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Abstract—Many IoT applications require the knowledge of
crowd distribution, particularly in indoor scenarios. To this end,
we leverage the lighting grid infrastructure in buildings by using
smart light bulbs, which can include variety of sensors, in these
grids. The exponentially increasing adoption of smartphones and
the Wi-Fi infrastructure has motivated us to tackle this problem
using Wi-Fi. As we seek a solution that works in many buildings,
relying on active user participation or installing apps is not an
option. Therefore, we need a Wi-Fi based crowd distribution
estimation technique that is non-participatory and non-intrusive,
and works with very few Wi-Fi packets generated by users’
smartphones sporadically.

We approach the problem by analyzing the Wi-Fi packets
for counting people (smartphones) and estimating their position
within a pre-defined accuracy. To this end, extensive experiments
are conducted in a real-world testbed with controlled settings as
well as in test setups in office spaces with no control. We propose
improvised counting techniques that results in people counts close
to 75% of the ground truth. We further propose improvements to
range-free localization techniques to refine the position estimation
accuracy and reduce the execution time. Our algorithm estimates
the location with an accuracy of 2m 74% of the time, when Wi-Fi
sniffers are placed in bulbs every 4m in the grid.

I. INTRODUCTION

The knowledge of crowd distribution is important for
various smart applications in the Internet of Things (IoT).
Estimating crowd distribution opens up possibilities for various
location based services. The estimation involves finding the
number of people and their approximate location within a
given area. In recent times, Wi-Fi based localization and
counting methods have been popular due to ubiquity of Wi-Fi
infrastructure and the increasing adoption of smartphones by
people [1] has motivated us to design a non-intrusive system
that can infer crowd distribution by tracking smartphones that
people carry with them.

There has been significant development in the smart light-
ing domain for IoT. Many sensors can be embedded into
bulbs because of the advancements in microelectronics. Thus
our approach is to incorporate Wi-Fi sniffers into smart light
bulbs as part of the lighting grid of a building such as an
arena concourse or an auditorium in order to estimate the
crowd distribution within a bounded area. Each light bulb sniffs
for Wi-Fi signals in its vicinity. The data from a number of
such sniffer bulbs is combined to estimate the overall crowd
distribution of the area.

Specifically, we are interested in knowing the distribution
of people within a bounded indoor space. As we seek a
solution that works in many buildings, relying on active user
participation or installing apps is not an option on the users’
phones. Therefore, we work with Wi-Fi sniffing data obtained
from smart light bulbs. In order to estimate crowd distribution

Fig. 1: Smart bulbs with Wi-Fi sniffers to estimate crowd
distribution.

effectively with few packets, we need to design a system that
can infer people count as well as their position within a given
area. The area is divided into pre-defined square cells such as
3m×3m, 4m×4m or even larger cells. As the Wi-Fi sniffers
will be part of lighting grids of the indoor space, several
constraints apply on the system.

• Due to the passive nature of Wi-Fi sniffing, the number of
packets received and the frequency at which packets arrive
may not be consistent over time and the devices.

• As we wish to be non-intrusive and non-participatory, we
do not attempt to increase packet generation rate from
smartphones by injecting packets into the network.

We also deal with several challenges as we aim to estimate
crowd distribution based on Wi-Fi sniffing data from unmod-
ified smartphones.

• Due to an increase in the number of devices with Wi-Fi
interface considerable errors will be introduced if we use
the sniffed data without any filtering.

• As the Wi-Fi signal strength depends on several factors
including the physical environment, counting and classifying
people if they are within a small cell size precisely is
challenging.

• The number of packets generated by a smartphone depends
on its current configuration. Therefore, counting people
and position information must be done with just a few
frames, whose signal strength can vary vastly due to several
unknowns in the system such as transmit power, orientation
and antenna characteristics of the smartphone.

• Finally, the same solution must work in different buildings
(i.e., different radio propagation environments).

In order to estimate crowd distribution using the passive
Wi-Fi sniffers in the lighting infrastructure, we divide the
problem into two: counting people (or unique smartphones)
within the required cell sizes, and estimating their positions.
As the deployment will be large areas, cost of the deployment



is also a concern as bulbs with sensors are quite expensive.
Therefore, we also look to minimize the deployment cost
by minimizing the number of sniffers without sacrificing the
accuracy. Specifically, our contributions are as follows.

• We propose an improved people counting algorithm with ef-
ficient filtering mechanisms to estimate people count within
a given area, and avoid devices from adjacent cells.

• We adopt range-free localization techniques and propose en-
hancements to the localization algorithms in order to refine
the position estimation accuracy and reduce the execution
times.

• Extensive deployments and tests are done in office spaces
and a real-world testbed (Wilab2 [2]), to show the effective-
ness of our approach.

The rest of the paper is organized as follows. Section II
briefly describes the related work. Section III describes the
people counting method using Wi-Fi sniffing data and the
results obtained. Section IV covers position estimation method-
ologies and proposed enhancements to improve the accuracy
of localization and the extensive evaluation in testbeds. Section
V presents the concluding remarks.

II. RELATED WORK

Section II-A provides an overview of participatory tech-
niques involving use of wearables and smartphone applica-
tions. Section II-B describes different techniques which do not
require any participation from people in the crowd.

A. Participatory Techniques

These techniques require co-operation from people in the
crowd in order to estimate the number of people in a given
area. The participation can be in the form of wearing devices
or installing a third-party application that allows them to be
tracked.

Acer et al. [3] use battery powered wearable Wi-Fi badges
and a set of Wi-Fi gateways deployed at various points across
the location to capture signals from the badges. Note that
the badges are distributed to a select set of the participants.
Having a programmable Wi-Fi badge allows efficient detection
as packets are sent at a constant rate. Cattani et al. [4] uses
bracelets that emit RF beacons to estimate crowd dynamics at
the Nemo Science museum in Amsterdam. The main drawback
of this method is that it requires participation from people
to be effective. Providing wearables to a large crowd can
significantly impact the infrastructure cost. The authors of [5]
make use of GPS equipped smartphones to infer crowd density
information. In this system, pedestrians in the crowd share
their location information voluntarily. Since only a fraction of
the people in the crowd may share their location information,
the crowd density is analyzed based on the walking speed of
the pedestrians. It is assumed that the movement speed of
pedestrians is proportional to the crowd buildup in a given
area. This approach is suitable for large open spaces where
GPS is available. If the gathering of people is relatively small
such as an Auditorium where crowds might hardly move or a
museum that may have multiple floors, this solution does not
perform well.

B. Non-Participatory Techniques

These techniques do not require any form of co-operation
from people in the crowd. Data is collected in a non-intrusive
manner. This section provides a brief overview of the different
technologies that have been developed to infer the crowd
density using non-participatory approaches.

Image processing and computer vision algorithms have
been used to count people using still images or live video
streams. One of the most commonly used approach is to first
identify an individual in a crowded scene and then feed this
data to various classifiers to get the people count [6], [7],
[8], [9]. Vision based techniques perform well as long as the
features can be detected effectively. However, they suffer under
severe occlusion in the crowd and under poor lighting condi-
tions as the features may not be detected. Furthermore, these
algorithms can be used in only a line-of-sight environment.
The use of cameras also raise privacy concerns. Vision based
systems are also known to increase the deployment costs and
computational complexity of the system.

Xi et al. [10] have used Channel State Information (CSI)
based approach to estimate the people count in a given area.
They propose that CSI is highly sensitive to the environmental
variations that might occur due to the presence of people in
an area. A relationship is established between the number of
moving people in an area and the CSI variations. Domenico et
al. [11] also develop a CSI based crowd counting system that
analyzes Doppler spectrum obtained through the gathered CSI
data. Wi-Fi CSI based techniques are device free and does
not require the users to even carry smartphones with them.
However, the CSI information is not easily exposed on all Wi-
Fi chipsets. Currently, only a select few variants of Atheros and
Intel 5300 chips can expose the CSI information. These chips
require modification of the underlying software stack [12]. This
is the main drawbacks of this approach in our scenario as the
commercial-off-the-shelf (COTS) chipsets cannot be directly
used in the deployment. Another drawback with respect to our
scenario is that CSI based techniques do not work well when
deployed on the ceiling.

RF based device free passive techniques have the ability
to localize individuals and does not require them to carry
any radio devices with them. These techniques consider the
disturbance pattern of radio waves by the users and derive their
location. Wilson et al. [13] proposed a Radio Tomographic
Imaging (RTI) which aims at localizing multiple individuals
relative to radio links Line of Sight (LoS). Depatla et al. [14]
try to count the number of people solely by measuring signal
strength variation between a pair of stationary transmitter and
receiver antennas.

Considering our scenario wherein we incorporate crowd
analytics as a part of the ceiling-mounted smart lighting grids,
we find that device free approaches such as RTI with multiple
sensors [13] or link based approach [14] cannot be used as
these require a Line of Sight between a TX-RX pair and the
subjects to be tracked.

Passive Wi-Fi techniques make use of Wi-Fi scanning to
infer the occupancy estimation at a given location [15], [16],
[17]. Wi-Fi scanners are deployed in the area of interest to cap-
ture signals from smartphones that people might be carrying
with them. Scanning is done in a non-intrusive manner without



Fig. 2: Stray devices outside the area of interest

the need to modify any software or install any application on
the smartphone. Although a plethora of work exists on Wi-
Fi based localization, the application constraints mentioned in
Section I are satisfied by passive sniffing techniques, thereby
invalidating the other methods. However the existing passive
Wi-Fi methods do not tackle the problem of fine grained
counting and localization within a bounded indoor space.

Thus, we select passive Wi-Fi sniffing as it can be easily
implemented on COTS Wi-Fi hardware and does not require
any active participation from the users. Due to growing adop-
tion of smartphones, we can expect most of the people to
carry a smartphone with them all the time. The sniffers can be
incorporated in the light bulbs and mounted on the ceiling.

III. PEOPLE COUNTING

Our approach for estimating crowd distribution is to count
the number of smartphones and estimate the approximate
position of the smartphone using localization algorithms. We
look at the first part, i.e., counting people, in this section.

A. Challenges

• Increasing number of Wi-Fi devices : The number of
devices with a Wi-Fi interface has increased significantly
over the years and this number is predicted to increase
further. When we try to sniff for Wi-Fi packets in such
a scenario, we see a large number of devices that get
discovered in our vicinity. Generally the number of Wi-
Fi devices is much more than the number of people in a
given area. This is due to the presence of many devices
other than smartphones including laptops, tablet computers,
routers, Wi-Fi repeaters, and other smart devices with Wi-Fi
capabilities.

• Devices outside Target zone : Since Wi-Fi sniffers have a
large range (around 100m), the sniffers will be able to detect
even devices which are outside the target zone. These may
include people who are just passing by around the target
area. Consider a situation shown in Figure 2. It is important
to ignore the passer by devices as it may impact the count
severely depending on how many devices are outside the
area of interest.

• RSSI Approach: Since we choose Wi-Fi sniffing as our
preferred approach to gather data, the only information that
is available about an unknown node is the timestamped RSSI

Fig. 3: Type of Wi-Fi packets seen during Wi-Fi sniffing

values from multiple sniffers. We are restricted to use only
RSSI based localization approaches as no other fine grained
information such as TDoA, AoA are available to us. RSSI
is known to be prone to large and small scale variations
due to multipath and reflection of signals. It may also vary
depending on the orientation and position of the smartphone.
This may lead to inaccuracies in location estimation.

• Time resolution and Frequency of Packets: As our
approach is non-intrusive in nature, we do not possess
any control over how many packets might be sent from
a smartphone at any given time. We conducted several
experiments with several smartphones (in one case upto
3000 devices) and we conclude that the majority of the
smartphones send a packet every 30 - 60 seconds. The
number of packets transmitted heavily depends on the
configuration a smartphone is in; a large number of packets
can be expected during data transfer where as fewer packets
during idle or low battery mode. Having more number of
packets gives us the ability to mitigate the effects of RSSI
variation by applying appropriate filtering and smoothing
mechanisms. However, a large number of packets cannot be
assumed to generated from each smartphone all the time.
Due to these factors, the accuracy of localization might be
non-uniform among the discovered smartphones.

B. Filtering Mechanisms

The Wi-Fi data collected from smart bulbs are subjected
to a number of filtering and post-processing steps to infer the
people count in the target zone. This section describes the steps
we propose in order to avoid counting unwanted devices in and
around the area of interest.

Filtering based on Wi-Fi Packet type: Figure 3 shows a pie
chart of the different types of Wi-Fi packets encountered dur-
ing a sniffing session that collected close to 2 million packets.
A majority of the packets are Data packets constituting around
32% followed by Beacon frames and Probe Response packets
which constitute roughly 18% and 12% respectively. The
Beacon frames and Probe Response packets are transmitted by
Wi-Fi routers, hence can be ignored. Removing these would
reduce the size of data set by 31%.

Filtering based on Proximity: To avoid detection of the
devices that are far away from the target zone, we propose
to set an RSSI threshold for each sniffer. The threshold is
chosen such that we avoid detection of very weak signals
which probably might originate either from a far away device



Fig. 4: Comparison of count results obtained at an auditorium
with the ground truth from manual counting

or a device which might be on the other side of a thick wall.
The area of interest is surveyed and measurements are taken
both inside and outside the target zone in order to select an
optimal threshold. This can be done during the lighting grid
installation phase.

Filtering based on Manufacturer Identities: Many static
devices within the target zone such as routers, smart television,
printers can be blacklisted based on such manufacturer identi-
ties. To further reduce the dataset and remove static devices, we
use a time-based blacklisting approach. Each day a blacklist
file is built up containing newly detected OUIs. A time is
chosen such that no activity from people is seen, for instance
every night between 2AM to 4AM would be a probable time
where Wi-Fi activity will be mostly because of static devices in
the area and not from people in the vicinity. All these devices
are put in a blacklist and ignored when they are detected the
next time.

Avoiding Stray Devices: After various levels of filtering as
discussed in the previous sections, there might still be false
positives due to passers by and devices just outside the target
area. In order to reduce the number of false positives we try
to estimate the dwell time of each device. It represents the
length of time a device was visible during a sniffing session.
Devices which just passed by will be detected for a very short
interval resulting in lower values of dwell time. To further
reduce the number of false positives, we only take into account
devices which were detected by multiple sniffers after applying
an RSSI threshold as mentioned before.

C. Counting Results

In order to evaluate the algorithm in real word scenarios,
we deployed Wi-Fi sniffers at an event involving people at an
auditorium and a coffee corner in an office building.

Auditorium: The space is 10m × 14m with a capacity
of approximately 120 people. We deployed 3 sniffers in the
room and gathered Wi-Fi sniffing data during an event. The
people count obtained after post processing is shown in Figure
4. The ground truth was collected by manual counting. We
see in Figure 4 that the algorithm closely follows the ground
truth. However during peak times, the estimated people count
is much less than the actual count. Upon surveying people,
two reasons were found. A number of people who attended
the event never brought their smartphones with them (many
left their phones on the desk). Several people also switched
their Wi-Fi off as they were paranoid about privacy reasons.

Fig. 5: Wilab2 testbed setup showing static Wi-Fi nodes on
the left and mobile robots to the right

IV. POSITION ESTIMATION

In order to efficiently analyze the viability of localiza-
tion algorithms, we make use of a Wi-Fi testbed, Wilab2
testbed [2], where we can recreate scenario with a large area.
Wilab2 is a generic, heterogeneous wireless testbed of size
61m × 22m and consists of over 120 fixed Wi-Fi nodes
mounted close to the ceiling and 16 mobile robots that can be
remotely operated. This setup closely mimics spaces such as an
arena concourse or an auditorium. Since the robots also have
Wi-Fi nodes mounted on them they can be used to mimic the
people moving or emulate crowd buildup at different locations.
The data collected from the experiments are analyzed using
different localization algorithms.

We describe the localization algorithms which were used to
deduce the location of an unknown node. We propose enhance-
ments to improve localization accuracy and its dependency on
various factors.

Centroid Based: Weighted Centroid Localization (WCL) has
been used to determine the location of nodes in Wireless
Sensor Networks (WSN) [18]. The algorithm has low exe-
cution time and computational complexity. WCL determines
the position of a target node to be localized by averaging
the locations of known reference points also known as anchor
nodes. In WCL, the weights are adjusted such that the anchor
nodes closest to an unknown node gets more weight compared
to the nodes that are farther away from the unknown node. This
increases the location estimation accuracy.

Traditionally WCL algorithms are typically used in large
scale WSN deployments; it takes into account only the anchor
points in range of the target node to estimate the position. In
our scenario, all the deployed sniffers will be located close to
each other as they are part of the lighting grid. This combined
with long range of Wi-Fi a majority of them are always within
the range at any given time. Hence errors will be introduced
in position estimation if we take into account all the sniffers
in the area. Hence, we take only S sniffers out of the total N
that receive the strongest RSSI values.

Constraint Matching: Ecolocation (ECL) algorithm proposed
by Kiran et al. [19] is a range free localization algorithm. The
algorithm has a low complexity and a reasonable accuracy. The
localization area is partitioned based on distance constraints.
These constraints form a unique signature for different regions
in the localization area. The location which has the maximum
number of satisfied constraints is then determined to be the
best estimate of the target node’s location. The ECL algorithm



Algorithm Average Execution time (ms)
Naive ECL 1200
Modified ECL 168

TABLE I: Execution times for naive and modified approach

estimates the position by doing an exhaustive search on all
possible points in the localization area. This can be highly
time consuming if the area is large with high number of anchor
points. In order to reduce the computation time, we need to
perform constraint matching only in selective regions instead
of doing it for the complete space.

We propose a bounded polygon method (BPM) to reduce
the execution time and improve estimation accuracy. BPM
involves finding the approximate zone of localization based
on signals from the first S strongest sniffers. A bounded
polygon is then formed based on lowest and highest di-
mensions of the strongest sniffers. The constraint matching
is then applied within the bounded polygon. Choosing an
appropriate value of S determines the area of the resulting
polygon area. If (S = N) then complete localization space is
considered. Table I shows the improvement in execution time.
Having an approximate pre-localization stage before actual
localization can reduce the execution time by almost 8 times.
Let (Snifferi.x,Snifferi.y) be the location of ith sniffer. Let
Snifferi.RSSI represent received signal strength of the ith

sniffer. The algorithm to construct the bounded polygon is
shown in Algorithm 1.

Algorithm 1: Algorithm for constructing a bounded
polygon

max sniffers = get 4 highest RSSI sniffers (Snifferi.RSSI)
∀i ∈ S
x min = min(max sniffersj .x) ∀j ∈ {1, 2, 3, 4}
y min = min(max sniffersj .y) ∀j ∈ {1, 2, 3, 4}
x max = max(max sniffersj .x) ∀j ∈ {1, 2, 3, 4}
y max = max(max sniffersj .y) ∀j ∈ {1, 2, 3, 4}
Bounded Polygon = bound(x min,y min,x max,y max)
ConstraintMatching(Bounded Polygon)

A. Results

The discussed range free algorithms were compared against
popular localization techniques such as Multilateration with
Linear Least Squares (LLS) approach and Non-Linear Least
Squares (NLLS) approach [20]. Figure 6 shows the comparison
between the localization algorithms. It can be observed that
range free localization methods such as Constraint matching
and Weighted Centroid Localization (WCL) perform better
than range based methods like Multilateration. Multilateration
suffers as it requires estimation of the distance based on path
loss models where even small errors in distance estimation
introduces errors in position estimates. Figure 7 shows the
reduction in error when we consider only S strongest sniffers
out of the total N using Weighted Centroid localization.
Figure 8(a) shows the CDF of errors for the naive algorithm
that considers every possible location in the localization space.
Figure 8(b) shows CDF of errors based on bounded polygon
approach. It can be observed that bounded polygon method
results in higher accuracy even when the distance between

Fig. 6: Comparison of CDF of errors for different localization
algorithms

Fig. 7: Average localization error for a node as the value of S
approaches N

sniffers is high compared to the naive approach. The naive
algorithm provides as estimation accuracy within 4m only
30% of the time where as with bounded polygon method the
accuracy is within 4m close to 80% of the time.

We define the term sniffer density as the distance between
adjacent sniffers in the grid. The results are summarized in
Table II for a select few values and the number of smart bulbs
required to achieve the denoted accuracy.

Sniffer Density Accuracy <2m Accuracy <2.5m
3 80% 95%
4 74% 82%
5 52% 70%
6 55% 55%

TABLE II: Sniffer densities and associated localization accu-
racy with number of smart bulbs required

V. CONCLUSION AND FUTURE WORK

We looked at leveraging existing lighting grids for estimat-
ing crowd distribution with Wi-Fi sniffers for smart IoT appli-
cations. We were constrained to developing a non-intrusive and
non-participatory crowd density estimation technique, which
led us to use passive Wi-Fi based methods.

We split the problem of estimating crowd distribution into
people counting and localization. For people counting, we
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Fig. 8: Improvement in position estimation using bounded polygon

proposed several filtering and post processing mechanisms.
When evaluated in live office setups and testbeds, we got
to 75% of the ground truth despite people’s behavior. For
localization, our bounded polygon algorithm gives accuracy
within 2m ≥ 80% of the time with sniffer density of 3m. We
tested our algorithms in a real-world testbed, wherein mobile
robots with Wi-Fi interface were used to mimic movement of
people.

Some of the directions for future research are as follows

• The accuracy of counting by Wi-Fi sniffing can be influ-
enced the demography of the crowd. A future research can
take into account heuristics and statistics of smartphone
usage among different age groups to further refine the
count.

• Analyzing social interactions among the people in the
crowd is another interesting area of research. The re-
membered SSID information in the sniffed probe request
frames can be used an input for this.
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G. Tröster, “Probing crowd density through smartphones in city-scale
mass gatherings,” EPJ Data Science, vol. 2, no. 5, 2013. [Online].
Available: http://www.epjdatascience.com/content/2/1/5

[6] T. Zhao, R. Nevatia, and B. Wu, “Segmentation and tracking of multiple
humans in crowded environments,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, July 2008.

[7] J. Rittscher, P. H. Tu, and N. Krahnstoever, “Simultaneous estimation
of segmentation and shape,” in 2005 IEEE CVPR’05, vol. 2, June 2005,
pp. 486–493 vol. 2.

[8] G. J. Brostow and R. Cipolla, “Unsupervised bayesian detection of
independent motion in crowds,” in 2006 IEEE CVPR’06, vol. 1, June
2006, pp. 594–601.

[9] B. Tao Zhao, Ram Nevatia, “Segmentation and Tracking of Multiple
Humans in Crowded Environments,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2008.

[10] W. Xi, J. Zhao, X. Y. Li, K. Zhao, S. Tang, X. Liu, and Z. Jiang,
“Electronic frog eye: Counting crowd using wifi,” in IEEE INFOCOM
2014, April 2014.

[11] S. D. Domenico, G. Pecoraro, E. Cianca, and M. D. Sanctis, “Trained-
once device-free crowd counting and occupancy estimation using wifi:
A doppler spectrum based approach,” in 2016 IEEE WiMob, Oct 2016.

[12] D. Halperin, W. Hu, A. Sheth, and D. Wetherall, “Tool release:
Gathering 802.11n traces with channel state information,” SIGCOMM
Comput. Commun. Rev., vol. 41, no. 1, Jan. 2011. [Online]. Available:
http://doi.acm.org/10.1145/1925861.1925870

[13] J. Wilson and N. Patwari, “Radio tomographic imaging with wireless
networks,” IEEE Transactions on Mobile Computing, May 2010.

[14] S. Depatla, A. Muralidharan, and Y. Mostofi, “Occupancy Estimation
Using Only WiFi Power Measurements,” IEEE JSAC, 2015.

[15] B. Bonn, A. Barzan, P. Quax, and W. Lamotte, “Wifipi: Involuntary
tracking of visitors at mass events,” in IEEE WoWMoM, June 2013.

[16] Y. Wang, J. Yang, Y. Chen, H. Liu, M. Gruteser, and R. P. Martin,
“Tracking human queues using single-point signal monitoring,” in
MobiSys ’14, 2014.

[17] A. B. M. Musa and J. Eriksson, “Tracking unmodified smartphones
using wi-fi monitors,” in SenSys ’12. ACM, 2012.

[18] J. Blumenthal, R. Grossmann, F. Golatowski, and D. Timmermann,
“Weighted centroid localization in zigbee-based sensor networks,” in
WISP 2007. IEEE. IEEE, 2007, pp. 1–6.

[19] K. Yedavalli, B. Krishnamachari, S. Ravula, and B. Srinivasan, “Ecolo-
cation: a sequence based technique for rf localization in wireless sensor
networks,” in IPSN 2005., April 2005.

[20] W. S. Murphy, Jr., and W. Hereman, “Determination of a position in
three dimensions using . . .” Tech. Rep., 1999.


