window size. Considering an infinite window size and an
infinite number of messages received, all the lost data can
be recovered as a sufficient number of parity bits for all
frames would have been received.

6.1.3 Degree
The degree (∆) expresses the relative number of previous
data units from the selected window to include in the parity
check. For example, if W=10 and ∆=0.5, there will be 5 data
units included in a parity check.

Although specific fountain code implementations pro-
pose a special degree distribution, all these implementations
are patented [24], [21]. Thus, for DaRe we choose the degree
to be constant over different parity checks.

The exact combination of data units in a parity check
is picked randomly for each parity check. This is done to
eliminate the influence of certain patterns in the selection.
This leads to an average result for all different sequences of
exact combinations.

We can compute an optimal value for the degree ∆ for
a given window size W . The optimal value implies there
exists a value of ∆ that offers the best recovery results for
given window size. By using this optimal value of ∆ in
DaRe, we only need to input two parameters for coding: the

0 0.5 1

Degree

0

0.2

0.4

0.6

0.8

1

D
R

R

etc..

p
e
 = 0.8

p
e
 = 0.9

(a)

0 20 40 60 80

Window size

0

0.2

0.4

0.6

0.8

1

O
p
ti
m

a
l
d
e
g
re

e

R = 1/2

R = 1/3

Best fit

Implementation

(b)

Fig. 7: Determining optimal degree value ∆optimal. (a) DRR
for R=1/2 and W=10 for different frame loss probabilities
when varying ∆. The black crosses mark the lowest values
for ∆ that give the maximal DRR for different frame loss
probabilities. The largest of these values is ∆optimal=0.4.
(b) ∆optimal for different values for R and W . There is an
exponential relation between ∆optimal and W . A relation
with rounded-off fixed point coefficients is chosen as im-
plementation.

window size W and the code rate R (see Section 8.4 on how
we choose parameters for implementing DaRe).

The degree has a major influence on the performance
of the coding scheme. In Figure 7(a), the data recovery ratio
(DRR) is plotted for a fixed code rate and window size while
varying the degree, over channels with different IID frame
loss probabilities. The results are from numerical evaluation,
as described in Sec. 7. An extreme degree value gives a lower
DRR. With a degree of 0, there is no redundant information
so the data recovery ratio is equal to DRR = 1 − pe. For
degree values close to 1, the recovery ratio decreases as well.
For each value of pe there is a range for the degree value that
gives the maximum possible DRR. The lowest value for ∆
that gives the maximum possible DRR for a specific pe is
∆optimal(pe) and is plotted as black crosses in Figure 7(a).
The value that gives the maximum possible DRR for all pe
is ∆optimal. For R=1/2 and W=10 the value for ∆optimal=0.4.

In Figure 7(b), the value for ∆optimal is plotted for dif-
ferent W and R. We observe that R does not influence
∆optimal, so ∆optimal is only subject to W . We can also observe
from the figure that the optimal degree value ∆optimal and
the window size W have an exponential relation plotted as
“Best fit”.

To reduce the number of floating point computations
for the embedded device, we round-off the coefficients of
the relation between W and ∆optimal to the closest fixed
point binary representation. Although the coefficients are
rounded-off, the value for ∆ still lies in the range that gives
maximal recovery rates for all frame loss probabilities. The
fixed point relationship is given by:

∆optimal(W) =
(1

2
+

1

22

)
exp

(
− 1

24
W

)
+

1

22
, (2)

and is plotted in Figure 7(b) as ‘Implementation’.
The optimal degree value for a given window size

is a maximisation problem in which the DRR must be
maximised subject to given window size and frame loss

9

TABLE 1: Glossary of symbols

Sym-
bol Description

d[t]
Data unit at a given time instance t of size k
data fragments

D[t] D[t] = {d[τ] | max(t−W − 1, 0) ≤ τ ≤ t}
c[t] Coded data at a given time instance.

Gt
Generator matrix of time instance t describing
relation between D[t] and C[t]

D D = D[∞]
C C = {c[τ] | 0 ≤ τ ≤ ∞}
H Matrix describing relation between D and C
C∗ The received coded data. C∗ = C ∪ ∗
H∗ Relation matrix describing relations between C∗

and D

probability. Multiple solutions may exist, as shown in Fig-
ure 7, and a minimum of these solutions must be chosen
as the degree. While this is easy to compute, the optimal
degree must be computed each time a different frame loss
probability is chosen while the window size remains the
same.

Alternatively, an optimal degree for a given window
size can be computed using the minimax framework. The
problem is to minimise the maximum degree over a range of
frame loss probabilities for given window size. Computing
one value as the optimal degree for a window size is
preferred over computing for each frame loss probability,
which gives negligible gains. We shall address this in our
future work.

6.2 Mathematical Framework
The framework presented here is a general framework to
perform application-level frame loss coding and is applica-
ble for Galois Fields higher than two as well. A glossary of
symbols used in this section is provided in Table 1.

Let d[t] represent the data units generated at time instant
t. All the generated data units are of equal size and are
divisible in k data fragments. By concatenating data units,
we get the dataset D[t] that contains all generated data
units previous to time instance t. D[t] has maximum length
W + 1. Only the W previous data units need to be stored to
calculate the redundant information. At time instance t data
unit d[t] is transmitted concatenated with redundant infor-
mation. This set is called c[t]. The redundant information is
a parity check, so it can be expressed as a linear combination
of previous data units with the following equation:

c[t] = D[t]Gt, (3)

where G is the generator matrix of size k × n, and n =
k/R, ∀t.

Let the set C be a concatenation of all values of c[t], and
the set D be the set of all data units. We can state that,

C = DH, (4)

where,

H =

|
G1 |
| G2 |

| G3 |
| G4

|
. . .

(5)

Through the frame loss channel, some data will be lost.
The decoder will receive only a subset of C . This gives a
set C∗ ⊆ C of received coded data. For each c[t] ∈ C∗ the
corresponding generator matrix Gt should be retrievable.
All these generator matrices can be concatenated into one
matrix H∗ containing the relations between the data units
at each time instance and the received code words. If matrix
H∗ is invertible, all the data units can be recovered using the
following expression,

D = C∗(H∗)−1. (6)

If H∗ is not invertible, not all data can be recovered.
However, the rank of the matrix H∗ expresses the amount
of unique data in the matrix and is a metric for the amount
of data that can theoretically be recovered by the decoder.

6.3 DaRe in Mathematical Framework
The mathematical framework can be used to simulate DaRe
by describing a specific form of the generator matrix Gt.
Since the coding scheme is a systematic code, the first
columns of the generator matrix should be an identity
matrix in order to include the fragments of the data unit
d[t]. The other code words are parity checks of previous
data units.

This generator matrix for DaRe is of the form,

Gt,DaRe =

[
I 0
0 P

]
, (7)

where I is the identity matrix of size k × k. P is the parity
check matrix in which each of its n − k columns contain
parity check lines computed from randomly selected k∆
data fragments from a window of kW data fragments. We
identify this metric as the data recovery ratio (DRR), defined
as following:

DRR =
Number of data units recovered

Number of data units transmitted
. (8)

6.4 Benchmark: Conventional Repetition Coding and
LT Codes
A simple form of frame redundancy is repetition, i.e., to
append previous data units to a frame. This method pro-
vides some redundancy and allows for recovery, but has a
lot of overhead. This method can also be expressed in the
proposed mathematical framework. The generator matrix
Gt would be time-invariant and equal to an identity matrix
I of size n×n. We use this coding method as a benchmark for
DaRe as it provides a performance reference. Additionally,
we also compare the performance with Luby Transform (LT)
codes [25], which are widely used fountain codes. The LT
codes have been adapted to operate with finite windows for
fair comparisons.

7 NUMERICAL RESULTS

We perform a numerical evaluation with the mathematical
framework in MATLAB to compare DaRe with repetition
coding algorithms, used with LoRaWAN.

We observe in Figure 8(a) that burstiness impacts the
coding method used in the benchmark quite significantly,
with an additional loss of up to 18% for higher values for the

10

code rate. Compared to DaRe, shown in Figure 8(b), DaRe
offers much better resilience. For a window size of W=80,
the maximum performance reduction is 1.4%. Therefore, we
can conclude that DaRe can handle both bursty and non-
bursty frame losses equally well.

0 0.1 0.2 0.3 0.4 0.5 0.6

Average frame loss probability

-0.2

-0.15

-0.1

-0.05

0

D
R

R
b
u
rs

ty
 -

 D
R

R
II
D

R = 1/2
R = 1/3
R = 1/4
R = 1/5
R = 1/6
R = 1/7
R = 1/8
R = 1/9
R = 1/10
R = 1/11
R = 1/12

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6

Average frame loss probability

-0.2

-0.15

-0.1

-0.05

0

D
R

R
b
u
rs

ty
 -

 D
R

R
II
D

W = 1
W = 5
W = 10
W = 20
W = 40
W = 80

(b)

Fig. 8: Difference in DRR over a Gilbert Elliot channel model
compared to an IID channel, with the Gilbert Elliot model
parameters (pGB , pBG) = (0.25, 0.21) varying ploss and
plotted for pe. (a) For the benchmark. (b) Using DaRe with
different values for W and R=1/2.

In order to compare, we chose Luby Transform
Codes [25], which is one of the most famous fountain codes,
and modified to operate over a given window size (W = 1
and 5). The method of implementation of this modified LT
codes is as follows: The LoRaWAN nodes send sensor data
at a pre-determined periodicity. This data is also stored in
a buffer of size W. After the window is full, LT encoding is
performed. For the next W packets, a block of encoded data
is sent along with the sensor data. The blocks are collected
at the receiver and then are passed on to the decoder. If
the decoding is successful, then all the packets from the
previous window can be recovered.

The results of evaluation for regular and Gilbert channels
are shown in Figure 9(a) and Figure 9(b). We observe that
DaRe outperforms the convolutional LT codes significantly.

8 IMPLEMENTATION

In this section, we present implementation details for a
DaRe encoder and decoder on an end-device and applica-
tion server respectively. Furthermore, we present a method
that helps to adapt the parameters of DaRe on a real Lo-
RaWAN network.

0 0.1 0.2 0.3 0.4 0.5 0.6

Frame loss probability

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D
R

R

No redundancy

W = 1, DaRe

W = 1, LT

W = 5, DaRe

W = 5, LT

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6
Frame loss probability

0.7

0.75

0.8

0.85

0.9

0.95

1

D
R

R

No redundancy

W = 1, DaRe

W = 1, LT

W = 5, DaRe

W = 5, LT

(b)

Fig. 9: Comparison of DaRe with LT codes. (a) For regular
channel. (b) For Gilbert channel.

To have DaRe working in real-life there are two chal-
lenges: (a) The decoder must be able to construct the
generator matrix similar to the one used for encoding in
order to decode the redundant information, and (b) An
algorithm is needed to recover previously lost data units
from successfully received frames. We describe the aspects
to solve these challenges.

8.1 Generator Matrix at Decoder

In DaRe coding, the generator matrix is constructed as
described in Equation (7). The generator matrices are ran-
domly generated by the encoder at runtime. The generator
matrices can be known to the decoder in two ways: (a) the
generator matrices are sent along with the coded data in
the frame, or (b) the generator matrix is generated with a
pseudo-random function. The seed for the pseudo-random
function should be sent in the frame. Since LoRaWAN
frames have a limited payload size and we want to minimise
additional transmission, solution (b) is preferred.

We need to create a pseudo-random function that gener-
ates the DaRe generator matrices. To be precise, a pseudo-
random function is needed to generate the generator vec-
tors, since these are the random part of the generator matri-
ces.

The basis of a pseudo-random function is a pseudo-
random number generator (PRNG). A good implementation
of a PRNG for an embedded device is a linear-feedback shift
register (LFSR) [50]. The output of a LFSR is a pseudo-
random sequence of bits that are calculated as a linear
function of the internal state of the LFSR. Multiple output
bits can be concatenated to generate a random number.
Variables for an LFSR are the initialisation state, the output
function and the number of state iterations. The initialisation
state describes the internal state of the LFSR after zero
iterations. The output function describes the linear function
to calculate the output, which is also the input for the next
iteration. The period of an LFSR is the maximum length
of an output sequence that is not repeated. The period is
determined by the output function. Certain output functions
give a maximum-length period of 2n − 1, where n is the
number of shift registers in the LFSR.

Every LoRaWAN frame has a unique, incremental iden-
tifier, a frame counter, which is 4 bytes in size (32 bit). This
value can be used as seed for the LFSR since it is unique
for each frame; and since there can be more than one parity
check in one frame, the parity check index should be used
as a seed as well.

Since window sizes larger than W=40 did not offer better
results, the period of the LFSR does not have to be much
larger than 40. By choosing an 8-bit LFSR with a maximum
period, we have a period of 28 − 1 = 255. An 8-bit LFSR is
easily implementable in present-day embedded platforms.
The autocorrelation of an output sequence of the LFSR is
given in Figure 10(a) for different window sizes W . The
period of 255 can be seen in the figure.

The pseudo-random numbers that are outputted by the
LFSR are used to create the pseudo-random generator vec-
tors. A generator vector is a bit array of size W, which
has ∆W ones, and (1 − ∆)W zeros. By taking log2(W)
bits in size from the LFSR, we have a pseudo-random

11

-1000 -500 0 500 1000

Shift

0

0.2

0.4

0.6

0.8

1
A

C
F

W = 2

W = 4

W = 8

W = 16

W = 32

X: 745

Y: 0.7459

X: 490

Y: 0.4918

(a)

-1000 -500 0 500 1000

Shift

0

0.2

0.4

0.6

0.8

1

A
C

F

W = 2

W = 4

W = 8

W = 16

W = 32

X: 746

Y: 0.6996

X: 492

Y: 0.4606

(b)

Fig. 10: Normalised autocorrelation functions of output se-
quences of the pseudo-random functions. (a) Output of the
implemented linear feedback shift register. The period of 255
is found in the distance between two peaks in the graph.
(b) Output of the implemented pseudo-random generator
vector function, with the period of 254.

number with a maximum value of W − 1. This can be used
as the index of a one in the generator vector. By taking
W∆ distinct numbers from the PRNG a pseudo-random
generator vector of size W and degree ∆ is generated. To
get distinct numbers from the LFSR, for every generation
seed is calculated from the frame sequence number, parity
check index, and the previously generated pseudo-random
number. This does limit the possible values for W to values
of the form 2x.

The autocorrelation of an output sequence of the func-
tion generating pseudo-random generator vectors is given
in Figure 10(b). To implement the different seeds, the ini-
tialisation state of the LFSR is set using a seed as well.
Since an initialisation state of 0 does not work, this gives
a period of 254, as seen in the figure. The graph lines
seen in the autocorrelation function used for the vector
generation are coarser, compared to the lines seen in the
autocorrelation of the LFSR output. This indicates some
form of periodicity and, therefore, non-true randomness in
the sequence. However, since the generator vectors will be
deployed in a sliding manner, this should not influence the
results significantly.

8.2 Decoding Algorithm
We base our decoding strategy from the traditional parity
check decoding methods. The decoder works in an iterative
way, as is explained in the flowchart in Figure 11. When
a LoRaWAN frame is not received, the decoder will only
know after successfully receiving the next frame that it has
lost a frame. If, at the reception of a frame, indeed frames
appear to be missing, the parity check(s) from that frame
will be used to try to recover the data from lost frames.
Each time a frame is received, the data unit in this frame is
stored, and the relation matrix H between the received par-
ity checks and the data units are constructed. Known data
units are removed from the matrix and Gaussian elimination
is performed to remove linear dependence from the matrix.
If this reduced matrix has invertible columns, data units can
be recovered from the matrix. The relation matrix is again
reduced until no more columns can be inverted. If there
is a leftover matrix, it is stored for the next iteration. The

Fig. 11: The flowchart of the decoding algorithm. Data
recovery takes place by iteratively solving received parity
checks when a frame is received.

R

1 Byte

W c[t]

(k/R) data units

Fig. 12: LoRaWAN payload format for DaRe.

decoding algorithm has been implemented for code rates of
the form R = 1/x. The worst-case complexity is O(N3) as
Gaussian elimination is the most time-consuming operation
in decoding.

8.3 LoRaWAN Payload Format for DaRe

The coding parameters R and W used by the encoder can
be configured statically in the device. Then the application
server, which is the decoder, can have the coding parameters
set statically as well, and the coding could work. However,
if the device sends the used coding parameters as a header
with every frame, it would be possible to change the param-
eters at runtime.

The used coding parameters will be sent in the payload
of every frame along with the coded data, as shown in
Figure 12. We implement lookup tables for all possible
values of R and W . Therefore, the device only needs to send
the indices of the values used in the lookup tables for R and
W . Since the number of entries in the tables is limited, we Why

braces??
Foot-
note?

require only four bits each for sending the indices of W and
R. The overheads for a frame with k data units would thus
be 1 + k(1/R–1).

8.4 Choosing and Adapting the Parameters

As explained in Section 6.1, the two main parameters of
DaRe, R and W , should be chosen, and ∆ is pre-computed
with the chosen value for W . R and W are limited to the
constraints set by the payload size and end-device memory
respectively. By using the results in Figure 8, the parameter
settings providing a desired DRR for the expected frame

12

0.3 0.4 0 0.1 0.2 0.5 0.6 0.7

1/5

1/4

1/3

1/2

R

W = 1

W = 2

W = 4

W = 8

W = 16

W = 32

Frame loss probability

Fig. 13: For a given code rate R the window size needed to
recover 99% of the data for a certain frame loss probability.

loss probability and burstiness can be determined. In order
to make it easy for interpretation, we present the results
in Figure 13. Using the expected frame loss, Figure 13 can
be used to pick the values for R and W that recovers the
expected frame loss up to 99%.

A static choice of parameters may offer varied data
recovery performance depending on the long term changes
in the frame losses of the channel. One way to adapt
these parameters is to use a downlink LoRaWAN frame to
notify the end-device about the average channel condition in
the recent past. Typical LoRaWAN deployments also know
the device locations. The downlink frame may contain the
observed average frame losses from the device and near-
by devices in the recent past allowing the end-device to
dynamically adapt the parameters in runtime to provide
optimal performance for the new circumstances.

8.5 System Integration
Now all practical challenges have been solved; the encoder
and decoder can be implemented in respectively a Lo-
RaWAN end-device and a LoRaWAN application server. In
Figure 14(a) a schematic overview of the software architec-
ture for the system integration is given.

The encoder is implemented as a C++ library that is
included in the device code. The inputs for the encoder
function are the coding parameters R and W , and the
sequence of data units to transmit. The library returns the
payload to send in a LoRaWAN frame according to the
payload format as shown in Figure 12. To test the library,
it has been implemented on two devices: the same device
used for data collection (Figure 3) and another device with
the same specifications, which is shown in Figure 14(b).

The decoder is implemented as a parser between the net-
work server and the application server. The decoder takes
frames with DaRe payload and converts them into data
units. For emulation, the decoder has been implemented as
C++ code, but for the final deliverable, the decoder has also
been implemented in a web server. The web-based decoder
is designed to work for multiple devices. The network
server only needs to be configured to forward all the frames
to the HTTPS endpoint of the decoder, and it will decode for
all devices. A screenshot of the interface of the web-based
decoder is given in Figure 14(c).

9 PRACTICAL EVALUATION

We evaluate our implementation of DaRe on an IID channel
that was emulated between the end-device and the applica-
tion server. We also present the results of DaRe using our
measurements.

(a)

(b) (c)

Fig. 14: Implementation. (a) Software architecture. The en-
coder is implemented as a library that can be included in
the device software. The decoder is a module between the
Network Server and the Application Server that receives
frames as shown in Figure 12 and outputs data units. (b) A
second device on which the encoder was tested. (c) A
screenshot of the web-based decoder. In the screenshot two
sessions of a device using DaRe are shown. The DRR is
higher than the FRR as a result of the data recovery by DaRe.

9.1 Evaluation Results

9.1.1 Data Recovery Ratio

Figure 15(a) shows the DRR for various window sizes for
code rate R=1/2. It can be seen that the DRR for W=64
is always lower than that for W=32. Thus W=64 does not
offer any advantage over W=32. Therefore W=32 is set to
be the maximal window size. 99% of the data units can be
recovered for channels with frame loss of up to 40%.

For higher frame loss probabilities, the value for the code
rate should be smaller to recover more data. The DRR for
different values of code rate R is shown in Figure 15(b). It
can be seen that the DRR increases for lower values of R, as
expected. By using a higher code rate, 1/5, we can recover
99% of data with up to 70% frame loss.

0 0.2 0.8 10.4 0.6
0

0.2

0.4

0.6

0.8

1

D
R

R

No redundancy

W = 1

W = 2

W = 4

W = 8

W = 16

W = 32

W = 64

Frame loss probability

(a)

0 0.2 0.8 10.4 0.6
0

0.2

0.4

0.6

0.8

1

D
R

R

No redundancy

R = 1/2

R = 1/3

R = 1/4

R = 1/5

Frame loss probability

(b)

Fig. 15: Data recovery ratio (DRR) in emulation results over
an IID channel. (a) DRR for emulation of the decoding
algorithm for different window size W and R=1/2. (b) DRR
for emulation of the decoding algorithm for different code
rates and W=32.

13

For larger values of W the parity checks contain a larger
absolute number of data units, due to the optimal degree,
we determined before. With a larger number of data units in
a parity check, the chance of having reducible parity checks
is higher for increasing frame loss probability, resulting in
lower data recovery. This explains the curves crossing over
each other in Figure 15(a).

To reduce the chance for non-reducible parity checks, the
degree ∆ should decrease. As can be seen in Figure 16, bet-
ter DRR is reached for higher frame loss probabilities when
using a lower degree. However, the results for lower frame
loss probabilities will decrease. Since it is more important
for the DRR for lower frame loss probabilities to be close to
100%, lower results for higher frame loss probabilities are
not relevant. The optimal degree can still be used.

0 0.5 1

Degree

0

0.2

0.4

0.6

0.8

1

D
R

R

p
e
 = 0.1

p
e
 = 0.2

p
e
 = 0.3

p
e
 = 0.4

p
e
 = 0.5

p
e
 = 0.6

p
e
 = 0.7

p
e
 = 0.8

p
e
 = 0.9

∆
optimal

Fig. 16: Data recovery ratio (DRR) for R=1/2 and W=10 for
different frame loss probabilities when varying ∆. The black
crosses mark the values for the optimal degree ∆optimal(pe)
that gives maximal recovery rate. ∆optimal for lower frame
loss probabilities is equal to the optimal degree found in
Section 6.1.

9.1.2 Data Recovery Delay
Additional to the DRR, we can also determine the average
time it takes to decode data now, we have a decoding
algorithm. The data recovery delay is defined as the number
of additional frames needed to be received before a data
unit is recovered. Delay could be a factor for a LoRaWAN
application, requiring the coding parameters to be selected
to minimise the delay.

0 0.2 0.8 10.4 0.6
0

1

2

3

4

5

6

7

8

A
v
e
ra

g
e
 d

e
la

y
 i
n
 #

 o
f
fr

a
m

e
s

No redundancy

W = 1

W = 2

W = 4

W = 8

W = 16

W = 32

Frame loss probability

(a)

0 0.2 0.8 10.4 0.6
0

5

10

15

A
v
e
ra

g
e
 d

e
la

y
 i
n
 #

 o
f
fr

a
m

e
s

R = 1/2

R = 1/3

R = 1/4

R = 1/5

Frame loss probability

(b)

Fig. 17: Average recovery delay in emulation results of
an IID channel. (a) Recovery delay for different window
size W and R=1/2. The maximum average delay is 7.9.
(b) Recovery delay for different code rates R and W=32.

While larger window sizes result in higher DRR as
shown in Figure 15(a), the average delay increases as well, as

can be seen in Figure 17(a). A larger frame loss probability
introduces a longer delay. At some point, at the point the
DRR starts to decrease rapidly, the delay decreases as well.
This is due to the fact that some parity checks are left un-
solved, reducing the DRR but also the delay. The maximum
average delay difference between W=16 and 32 is 3.1 frames
– the variance of the delay increases and decreases with the
average.

For lower code rates, the top of the average delay graph
shifts with the knee point in the DRR graph (Figure 15(b)),
as can be seen in Figure 17(b). The maximum average delay
increases as well for lower code rates.

9.2 Measurement Results

To evaluate DaRe for real-life datasets, we have (a) applied
DaRe to the previously collected data, and (b) performed
some measurements with the end-device running DaRe.

9.2.1 Data Recovery in Collected Data Sets
We have applied DaRe to the datasets collected for the frame
loss characterisation. The exact frame losses in these datasets
were emulated in the emulation setup. This would show the
performance of DaRe in real-life datasets without having to
redo all data collection. In Figure 18 the DRR is given for
five of these dataset emulations. Also, the results of one new
dataset, collected while using DaRe at runtime, is shown in
this figure.

C
a
r

B
ik
e
 a

B
ik
e
 b

S
ta

t.
 c

S
ta

t.
 b

M
e
a
s.

0

0.2

0.4

0.6

0.8

1 FRR

DRR

DRR
emul

Fig. 18: Data recovery ratio (DRR) in emulation results for
five datasets, using parameters R=1/2, W=8. ‘Stat.’ means
stationary data. ‘Bike b’ and ‘Stat. b’ are bursty datasets.
‘Meas.’ is a new dataset acquired while using DaRe at
runtime.

We conclude that DaRe performs as expected, where
non-bursty datasets have 100% data recovery, and bursty
datasets show lower recovery than over an IID channel.

9.2.2 Coverage Improvement
Figure 19(b) shows a map of the coverage of the bike data
after applying DaRe with coding parameters R=1/2 and
W=8. While there was 14% data loss without DaRe, shown
in Figure 19(a), we see that this number reduces to 3% when
using DaRe. If a larger window size was used, even more
data could be recovered.

9.2.3 Energy
Adding redundancy in communication, like with DaRe,
requires transmitting more bytes. The largest contributor to
energy consumption on an end-device is frame transmis-
sion. Sending more bytes leads to significantly more energy
consumption than additional computations. The impact of

14

(a) (b)

Fig. 19: Coverage without (a) and with (b) DaRe with
R=1/2, W=8. With coding, the frame loss is reduced from
14% to 3%. On a colour scale from green to red, the frame
loss is expressed. Green blocks indicate no loss and red
blocks indicate loss of all frames.

0 0.1 0.2 0.3 0.4 0.5 0.6

Frame loss probability

150

160

170

180

190

200

210

E
n

e
rg

y
 (

m
J
)

Repetition

DaRe

Fig. 20: Comparison of energy consumption of repetition
coding and DaRe for achieving 99% DRR for SF7 on an
SX1276 radio.

DaRe on the energy consumption of the end-device can
be determined by calculating the additional transmission
time needed. The airtime of a LoRaWAN frame can be
calculated using the formulae given in [51], and the power
consumption of SX1276 can be obtained from [41]. Multi-
plying the power consumption and the airtime yields the
energy consumed for the transmission. A detailed energy
consumption calculation method is outlined in [52].

Figure 20 shows the energy consumption for both rep-
etition coding and DaRe for SF7 on an SX1276 radio with
standard parameters (13 byte header and coding rate of 4/5)
for recovering 99% of the data. The energy consumption
calculation includes energy consumed for all the phases
from the radio waking up to the radio being turned off and
with one receive window slot. For a frame loss probability
of 0.6, DaRe consumes only 83% of the energy of repetition
coding to achieve the same results. While this figure shows
energy consumption specifically for SF7, we provide an SF
agnostic comparison in Figure 21.

Figure 21 shows the ratio of transmission time for DaRe
and repetition coding when 99% data recovery is desired,
compared to the transmission time when sending data
without coding. DaRe reduces the additional transmission
time compared to repetition coding up to 42% for a data
unit size of 10 bytes. When no coding is used for frame
loss probability of 0, both DaRe and repetition coding takes
the same amount of airtime. However, when the frame loss
probability increases, redundancy must be added. When
redundancy is added, either by repetition or DaRe coding,
data can be recovered for a range of frame loss probabilities.

0 0.1 0.2 0.3 0.4 0.5 0.6
1

1.5

2

2.5

3

3.5

4

R
a
ti
o

DaRe

Repetition

Frame loss probability

Fig. 21: Transmission time increase for a 10 byte data unit
for a desired DRR of 0.99, relative to the transmission time
for uncoded data transmission. DaRe provides significant
transmission time reduction.

For instance, with R=1/2, and W = 32, DaRe can recover
data up to 40% losses as shown in Figure 13. Note that
these parameters have been rightly chosen (R=1/2, W=32,
and ∆=32). This results in the constant transmission time
up to 0.4 in Figure 21. Similarly, for repetition coding, the
redundancy introduced will be able to recover data for
a range of erasure probabilities, which turns out to have
smaller flat lines as compared to DaRe. The parameters were
adapted (R=1/3) when the frame loss probability is more
than 0.4 to maintain the data recovery ratio at 99%. This
increases the overhead and thus, the corresponding increase
in the ratio for DaRe. Larger data unit sizes will give even
more transmission time reduction.

10 CONCLUSION

With many IoT applications on the rise, the number of
IoT devices is proliferating. To cater to the communica-
tion needs of this large number of IoT applications, new
architectures and protocols have been proposed recently.
One such protocol is LoRaWAN, a Low Power Wide Area
Network (LPWAN) technology. While LoRaWAN can pro-
vide extensive coverage, its basic operating mode is limited
by the frame losses due to the unreliable wireless channel
and absence of retransmission schemes. In this paper, we
characterised frame loss in LoRaWAN. We performed large
scale measurements in an almost collision-free network
deployment for different scenarios. With the datasets, we
characterised frame loss in the network in terms of spatial
and temporal properties. We found that the frame loss is
significant. Furthermore, we demonstrated the frame loss
could be bursty in nature even for stationary end-devices.

Conventional wireless techniques, such as using ACK
for every transmitted frame, are withheld in LoRaWAN to
provide scalability: and to save transmission time on the
gateways and also energy on the end-devices. Thus, it is
up to the application layer to guarantee and increase the
data reception. To this end, we propose a novel erasure
coding method, DaRe, that reduces data loss in LoRaWAN
significantly. DaRe is based on applying fountain codes on
a sliding window. To simulate DaRe we described an alge-
braic framework. We evaluated DaRe both with emulations
and by implementing it on an end-device. We achieved a
significant recovery of 99% with a code rate R=1/2 when
channel erasure probability was 0.4. Comparing with a

15

naive repetition coding method, DaRe reduces energy re-
quirement up to a factor of 0.42. Further, we showed that
DaRe could lower an average data loss of 14% in 300 km of
biking to 3% data loss with R=1/2 and W=8.

Since the network is newly deployed, collisions are neg-
ligible. When more devices start connecting to the network,
collisions will start contributing significantly to the overall
frame loss in the network. There will be an increased need
for data recovery methods that do not add much load to
the network. Therefore, we believe that DaRe provides a
sustainable solution to improve data throughput.

The two most important open problems are to analyti-
cally derive optimal degree and the protocol that integrates
with ADR. Furthermore, the impact of DaRe with more
number of devices need to be studied in realistic scenarios,
which are part of our future work.

ACKNOWLEDGMENT

This research was partially carried out within the SCOTT
project (http://www.scott-project.eu) funded from the Elec-
tronic Component Systems for European Leadership Joint
Undertaking under grant agreement No 737422. This joint
undertaking receives support from the European Union’s
Horizon 2020 research and innovation program and Austria,
Spain, Finland, Ireland, Sweden, Germany, Poland, Portu-
gal, Netherlands, Belgium, Norway.

REFERENCES

[1] P. Marcelis, V. Rao, and R. V. Prasad, “DaRe: Data Re-
covery through Application Layer Coding for LoRaWAN,”
in Proceedings of the Second International Conference on
Internet-of-Things Design and Implementation. ACM, 2017, pp.
97–108.

[2] J. Bartje, “The top 10 IoT application areas – based
on real IoT projects,” https://iot-analytics.com/
top-10-iot-project-application-areas-q3-2016/, accessed: 2016-
01-13.

[3] M. Bor, J. Vidler, and U. Roedig, “LoRa for the Internet of Things,”
in Proceedings of the 2016 International Conference on Embedded
Wireless Systems and Networks. Junction Publishing, 2016, pp.
361–366.

[4] M. Centenaro, L. Vangelista, A. Zanella, and M. Zorzi, “Long-
range communications in unlicensed bands: The rising stars in
the IoT and smart city scenarios,” IEEE Wireless Communications,
vol. 23, no. 5, pp. 60–67, 2016.

[5] N. Sornin, M. Luis, T. Eirich, T. Kramp, and O. Hersent,
“LoRaWANTM Specification,” https://www.lora-alliance.org/
portals/0/specs/LoRaWAN%20Specification%201R0.pdf, Jan
2015.

[6] Semtech, “LoRaTM Modulation Basics,” https://semtech.
my.salesforce.com/sfc/p/E0000000JelG/a/2R0000001OJk/
yDEcfAkD9qEz6oG3PJryoHKas3UMsMDa3TFqz1UQOkM, May
2015.

[7] R. Sanchez-Iborra, J. Sanchez-Gomez, J. Ballesta-Viñas, M.-D.
Cano, and A. F. Skarmeta, “Performance Evaluation of LoRa
Considering Scenario Conditions,” Sensors, vol. 18, no. 3, p. 772,
2018.

[8] D. Zorbas, K. Abdelfadeel, P. Kotzanikolaou, and D. Pesch,
“TS-LoRa: Time-slotted LoRaWAN for the Industrial Internet of
Things,” Computer Communications, vol. 153, pp. 1–10, 2020.

[9] T. Polonelli, D. Brunelli, A. Marzocchi, and L. Benini, “Slotted
aloha on LoRaWan-design, analysis, and deployment,” Sensors,
vol. 19, no. 4, p. 838, 2019.

[10] J. Petäjäjärvi, K. Mikhaylov, M. Pettissalo, J. Janhunen, and
J. Iinatti, “Performance of a low-power wide-area network based
on LoRa technology: Doppler robustness, scalability, and cov-
erage,” International Journal of Distributed Sensor Networks,
vol. 13, no. 3, p. 1550147717699412, 2017.

[11] M. Aref and A. Sikora, “Free space range measurements with
Semtech LoRa technology,” in 2014 (IDAACS-SWS), Sept 2014, pp.
19–23.

[12] J. Petajajarvi, K. Mikhaylov, M. Hamalainen, and J. Iinatti, “Evalu-
ation of LoRa LPWAN technology for remote health and wellbeing
monitoring,” in 2016 ISMICT, March 2016, pp. 1–5.

[13] J. Petajajarvi, K. Mikhaylov, A. Roivainen, T. Hanninen, and
M. Pettissalo, “On the coverage of LPWANs: range evaluation
and channel attenuation model for LoRa technology,” in ITS
Telecommunications (ITST), 2015 14th International Conference
on, Dec 2015, pp. 55–59.

[14] K. Mikhaylov, J. Petajajarvi, and T. Hanninen, “Analysis of Capac-
ity and Scalability of the LoRa Low Power Wide Area Network
Technology,” in European Wireless 2016; 22th European Wireless
Conference, May 2016, pp. 1–6.

[15] A. Augustin, J. Yi, T. Clausen, and W. Townsley, “A Study of LoRa:
Long Range & Low Power Networks for the Internet of Things,”
Sensors, vol. 16, no. 9, p. 1466, Sep 2016.

[16] M. Bor, U. Roedig, T. Voigt, and J. Alonso, “Do LoRa low-
power wide-area networks scale?” in The 19th ACM International
Conference on Modeling, Analysis and Simulation of Wireless and
Mobile Systems, 2016.

[17] N. Rathod, P. Jain, R. Subramanian, S. Yawalkar, M. Sunkenapally,
B. Amrutur, and R. Sundaresan, “Performance analysis of wireless
devices for a campus-wide iot network,” in 2015 13th International
Symposium on Modeling and Optimization in Mobile, Ad Hoc,
and Wireless Networks (WiOpt). IEEE, 2015, pp. 84–89.

[18] J. Ababneh and O. Almomani, “Survey of Error Correction
Mechanisms for Video Streaming over the Internet,” (IJACSA)
International Journal of Advanced Computer Science and
Applications, vol. 5, no. 3, 2014.

[19] X.-J. Zhang and X.-H. Peng, “A testbed of erasure coding on
video streaming system over lossy networks,” in Communications
and Information Technologies, 2007. ISCIT ’07. International
Symposium on, Oct 2007, pp. 535–540.

[20] I. S. Reed and G. Solomon, “Polynomial codes over certain
finite fields,” Journal of the Society for Industrial and Applied
Mathematics, vol. 8, no. 2, pp. 300–304, 1960. [Online]. Available:
http://www.jstor.org/stable/2098968

[21] M. Mitzenmacher, “Digital fountains: a survey and look forward,”
in Information Theory Workshop, 2004. IEEE, Oct 2004, pp. 271–
276.

[22] R. Gallager, “Low-density parity-check codes,” IRE Transactions
on information theory, vol. 8, no. 1, pp. 21–28, 1962.

[23] A. Morello and V. Mignone, “DVB-S2: The Second Generation
Standard for Satellite Broad-Band Services,” Proceedings of the
IEEE, vol. 94, no. 1, pp. 210–227, Jan 2006.

[24] J. Qureshi, C. Heng Foh, and J. Cai, “Primer and recent develop-
ments on fountain codes,” Recent Advances in Communications
and Networking Technology (Formerly Recent Patents on
Telecommunication), vol. 2, no. 1, pp. 2–11, 2013.

[25] M. G. Luby, M. Mitzenmacher, M. A. Shokrollahi, and D. A.
Spielman, “Efficient erasure correcting codes,” IEEE Transactions
on Information Theory, vol. 47, no. 2, pp. 569–584, Feb 2001.

[26] M. Luby, “LT codes,” in Foundations of Computer Science, 2002.
Proceedings. The 43rd Annual IEEE Symposium on, 2002, pp. 271–
280.

[27] A. Shokrollahi, “Raptor codes,” IEEE Transactions on Information
Theory, vol. 52, no. 6, pp. 2551–2567, June 2006.

[28] P. Maymounkov, “Online codes,” Technical report, New
York University, November 2002. [Online]. Available: https:
//pdos.csail.mit.edu/∼petar/papers/maymounkov-online.pdf

[29] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon
limit error-correcting coding and decoding: Turbo-codes. 1,” in
Communications, 1993. ICC, IEEE International Conference on,
vol. 2, May 1993, pp. 1064–1070 vol.2.

[30] M. Usman, “Convolutional fountain distribution over fading wire-
less channels,” International Journal of Electronics, vol. 99, no. 8,
pp. 1037–1050, 2012.

[31] H. Jenkac, J. Hagenauer, and T. Mayer, “The Turbo-Fountain
and its Application to Reliable Wireless Broadcast,” in
Wireless Conference 2005 - Next Generation Wireless and
Mobile Communications and Services (European Wireless), 11th
European, April 2005, pp. 1–7.

[32] C. Studholme and I. F. Blake, “Random Matrices and Codes for the
Erasure Channel,” Algorithmica, vol. 56, no. 4, pp. 605–620, 2010.
[Online]. Available: http://dx.doi.org/10.1007/s00453-008-9192-0

16

[33] M. Sandell and U. Raza, “Application layer coding for iot: benefits,
limitations, and implementation aspects,” IEEE Systems Journal,
vol. 13, no. 1, pp. 554–561, 2018.

[34] Z. Zhao, W. Dong, G. Chen, G. Min, T. Gu, and J. Bu, “Embracing
corruption burstiness: Fast error recovery for zigbee under wi-fi
interference,” IEEE Transactions on Mobile Computing, vol. 16,
no. 9, pp. 2518–2530, 2016.

[35] C. Noda, S. Prabh, M. Alves, and T. Voigt, “On packet size and
error correction optimisations in low-power wireless networks,” in
2013 IEEE International Conference on Sensing, Communications
and Networking (SECON). IEEE, 2013, pp. 212–220.

[36] C.-J. M. Liang, N. B. Priyantha, J. Liu, and A. Terzis, “Surviving
wi-fi interference in low power zigbee networks,” in Proceedings
of the 8th ACM Conference on Embedded Networked Sensor
Systems. ACM, 2010, pp. 309–322.

[37] K. Ishibashi, H. Ochiai, and R. Kohno, “Embedded forward error
control technique (efect) for low-rate real-time communications,”
in IEEE GLOBECOM 2007-IEEE Global Telecommunications
Conference. IEEE, 2007, pp. 4565–4569.

[38] A. Das, A. Ghose, A. Razdan, H. Saran, and R. Shorey, “Enhanc-
ing performance of asynchronous data traffic over the bluetooth
wireless ad-hoc network,” in Proceedings IEEE INFOCOM 2001.
Conference on Computer Communications. Twentieth Annual
Joint Conference of the IEEE Computer and Communications
Society (Cat. No. 01CH37213), vol. 1. IEEE, 2001, pp. 591–600.

[39] Texas Instruments, “ISM-Band and Short Range Device Reg-
ulatory Compliance Overview,” http://www.ti.com/lit/an/
swra048/swra048.pdf, May 2005.

[40] X. Xia, Y. Zheng, and T. Gu, “Ftrack: parallel decoding for
lora transmissions,” in Proceedings of the 17th Conference on
Embedded Networked Sensor Systems. ACM, 2019, pp. 192–204.

[41] Sodaq, “Sodaq Mbili,” http://support.sodaq.com/sodaq-one/
mbili/schema-rev-4/, accessed: 2016-10-09.

[42] Semtech, “ETSI Compliance of the SX1272/3 LoRa
Modem,” http://www.semtech.com/images/datasheet/
etsi-compliance-sx1272-lora-modem.pdf, July 2013.

[43] Y. Huang and K. Boyle, Antennas: from theory to practice. John
Wiley & Sons, 2008.

[44] A. Goldsmith, Wireless communications. Cambridge university
press, 2005.

[45] S. Demetri, M. Zúñiga, G. P. Picco, F. Kuipers, L. Bruzzone, and
T. Telkamp, “Automated estimation of link quality for lora: a
remote sensing approach,” in 2019 18th ACM/IEEE International
Conference on Information Processing in Sensor Networks (IPSN).
IEEE, 2019, pp. 145–156.

[46] W. E. Leland, M. S. Taqqu, W. Willinger, and D. V. Wilson, “On
the self-similar nature of Ethernet traffic (extended version),”
IEEE/ACM Transactions on Networking, vol. 2, no. 1, pp. 1–15,
Feb 1994.

[47] E. N. Gilbert, “Capacity of a burst-noise channel,” The Bell System
Technical Journal, vol. 39, no. 5, pp. 1253–1265, Sept 1960.

[48] H. Bai and M. Atiquzzaman, “Error modeling schemes for
fading channels in wireless communications: A survey,” IEEE
Communications Surveys & Tutorials, vol. 5, no. 2, 2003.

[49] M. Zorzi and R. R. Rao, “Lateness probability of a retransmission
scheme for error control on a two-state markov channel,” IEEE
Transactions on Communications, vol. 47, no. 10, pp. 1537–1548,
1999.

[50] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery,
“Numerical recipes in c++,” The art of scientific computing, vol. 2,
p. 1002, 1992.

[51] Semtech, “SX1272/73 - 860 MHz to 1020 MHz Low Power Long
Range Transceiver,” March 2015.

[52] T. Bouguera, J.-F. Diouris, J.-J. Chaillout, R. Jaouadi, and G. An-
drieux, “Energy consumption model for sensor nodes based on
lora and lorawan,” Sensors, vol. 18, no. 7, p. 2104, 2018.

Paul J. Marcelis received the B.Sc. degree in
Electrical Engineering and the M.Sc. degree in
Embedded Systems from the Delft University of
Technology (TU Delft), Delft, The Netherlands.
He has worked as a technical IoT consultant
and IoT architect for KPN. Currently he is prod-
uct owner of KPN Things, an IoT platform with
LoRaWAN support. In his current role he tries
to make a product to make LoRaWAN and IoT
more easily accessible for IoT developers. He is
interested in Low Power Wide Area Networks,

network reliability, and IoT application enablement.

Nikolaos (Nikos) Kouvelas received the B.Sc.
degree and the M.Eng. degree in electrical en-
gineering and computer science from the Dem-
ocritus University of Thrace (DUTh), Xanthi,
Greece; and the M.Sc. degree in Telecommu-
nications and Sensing Systems from the Delft
University of Technology (TU Delft), Delft, The
Netherlands. Nikos is currently pursuing the
Ph.D. degree at TU Delft. He is with the Embed-
ded and Networked Systems Group of TU Delft.
His research interests are in the fields of Low

Power Wide Area Networks, Energy Harvesting, and Batteryless Sys-
tems. He has also contributed to the IEEE standard for an Architectural
Framework for Real-time Onsite Operations Facilitation (ROOF) for the
Internet of Things (P1931.1). Nikos has also worked as an IoT systems
designer for Eworx S.A., Athens.

Vijay S. Rao works for Cognizant’s IoT Center
of Excellence, is currently focused on developing
new technology capabilities and offerings in the
IoT domain. Vijay is leading the R&D programs
in the Netherlands in the areas of intelligent
edge devices, 5G and tactile Internet. Prior to
Cognizant, he was a post-doctoral fellow in the
ENSys group in TUDelft, during which he also
contributed as the lead software developer to the
TUDelft’s lunar rover mission. He received his
Ph.D. and MSc (cum laude) from Delft University

of Technology, The Netherlands. He also worked for ESQUBE Commu-
nications, Bangalore, where he was a senior software engineer devel-
oping VoIP products. He has several top peer-reviewed publications and
holds two patents. He is a contributor to the IEEE standards on tactile
Internet (P1918.1) and nano-communications (P1906.1).

R. Venkatesha Prasad is an assistant profes-
sor at ENSys group of TUDelft. His research
interest is in the area of Tactile Internet, IoT
and 60 GHz MMW networks. He has super-
vised 18 PhD students and more than 45 MSc
students. He has participated in several Euro-
pean and Dutch projects in the area of IoTs,
60 GHz communications, personal networks and
Cognitive radios. He has over 250 publications
in the peer-reviewed international journals and
conferences and standards, and book chapters.

He has served on the editorial board of many IEEE Transactions. He
was the vice-chair of IEEE Tactile Internet standardization group. He
is selected as the IEEE ComSoc Distinguished Lecturer on IoT for
the period 2016-2020. He is a senior member of IEEE and ACM. His
research interests are in Internet of Things, 5G and Tactile Internet.

