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Abstract—Cordless kitchens are the next big step in Smart
Kitchens that are enabled by the Internet of Things (IoT)
paradigm. The appliances in a cordless kitchen are powered
by inductive power sources (PTx) that are integrated into
kitchen counter-tops. The appliance and the PTx exchange
control information using a near-field communication (NFC)
channel.

These appliances currently do not have Internet connectiv-
ity to enable smart cooking and control of the appliance from
smartphones. Embedding a WiFi radio powered by batteries
on the appliance is undesirable as batteries require recharging
or replacement, and also increase the cost of the appliance.
Therefore, we propose to connect the PTx to Internet and
exploit the NFC channel for tunneling Internet traffic to the
appliances.

Due to the heavy magnetic fields induced by the PTx, this
NFC channel has to be time-slotted, which is unique to the
cordless kitchen appliances. This introduces many challenges
on the communication, as the low data rates and high latencies
of the NFC channel are aggravated by the slotting of the NFC
channel. We focus on the TCP protocol as it is the most widely
used transport protocol on the Internet. The performance of
TCP is severely affected due to the time-slotted NFC channel.
We identify two major problems that occur when TCP/IP is
tunneled over the time-slotted NFC channel, namely spurious
retransmissions of the TCP packets and packet drops at the
NFC interface. Since most of the TCP/IP sessions in this
environment are short, relying on TCP’s natural course to
adapt to long delays is not viable.

To solve these, we propose a method to determine optimal
TCP retransmission timeout values, and a channel sensing
mechanism to avoid packet drops. In addition, we perform a
detailed analysis to study the influence of parameters such as
the contention window size, maximum segment size and NFC
bit error rates. We implement and evaluate the solutions on a
cordless kitchen testbed. We find that the proposed solutions
almost completely eliminate the spurious retransmissions and
packet drops. Furthermore, we achieve up to 53 % lower end-
to-end latency at 24 kbps in the NFC time-slotted mode.

1. Introduction

With the emergence of the Internet of Things (IoT)
technologies, the concept of Smart Kitchen [1] is being de-

veloped. This concept has brought a wave of intelligent and
connected devices that has transformed the way we cook and
interact with our kitchen appliances, such as enabling the
appliances to be controlled from smartphones and cooking
by uploading recipes from a remote location. These cater to
the busy lifestyles of the current generation. An imminent
technological development in the smart kitchen domain is
the concept of ‘Cordless Kitchen’ [2]. In this concept,
introduced by Wireless Power Consortium (WPC) [3], the
appliances do not need power cords or batteries to operate.
Instead, they are powered by inductive power sources that
may be built into a kitchen counter, cooktop, or a table.
The appliance needs to be simply placed on top of a power
transmitter (PTx) and the user should be able to cook,
interact and control the appliance remotely.

As shown in Figure 1, the PTx transfers power via
electromagnetic induction to another coil placed in the appli-
ance. The power is then converted back into electrical energy
and/or heat for cooking within the appliance. Figure 2 shows
the power coils and NFC antennas in the PTx and appli-
ance. Unlike the traditional kitchen appliances, the cordless
kitchen appliances are made intelligent. They communicate
with the PTx to ensure that the amount of power received
remains within the limits of the appliance and according to
the input from the user. The communication between the
appliance and the PTx takes place using an NFC channel.
This makes cooking much more precise, responsive and
repeatable with the cordless appliances.

Figure 1: The cordless kitchen concept.

An important requirement of the cordless appliances is
that the users must be able to upload recipes, software up-
dates and control them from a smartphone. Currently, these
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Figure 2: Power coils and NFC antennas. (a) PTx with
primary coil and NFC antenna, and (b) Appliance with
secondary coil and NFC antenna.

appliances lack Internet connectivity, and this paper attempts
to solve this issue. A straightforward way of providing
Internet to the appliances would be to install a WiFi module.
Using batteries in the appliances is undesirable as batteries
require recharging or replacement, and will also increase
the cost of the appliances. Furthermore, the appliances need
not support connectivity when they are away from the
PTx. An alternative is to power the WiFi module by PTx.
However, when the PTx goes into the standby mode, the
appliance will be switched off. Therefore the WiFi module
will not be awake at all times leading to loss of messages
and eventually, connectivity. Another alternative is to use
the existing NFC channel, which we propose to exploit
in this paper. Here, the PTx is connected to the Internet
(maybe through WiFi/Ethernet), and tunnels the packets to
the appliance through the NFC channel. When a message
arrives onto the PTx in the standby mode, it can power up
the appliance, if placed on the top of the PTx, and establish
communications. This approach makes the appliance cost
effective too.

Currently, the maximum data rate supported by the NFC
channel is 848 kbps. However due to practical constraints,
the NFC channel needs to be time-slotted and must oper-
ate at a 15% duty-cycle (see Section 2), which results in
low data rates on the NFC channel. Transmission Control
Protocol (TCP) over Internet Protocol (IP), the most widely
used protocol on the Internet, is heavy as it is optimized
for exchanging large amounts of data at much higher data
rates. Therefore, tunneling TCP/IP over the constrained NFC
channel will have reduced performance including increased
latency. While cooking applications are firm and soft real-
time and missing deadlines may not be hazardous, a high
latency affects the cooking procedure, quality of the food
and also the user-experience. Although TCP is designed to
adapt to the channel delay and the available bandwidth, the
adaptation does not work as intended in the cordless kitchen
scenario. This is because the number of B exchanged in our
scenario is quite low (1 to 5 kB), which is not enough for
the adaptation to take place. Motivated by this, we focus on
adapting the TCP/IP protocol to the time-multiplexed NFC
channel in order to achieve an acceptable performance of
TCP.

Two major problems arise while using TCP in the cord-
less kitchen system. (a) Spurious retransmissions of packets:
the delay on the NFC channel causes TCP to timeout even

though packets are not lost; and (b) packet drops at the NFC
interface due to the processing speed mismatch between the
TCP/IP stack and the NFC module. We propose solutions to
these problems, and further analyze various parameters that
influence the communication. To the best of our knowledge,
this is the first work that deals with these challenges and
provides implementable solutions with a good performance.
Specifically, our contributions are as follows:
1) We demonstrate the challenges posed by the high de-

lay and unique time-slotted NFC channel. Further, to
eliminate spurious retransmissions, we provide a general-
ized solution to calculate optimal retransmission timeout
(RTO) values depending on the packet size and the data
rate of the NFC channel.

2) Although TCP is designed to adapt the RTO over time
by estimating the delay on the channel, it does not
consider the payload sizes in this estimation. This leads
to choosing an incorrect RTO value for this system,
resulting in spurious retransmissions when the TCP pay-
load size varies over time. To avoid this, we propose a
new algorithm for dynamic RTO estimation considering
the channel delays. This algorithm ensures that optimum
RTO values are set for each packet such that spurious
retransmissions are eliminated, and delayed retransmis-
sions are prevented in case of packet loss.

3) We propose an NFC channel sensing mechanism which
slows down the TCP stack to match the transmission
speed of the NFC channel, thereby achieving an optimum
inter-packet delay.

4) We also do a parametric analysis of other factors that
affect the performance such as the TCP contention win-
dow (CWND) size, maximum segment size (MSS), NFC
BERs, non-TCP/IP messages.

5) We implement our solutions on an experimental cordless
kitchen setup and evaluate the solutions with respect to
a standard TCP implementation.
The rest of the paper is organized as follows. Section 2

gives an overview of the NFC interface. Section 3 explains
the Internet connectivity architecture and the experimental
setup used. Section 4 describes the challenges in adapting
the TCP protocol and the proposed solutions. Section 5
provides the evaluation of our solutions. An analysis of
various parameters is presented in Section 6. An overview
of related work is discussed in Section 7. Section 8 provides
concluding remarks.

2. Overview of the NFC Interface

Similar to the inductive power transfer, NFC technology
is also based on the concept of electromagnetic induction.
As the PTx generates very high magnetic fields that can
disrupt the NFC communications, WPC [3] has proposed
a solution where the wireless power transfer and the NFC
communications operate in a time-multiplexed fashion as
shown in Figure 3. The NFC communications take place
only at the zero crossings of the power signal for a duration
of Tzero = 1.5 ms. The power transfer takes place in the
remaining time (8.5 ms).



Figure 3: Time-multiplexing of the power and NFC signals

Figure 4: The bridge architecture for Internet connectivity

The NFC communications mostly comply with the NFC
Forum specifications, operating at bit rates of 106, 212, 424,
and 848 kbps. These rates reduce to 15% in the time-slotted
mode. Table 1 shows the number of B that can be read using
different NFC bit rates in the time-slotted mode. Two new
NFC read and write commands have been introduced to
reduce the communications overhead. The commands follow
the ISO/IEC 14443 half-duplex transmission protocol. The
new write command supports similar payload sizes. These
commands carry messages containing measurement data,
operating limits, control data and auxiliary data for Internet
connectivity.

TABLE 1: Payload size in the new NFC read command
Bit rate (kbps) Num. of B in payload

106 5
212 19
424 48
848 104

3. System Overview

3.1. Internet Connectivity Architecture

We propose an architecture to enable Internet connec-
tivity to cordless kitchen appliances wherein the PTx has
wired or wireless Internet connectivity and TCP/IP packets
are tunneled over the NFC channel to the appliances. We call
this the bridge architecture as the PTx acts like a network
bridge by processing only the data link and physical layers
for the appliance, as shown in Figure 4. This architecture
enables the appliance to be an IoT device with its own
stack. In this architecture, the load on the NFC channel
increases due to the communications overhead introduced
by the TCP/IP headers, TCP handshake, acknowledgment
and retransmission mechanisms.

3.2. Experimental Setup

We perform experiments in a test setup of the cordless
kitchen. The experimental setup consists of three Linux
based systems that behave as a cordless appliance, PTx
and end-user device. The block diagram of the experimental
setup is illustrated in Figure 5. The Lightweight IP (LwIP)
stack [4] is installed on all devices, where only the required
layers of the stack are utilized. An Ethernet connection is
used between the PTx and the end-user device. An NFC
channel is setup between the PTx and the cordless appliance.
As the PTx operates in the NFC Reader/Writer (RW) mode
and the appliance operates in the NFC Card Emulator (CE)
mode, these are also created in the setup with NFC RW
and CE devices. Figure 6 shows the test setup used in the
experiments.

Figure 5: Block diagram of our test setup

Our NFC devices support bit rates of 212 kbps and
424 kbps. They are capable of transferring a chunk of 14 B
(at 212 kbps) and 30 B (at 424 kbps) in one communication
time slot of 1.5 ms, which occurs every 10 ms. So the effec-
tive data rate in the time-slotted mode would be 11.2 kbps (at
212 kbps) and 24 kbps (at 424 kbps). The modules require
the data chunk to be available at least 2 ms before the start
of a time-slot.

In a kitchen scenario, one may not place the appliance
exactly on top of a PTx always. The WPC standard allows
a leeway of up to 10 cm and hence requires that no bit
errors occur up to this radius from the center of the PTx.
Therefore, error correction techniques are not used. The
NFC RW device terminates the connection with an NFC
CE device when bit errors are detected with the assumption
that the appliance is in an unsafe position.

Figure 6: Our test setup of the cordless kitchen



The MCUs used in the module are responsible for
fragmentation of the incoming packets from the TCP/IP
stacks. The reassembly is done in the respective stacks.
The MCUs are also responsible for synchronizing the data
transfer with the communication time-slots. They have an
incoming packet buffer of 2 kB. Serial communication links
(UART) are used between the MCUs and the NFC devices
at 115200 baud. Both MCUs have an interrupt driven UART
reception, and store and process only one packet at a time.

A proprietary UI protocol is used between the end-
user device and the appliance. The TCP server and client
applications are run on these to exchange data using the UI
protocol. Table 2 summarizes the communication overhead
in the system. In the experiments, the appliance is assigned
with an IP address of 192.168.1.102, and the end-user device
with 192.168.1.202.

TABLE 2: Communication overheads
Overhead type Size (Bytes)

IPv4 20
TCP 20

UI protocol 8
Packet handling 8
NFC protocol 4 per time-slot

Total 56 + (4 * Num. of time-slots per packet)

4. Adapting TCP to the NFC Channel

TCP is a heavy protocol for the NFC channels with low
data rates, which are further lowered by the time-slots in
the cordless kitchen scenario. In this section, we present two
major problems that prevent a standard TCP implementation
from being used directly in the cordless kitchen scenario,
and then we present our solutions.

4.1. Challenges

4.1.1. TCP spurious retransmissions. Spurious retrans-
missions occur when the sender experiences a timeout be-
fore the ACK is received, due to the RTO value being
small compared to that of the packet Round Trip Time
(RTT). The presence of such retransmissions has a large
impact on the TCP session latency. This is because the
latency of the system is already high due to the constrained
NFC channel, and transmitting these extra packets would
increase the latency even further. It is therefore important to
eliminate these retransmissions by identifying the cause of
their occurrence.

To find this cause, a TCP session is established over
the channel at an NFC bit rate of 11.2 kbps, a TCP MSS
of 1024 B and an RTO value of 1 s. A payload size equal
to the MSS is exchanged in the session, which generates
an NFC payload size of 1080 B, including all the overheads
mentioned in Table 2. Figure 7(a) shows the output from the
Wireshark tool taken over the Ethernet link. Note that the
packets over the NFC channel are not visible in the capture.
This figure shows two spurious retransmissions (packets 8

and 9) and duplicate acknowledgement (Dup ACK) sent in
response to the retransmission from the appliance.

Table 3 shows the average number of retransmissions
and Dup ACKs observed for different payload sizes at a
bit rate of 11.2 kbps. It can be noticed that as the data
size decreases, the number of retransmissions also decreases.
Smaller data sizes will have a smaller RTT, so the chances
of the RTO timer of 1 s getting triggered will be lower,
which would result in fewer or no spurious retransmissions.
At 11.2 kbps, the RTT of a 500 B packet is about 1.1 s,
resulting in a total of two retransmissions, and the RTT
of a 250 B packet is about 0.6 s, which results in only a
single retransmission. Results obtained at 24 kbps show that
fewer retransmissions are observed compared to a bit rate
of 11.2 kbps. This is because at higher bit rates the RTT of
packets over NFC will be even lower.

TABLE 3: Number of retransmissions at 11.2 kbps
Payload on NFC

(Bytes)
Appliance PTx

Retxs. Dup ACKs Retxs. Dup ACKs
250 1 0 0 0
500 1 0 1 0

1000 2 0 1 1
1080 2 0 1 1

These experiments confirm that the RTO value is too low
for the given system, which results in spurious retransmis-
sions. To eliminate these, the RTO values of the packets need
to be set appropriately. The TCP/IP stack updates the RTO
value for its packets dynamically by constantly measuring
the RTT of its data packets. However, the timeout occurs for
the very first data packet of the session, for which an RTT
measurement has not been made yet. The stack therefore
ends up using the initial RTO value set at compile time. The
TCP sessions in the cordless kitchen can be short, so there
will not be enough time to adapt to TCP’s RTO estimation.
As this system uses a low data rate and high-delay channel,
it is necessary to remove the retransmissions right from the
start of the session to ensure a good end-user experience.

4.1.2. Packet drops due to the small inter-packet de-
lay. In Figure 7(b), spurious retransmissions and duplicate
ACKs have been removed by setting an initial RTO value
of 3.5 s (see Section 4.2.2). However, there is still one
retransmission at the appliance, as indicated by the stack
logs. The total time of the TCP connection increased to
about 5.9 s compared to the one with an initial RTO value of
1 s, which was about 4.56 s. This unexpected increase takes
place between packets 5 and 6 (highlighted in Figure 7(b)).
The time difference of about 4 s between these packets
suggests that packet 6 is a retransmitted packet from the
appliance. The result of the experiment at 24 kbps with an
exchange of 1080 B of data and an initial RTO value of 2.5 s
(see Section 4.2.2) also shows a time difference of about
2.5 s between the packets 5 and 6. This again suggests that
packet 6 has been retransmitted by the appliance stack, just
like the previous case. Similar results are observed for other
data sizes.

The average delay between packets 5 and 6, representing
the ACK of the TCP handshake and the first data packet
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Figure 7: Packet capture (a) indicating spurious retransmissions (packets 8 and 9) and Dup ACK (highlighted in black), (b)
showing data exchange of 1080 B with an initial RTO value of 3.5 s at 11.2 kbps wherein a retransmission is observed, and
(c) showing data exchange of 1080 B with NFC channel sensing mechanism and initial RTO value of 3.5 s at 11.2 kbps.

respectively, is around 50.6µs in normal situations, i.e.,
without the NFC channel. This inter-packet delay between
consecutive packets is too small for the NFC channel as it
is half-duplex and the NFC module used in this setup can
store and process only a single packet at a time. It discards
all packets that it receives while transmitting. In this case,
packet 5 takes around 69.04 ms to travel through the NFC
channel at 11.2 kbps and around 39.76 ms at 24 kbps. So
when the appliance stack sends packet 6 only 50.6 µs after
sending packet 5, the NFC module discards it as it will be
busy transmitting packet 5.

4.2. Proposed Solutions

Both these problems are due to the low data rate, time-
slotted NFC channel. The packet drops at the NFC interface
causes retransmissions, and spurious retransmissions can
cause further packet drops at the NFC interfaces. We break
this tie by first solving the packet drops issue, and then
address the spurious retransmissions problem.

4.2.1. Avoiding packet drops. To avoid packet drops, we
implement an NFC channel sensing mechanism. The link
layers on the appliance and PTx keep track of the channel

busy status and sends packets only when the channel is free.
By implementing this mechanism at both the ends of the
NFC channel, i.e., in the appliance and in the PTx interfaces,
packet drops can be avoided.

Figure 7(c) shows the result after implementing the
mechanism. The TCP session is free from retransmissions
and Dup ACK packets. This results in a reduction of the
overall latency. With a payload size of 1080 B, the TCP
session latency is about 2.87 s at 11.2 kbps, which was 4.56 s
before solving the retransmission problems. At 24 kbps the
latency is found to be 1.33 s, which was initially 2.45 s.

4.2.2. Avoiding spurious retransmissions - Generalized
approach. To avoid spurious retransmissions, the initial
TCP RTO value must be greater than the RTT of the max-
imum packet size traveling through the NFC channel. This
guarantees that there are no spurious retransmissions and
also ensures quick retransmission in case of packet loss. The
RTO value is automatically updated after TCP starts making
RTT measurements. The RTT estimation of the data packets
must be done by considering the NFC bit rate being used,
the bandwidth of the WiFi/Ethernet channels and the size of
the packets that will be transmitted. A TCP/IP packet from
the appliance travels through the NFC and Ethernet/WiFi



channels before reaching the end-user device. So the packet
RTT can be broadly defined as:

RTT = RTTNFC +RTTNW, (1)

where, RTT is the total packet round trip time, RTTNFC
is the RTT over the NFC channel and RTTNW is the
RTT over the WiFi/Ethernet channel. The initial RTO value
recommended for standard wireless (or Ethernet) channels
should be used as RTTNW. Authors of [5] recommend a
minimum value of 1 s as the TCP RTO value for wireless
channels. The measured RTT of the previous packet can
later be used to vary this value dynamically, as explained in
the next section.

RTTNFC is the parameter that is significantly higher
of the two RTTs. When the appliance stack transmits a
packet, it first travels over the UART channel to reach the
NFC module, as shown in Figure 5. The NFC module then
fragments the packet into chunks and transmits them over
the NFC channel to the PTx stack. RTTNFC is given by the
following equation,

RTTNFC = 2(tUART + tmaxslotwait + tNFC + tUARTchunk) (2)

tUART is the packet transmission time over the UART.
It is calculated as sizepckt/baudUART, where sizepckt is the
total packet size sent to the NFC module and baudUART is
the UART baud. As per Section 3.2, the chunks must be
present in the NFC module at least 2 ms before the start of
a time-slot. When the stack sends a packet, it can arrive at
the NFC module at any point between two time-slots. So
the maximum amount of time a packet needs to wait for a
time-slot would be tmaxslotwait = 12 ms.

tNFC is the theoretical transmission time over the slotted
NFC channel. It is given by slotspckt ∗ 10ms (assuming a
50 Hz mains power region), where slotspckt is the number
of time-slots needed to transmit the packet. The latter is
calculated as sizepckt/sizechunk, where sizechunk is the size
of the payload section of the NFC protocol. It varies with
the bit rate of the NFC being used. tUARTchunk is the time to
transmit the last chunk to the PTx stack over the UART. It
is represented as sizechunk/baudUART.

The initial TCP RTO value must accommodate the
maximum packet size that is transmitted through the NFC
channel. In this experiment, the maximum packet size is
1080 B as the TCP MSS is set to 1024 B. The total RTT for
this packet is estimated using Equation 1, and it is found
to be 3373.24 ms. As the timer period of the LwIP stack
is 500 ms, this value is rounded up to the nearest multiple
of 500 ms. This results in optimum initial RTO values of
3.5 s for an NFC bit rate of 11.2 kbps and 2.5 s for 24 kbps.
By using 3.5 s as the initial RTO value at 11.2 kbps, no
spurious retransmissions are observed in the TCP session,
and both server and client stacks wait sufficiently long to
receive an acknowledgment (see Figure 7(b)). Similar results
are observed at 24 kbps.

4.2.3. Avoiding spurious retransmissions - New algo-
rithm for dynamic TCP RTO estimation. TCP in the

LwIP stack calculates the RTO values by measuring the
RTT of the data packets using Van Jacobson’s (VJ) RTT
estimation algorithm [6]. VJ’s algorithm uses the Smoothed
RTT (SRTT) calculation method to predict RTO values. It
measures the RTT of the data packets to estimate the RTO
value of the next packet to be sent. Therefore, the RTO
value which is assigned to a packet is based on the RTT
of the previous packet, which is done irrespective of the
packet size. So let us consider situations where the TCP
sessions are long and have a high initial RTO value (e.g.,
3.5 s). If an application sends small data packets of less
than 10 B for a long time, VJ’s algorithm would adjust
the RTO value to a smaller value of about 1 s. Now, if
the application suddenly sends large packets, like recipes
greater than 1 kB, an RTO value of 1 s would be too small.
This would result in spurious retransmissions until TCP
adjusts the RTO value according to the new packet size. On
the other hand, if the application sends very small packets
right after sending large packets, the RTO values of the
small packets would be large initially until it is gradually
adjusted to an appropriate value. In the meantime, if one
of these packets gets lost, the system would take longer
to timeout resulting in delayed retransmission. These cases
would increase the overall system latency.

Figure 8(a) shows a TCP stream diagram of the client
stack in a long session with 68 data packets of varying sizes.
Points with the same sequence number denote retransmis-
sions. It can be seen that every time a large packet (denoted
by large jump in sequence number and/or time) is sent after
a series of small packets, spurious retransmissions occur.
This is because VJ’s algorithm would have adjusted the RTO
value for small packets. But when large packets are suddenly
sent, this RTO value becomes too small considering the RTT
of large packets. In Figure 8(a), there are eight spurious
retransmissions and eight Dup ACKs resulting in a total
session duration of 22.58 s. It is very important to eliminate
these retransmissions because it increases the TCP session
latency in the order of seconds, due to the constrained nature
of the NFC channel. Here too a new algorithm is introduced
that sets the RTO value depending on the estimated RTT of
the current packet to be sent, instead of completely relying
on the RTT estimation of the previous data packet. This
approach has been designed as follows.

The RTT estimation needs to consider the current chan-
nel delays. In this system, the WiFi/Ethernet and the NFC
channels could have variable delays. The NFC channel in
the cordless kitchen would be used to send non-TCP/IP
messages related to power control, state transition, etc. every
now and then. This would affect the RTT of the TCP/IP
messages. If the delay of the combined channels increases
over time, it is difficult to identify if the increase is on the
NFC channel or on the WiFi channel. If the delay decreases
below the initial value it will be due to a reduced delay
only on the WiFi channel because the RTT on NFC channel
will not go below the theoretical value (maximum reduction
can be 10 ms when the packet gets a time slot as soon as it
arrives).

Considering this, the theoretical RTO is calculated for
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Figure 8: Long TCP session using (a) VJ’s algorithm, and
(b) new RTO estimation algorithm

each packet before its transmission, using Equation 1.
RTTNW is set according to the initial RTO value recom-
mended for WiFi/Ethernet channels. RTTNFC is calculated
using Equation 2. (Note: The LwIP stack uses an initial RTO
value of 3 s. As we use an Ethernet channel with < 1 ms
delay, an initial RTO value of 1 s is used in the experiments).
The RTT of each data packet is dynamically measured to
estimate the current channel delay. The delay is estimated by
comparing the theoretical RTT of the previous packet with
the measured RTT of the previous packet. The factor (r)
by which the measured value deviates from the theoretical
value is calculated. It is given by RTTmeasuredPrev/RTTPrev.

When the factor r ≥ 1, the theoretical values of both
RTTNFC and RTTNW are scaled up by this value. If r < 1,
then only RTTNW is scaled down. This is because the RTT
of a packet over the NFC channel cannot go lower than its
theoretical value. A minimum value of 1 s is maintained for
RTTNW as recommended by [6]. The new RTT is calculated
with these scaled values using Equation 1. To better estimate
the delay, a window of recent values of r can be maintained
and the highest value in the window can be used for the
current RTT estimate. The window size should be chosen
depending on the type of the applications being supported
and the rate of packet transmission. The LwIP stack has
a timer period of 500 ms. So the estimated RTO value is
calculated as a multiple of 500 ms. In case of packet loss,
the exponential backoff algorithm is used with the estimated
RTO value of the lost packet.

RTTNFC := r ∗RTTNFC if r > 1 (3)

RTTNW := max(1000, r ∗RTTNW) ∀r (4)

The RTT is estimated considering the time it takes to
transmit the packet in both the directions. The receiver may
not always send back a packet of the same size. If only an
ACK is received, the estimate will be larger than anticipated.
However, if the receiver replies with a bigger packet, for
example, using delayed ACK or Nagle’s algorithms, the
estimated RTO value will be smaller than the actual value.
This will lead to spurious retransmissions.

To solve this problem, the delayed ACK algorithm is
modified such that an empty ACK will be sent if the size
of the received packet is less than the size of the packet to
be transmitted. A drawback of this solution is that the stack
would send ACK packets even if the received packet size
is slightly smaller than the packet to be sent. As the RTO
values are rounded up, the packets of similar sizes may (but
not necessarily) have the same RTO value. In this case it
would be unnecessary to send an extra ACK packet which
could increase the latency of the system. It would be safe
to use the modified algorithm even though it may not give
the best result in the above case.

Algorithm 1 New RTO estimation algorithm
1: expBackoff(): computes binary exponential backoff based on

retransmit count
2:
3: procedure
4: r ← 1 // Initialize r to 1
5: while Packet queue is not empty do
6: RTTNFC ← Calculate theoretical RTTNFC using Eq. 2
7: RTTNW ← Use recommended initial RTO value
8: RTT ← RTTNFC + RTTNW // Store theoretical RTT

to calculate r
9: if r ≥ 1 then

10: RTTNFC ← r ∗RTTNFC
11: RTTNW ← r ∗RTTNW
12: else
13: RTTNW ← max(1000, r ∗RTTNW)
14: end if
15: RTO ← d(RTTNFC+RTTNW)/500e∗500 //Round-up

to the next 500ms
16: if Retransmission = true then
17: RTO ← RTO∗expBackoff() // Backoff procedure
18: end if
19: RTTmeas ← Measure and update RTT of the packet

transmitted
20: r ← RTTmeas/RTT // Compute r
21: end while
22: end procedure

The new RTO estimation algorithm is presented in Al-
gorithm 1. It is tested on the previous TCP session shown in
Figure 8(a). The same experimental setup with the Ethernet
channel is used for testing. Without the modification in
the delayed ACK algorithm, a latency of around 15.96 s
is achieved as shown in Figure 8(b); 6.62 s lower than the
original algorithm. This gives a 29.32% reduction in the
latency in this example. However, there is still one spurious
retransmission and one Dup ACK, which are due to the
delayed ACK algorithm. When the modified delayed ACK
algorithm is used, all of the retransmissions are removed



but the overall latency will be 16.1 s, which is slightly
higher than in the previous case. Note that the percentage
improvement of the new RTO estimation algorithm depends
on the data set in consideration. It varies with different data
sets.

5. Results

This section presents the results of the proposed solu-
tions for different NFC bit rates and data sizes. The system
performance is analyzed by measuring latency, throughput,
number of retransmissions in the TCP sessions, NFC chan-
nel bandwidth utilization, etc. The results are averaged over
20 TCP sessions.

5.1. Packet retransmissions

Tables 4 and 5 show the number of retransmissions, DUP
ACKs and keep-alive messages in the TCP session after
using the mitigation techniques in Sections 4.2.1 and 4.2.2,
at 11.2 kbps and 24 kbps respectively. The retransmitted
packets are depicted by the symbol ‘R’, DUP ACKs by
‘DA’ and keep-alive packets by ‘KA’. The experiments
are carried out with TCP sessions exchanging single packet
with NFC payload sizes of 250, 500, 1000 and 1080 B at
11.2 kbps and 24 kbps.

TABLE 4: Number of retransmissions at 11.2 kbps
NFC payload
size (Bytes)

Retransmissions in TCP session

Original TCP/IP
configuration

NFC channel sense
(Sec. 4.2.1)

Optimum
TCP RTO

(Sec. 4.2.2)

NFC channel sense +
Optimum TCP RTO

250 1R 1R + 1DA 1R 0R
500 2R 2R + 1DA + 2KA 1R 0R
1000 3R + 1DA 3R + 2DA + 2KA 1R 0R
1080 3R + 1DA 3R + 2DA + 2KA 1R 0R

TABLE 5: Number of retransmissions at 24 kbps
NFC payload
size (Bytes)

Retransmissions in TCP session

Original TCP/IP
configuration

NFC channel sense
(Sec. 4.2.1)

Optimum
TCP RTO

(Sec. 4.2.2)

NFC Channel sense +
Optimum TCP RTO

250 1R 0R 1R 0R
500 1R + 1DA 0R 1R 0R
1000 1R 2R + 1DA + 2KA 1R 0R
1080 3R + 1DA 2R + 1DA + 2KA 1R 0R

Tables 4 and 5 show that by using only technique of
Section 4.2.2 the total number of retransmissions can be
brought down to one. By using only technique of Sec-
tion 4.2.1, the total number of packets increases compared
to the respective original TCP sessions in most of the cases.
However, when both these techniques are used together, all
types of retransmissions, DUP ACKs and keep-alive packets
are removed. Before concluding on the performance based
on the number of packets in the TCP session, it is important
to study the latency of the session (see Section 5.2).

Figure 9 depicts the RTO values estimated by the new
algorithm (Section 4.2.3) in a long TCP session with ran-
domly varying packet sizes. These values are compared with
the ones estimated by VJ’s algorithm and the packet RTT
values obtained over an Ethernet channel with < 1 ms delay.

The estimations are however, still carried out considering the
WiFi channel with a minimum RTO of 1 s, which results in
an offset of about 1 s between the measured RTT and esti-
mated RTO values as seen in Figure 9. The new algorithm
clearly gives a more accurate estimate of the RTO values
compared to VJ’s algorithm as it takes the packet sizes and
bit rates of the channels into account, therefore avoiding all
the spurious and delayed retransmission scenarios.

Figure 9: Comparison of packet RTO values with the new
and VJ’s RTO estimation algorithms

(a) Data rate 11.2 kbps

(b) Data rate 24 kbps

Figure 10: Latencies of TCP sessions

5.2. Latency

Reduction in the number of packets in a TCP session
need not necessarily improve the latency of the session.
This is because the time-delay between packet generation,
especially in case of retransmitted packets, is also an im-
portant factor that affects the overall latency. Figures 10(a)



and 10(b) show the graphs of latencies of TCP sessions
with and without the retransmission mitigation techniques
of Section 4.2 at 11.2 kbps and 24 kbps respectively.

The percentage by which the latencies increase or de-
crease using the mitigation techniques compared to the
original latency is indicated in the graphs. At lower NFC bit
rates, for example 11.2 kbps, the TCP session latency with
only technique of Section 4.2.1 becomes higher than that
with only of Section 4.2.2 when there are more extra packets
resulting from spurious retransmissions. This is because
even though the packet drops are prevented, there will be
too many extra packets transmitted over a low bandwidth
channel. On the contrary, at higher bit rates like 24 kbps,
the latency with only technique of Section 4.2.1 will be
lower than that with only technique of Section 4.2.2. This
is because when only technique of Section 4.2.2 is used, the
time-delay created by retransmission resulting from packet
drop, will be more significant compared to the packet trans-
mission time on a channel with relatively higher data rate.
The TCP/IP stack has to wait for the timeout to realize that
the packet has been dropped and resend it. This waiting time
will be long compared to the time taken to transmit the extra
packets. To achieve best results, it is recommended to use
both the mitigation techniques together. Using both, up to
38% reduction in latency can be achieved at 11.2 kbps and
up to 53% at 24 kbps.

Figure 11: System throughput at 11.2 kbps and 24 kbps

Figure 12: Bandwidth utilization at 11.2 kbps and 24 kbps

5.3. Throughput and goodput

The throughput of the system remains the same with
or without the retransmission mitigation techniques of Sec-
tion 4.2. It is known that the techniques are used to reduce

the latency, however, the reduction in latency is achieved
by reducing the number of packets or B traveling through
the channel. Therefore the throughput, which is the number
of B transferred per unit time, will be unchanged. Figure 11
depicts the throughput vs. goodput of the system for dif-
ferent NFC payload sizes exchanged in the TCP session
at 11.2 kbps and 24 kbps. On an average the throughput is
9.9kbps at an NFC bit rate of 11.2 kbps and 17.01 kbps at
24 kbps. The goodput of the system improves with increase
in the payload size because the overheads from the TCP/IP
header and UI protocol become less significant with increase
in payload size. Choosing a bigger TCP MSS size will help
in increasing the goodput of the system.

The throughput is lower for TCP sessions with small
payload sizes, and it gradually increases with increase in
payload size. This is because with small payload sizes, the
time spent in waiting for a time-slot will be significant
compared to the packet transmission time. At higher bit rates
this becomes more noticeable because the transmission time
will be even smaller. The NFC bandwidth is fixed in the
system, so other ways of increasing the throughput would
include TCP/IP header compression techniques [7], [8], and
employing 6LoWPAN technology [9], [10].

5.4. Bandwidth utilization

The bandwidth utilization of NFC channel for the ex-
periments performed is illustrated in Figure 12. The average
bandwidth utilization is found to be 88.4% at 11.2 kbps and
70.89% at 24 kbps. The utilization is limited by the process-
ing overhead which includes packet transmission time over
UART and WiFi/Ethernet channels, packet processing time
by the stack, etc. Lower bandwidth utilization is observed
at higher bit rate because the processing overhead remains
constant irrespective of the NFC bit rate. This overhead will
be more significant at higher bit rates because it has smaller
NFC transmission time. The bandwidth utilization in the
system can be improved by parallelizing the packet process-
ing and transmission operations, increasing bit rate of serial
communication (UART) or by eliminating the MCUs and
directly interfacing the appliance and PTx stacks to their re-
spective NFC devices. This will reduce the processing delay
caused by the serial communication. These techniques could
not be tested due to limitations in the available hardware.

6. Parametric Analysis

This section focuses on analyzing parameters that could
possibly affect the latency of the TCP connection in cordless
kitchen. Simulations and theoretical calculations have been
made to analyze the effects of parameters such as TCP MSS,
CWND, NFC BER and non-TCP/IP messages.

6.1. Effect of TCP MSS value

Large MSS may cause IP fragmentation and reduce the
efficiency of transmission. If the MSS size is too small,



the TCP/IP header overhead would become very prominent
resulting in inefficient use of the channel bandwidth, thus
increasing the latency. Therefore, choosing the right max-
imum segment size is very important to achieve minimum
latency.

Table 6 summarizes the average results of transferring 5
kB of data from the end-user device to the appliance using
different TCP MSS sizes at 11.2 kbps. The results show that
unless a very small value (< 512 B) is chosen, the latency
will not increase by a large number. A small MSS of 256 B
increases the latency by 26.28%, however, choosing a size
greater than or equal to 512 B increases the latency only by
< 10%. So an MSS value of 1024 B or greater would give a
very high performance with minimal latency. It is important
to note that in case of an erroneous NFC/WiFi channel with
a high bit error rate (BER), large packets would be more
susceptible to errors compared to small packets. So the TCP
MSS should be chosen depending on the conditions of the
channel in order to avoid too many retransmissions caused
by packet errors.

TABLE 6: TCP session latency for different TCP MSS
values

TCP MSS (Bytes) 1460 1024 512 256
TCP session latency (s) 6.24 6.29 6.78 7.88

6.2. Effect of initial TCP CWND size

When TCP encounters a packet loss, the slow start
process starts with an initial CWND size. It can be hy-
pothesized that if the initial CWND is very small then the
latency of the TCP session would increase as the slow start
process would take longer to reach the maximum threshold,
making the channel idle for a significant amount of time.
This hypothesis is tested by considering an MSS of 1024 B
and a maximum CWND size of 8192 B at 11.2 kbps. The
experiment is performed to find out the optimum initial
CWND size for the system such that there is minimum
latency considering the congestion on the Ethernet/WiFi
channels.

Figure 13 shows TCP session latencies with 100 kB
data transfer for different initial CWND sizes over a lossy
channel, where one out of twenty five packets are lost on
an average. Only up to 7.5% reduction can be achieved
when a bigger CWND size is chosen. This is because the
NFC channel has a very small bandwidth and has almost
maximum utilization even for small window sizes. Larger
initial CWND size does not increase the channel utilization
further. Therefore it can be concluded that the size of the
initial CWND does not have a significant effect on the
latency of this system.

6.3. Effect of NFC BER

Bit errors in the NFC channel introduce errors in TCP/IP
packets being tunneled through the channel, causing check-
sum failures. In the given setup, there is no error correction

Figure 13: TCP session latency for different initial CWND
sizes over a lossy channel

mechanism in the NFC layer. So even a single bit error in
the packet would lead to retransmission as the packet will be
dropped by the stack. Therefore, the presence of bit errors
in the NFC channel will have a huge impact on the latency
of the system.

Bit errors in the NFC channel can be random or bursty.
Random errors would lead to more number of retransmis-
sions as the errors are randomly distributed and can affect
any packet. On the contrary, the burst errors come as a block,
so the errors would be confined to fewer packets. The burst
error would have less impact on the TCP session latency
compared to random error. An experiment is designed to
verify this hypothesis where the appliance and end-user de-
vice exchange 100 packets of 500 B each. Random and burst
errors of 10−4 and 10−5 are introduced in the NFC channel.
The burst errors are introduced based on the Gilbert−Elliott
model by taking the average burst length as 4 bits.

Figures 14(a) and 14(c) show the output of the TCP
session with random NFC BERs of 10−4 and 10−5 respec-
tively. It can be seen that as the BER reduces, the number
of retransmissions decreases and hence the TCP session
latencies. The same behavior is observed with burst error
as shown in Figures 14(b) and 14(d). As per the hypothesis,
at a given NFC BER, fewer retransmissions are observed
with burst errors compared to that with random errors. This
proves that burst errors have less impact on the system
latency as the errors come in bursts which affect fewer
TCP/IP packets.

Results show that at a BER of 10−4, the latency with
the burst error is around 54.56% less than that with random
error. However, as the BER reduces, the difference in latency
between the two types of errors reduces. At a BER of 10−6,
there is only about 1.8% difference in the session latencies.
Therefore, it can be concluded that at lower BERs the type
of error will not matter much but at higher BERs burst errors
will have lesser impact on the overall latency.

6.4. Considering non-TCP/IP messages over the
NFC channel

For the ease of analysis, in all of the experiments the
NFC channel was assumed to comprise of only TCP/IP
messages. However, in real case scenario, the NFC channel
would also carry other types of messages such as power
control, measurement, state transition, negotiation, etc. The



(a) Random BER of 10−4 (b) Burst BER of 10−4 (c) Random BER of 10−5 (d) Burst BER of 10−5

Figure 14: TCP session with random and burst BER

Figure 15: Latencies for different freq. of non-TCP msgs.

frequency of these messages would depend on the type
of application being used. An experiment is performed to
analyze the performance of TCP in the presence of such
messages at different frequencies of their occurrence. The
frequency of non-TCP/IP messages is taken as a fraction,
for example, 2 slots every 10 slots used for other messages.
This will impact the RTT of a TCP/IP packet over the NFC
channel, i.e. tNFC will increase by the number of slots used
by other messages while the packet is being transferred over
the NFC channel. tNFC now becomes,

tNFC =
slotspckt

1− freqctrlmsgs
∗ 10,

where, freqctrlmsgs = a/b. a/b signifies ’a’ out of every ’b’
slots format. b is taken as section size, so b−a will be usable
slots per section. tNFC has to be rounded up to the nearest
section size b because the usable slots can occur anywhere
in the section.

As the frequency of other messages increases, the TCP
session latency also increases. This increase will be non-
linear because the number of usable slots varies inversely
with latency. If freqctrlmsgs = 0, all slots will be available
for TCP/IP packets. If freqctrlmsgs = 1, all slots will be used
for other messages, so tNFC becomes ∞. This means that
the TCP/IP messages cannot be transferred. A TCP session
with 1 kB data exchange and a section size b of 10 slots is
considered for the experiment. Theoretical calculations are
made for TCP session latencies using the Equation 1 (refer
Section 4.2.2) and for an NFC bit rate of 848 kbps.

The results of the experiment is depicted in Figure 15.
The graph shows an inverse variation function, so the rate
of increase in latency will be steep as the frequency of
non-TCP/IP messages increases. Results show that an ef-
ficiency of around 72% can be achieved in the transmission
of TCP/IP messages at a frequency of 5/10. Appropriate
frequencies can be chosen depending on the criticality of
the Internet application.

7. Related Work

Over the last few years there has been research on
providing Internet connectivity to NFC enabled IoT devices.
For the ease of comparison and analysis, the methods of
enabling connectivity in literature can be broadly classified
as follows.

Tunneling standard TCP/IP protocol over NFC: Juan
et al. introduce a concept called WebTag in [11], which
enables direct IP based access to a sensor tag using NFC
technology. It supports secure applications by tunneling the
TCP/IP traffic over the NFC carrier. This work gives a
brief overview of performance issues and their mitigation
techniques. However, it lacks a detailed analysis of TCP
characteristics that affect the system performance. Stefan et
al. propose a concept for a test system in [12], that can estab-
lish a TCP/IP connection over an NFC channel and tunnel all
the TCP/IP data through it. They provide some test results
in terms of TCP retransmission rate and measured data rate
using three different IP Maximum Transmission Unit (MTU)
sizes. However, they do not take other aspects of the TCP/IP
protocol into account. They only do a preliminary analysis
to show advantages and disadvantages of tunneling TCP/IP
over NFC devices.

6LoWPAN adaptation for TCP/IP protocol over NFC: In
[9], YongGeun et al. have proposed a method of transferring
IPV6 packets over an NFC channel using 6LowPAN func-
tionalities. In this, they remodel the IPV6 stack to include
the data link and the physical layers of the NFC stack.
Junhwan et al. propose a 6LoWPAN adaptation protocol
in [10] for transmitting IPV6 packets over NFC devices.
It involves modifying the standard TCP/IP stack to enable
IPV6 communication over an NFC channel using 6LoW-
PAN techniques described in [9]. The authors provide some
simulation results in terms of latency and total packet count.
They also compare the number of IPV6 packet transmissions
with and without the IP header compression. However, other
aspects of the performance have not been discussed in detail.

TCP/IP adaptation mechanisms for high delay networks:
Dina et al. proposed a new protocol called the Explicit
Control Protocol (XCP) in [13], which gives an improved
congestion control mechanism in very high bandwidth-delay
product networks. The work mainly concentrates on im-
proving the bandwidth utilization and fairness in bandwidth
allocation. As the NFC protocol only supports one-to-one
communication and already has a good bandwidth utilization
in the cordless kitchen system, these techniques are not



applicable. In [14], Spencer et al. give an overview of
the performance implications of slow links on the TCP/IP
protocol. They recommend header and payload compression
techniques to reduce the latency, TCP buffer auto-tuning to
avoid packet drops due to buffer overflow conditions and
limited transmit algorithm to trigger fast retransmit and fast
recovery in case of packet loss. The authors of [15], [16]
and [17] provide a couple of techniques to improve the
throughput of TCP in wireless networks with high delay
variability. They mainly discuss about spurious retransmis-
sions that occur in such networks and provide solutions.

All these works provide some aspects of TCP/IP behav-
ior in high delay, low bandwidth links but none of them
studies the performance of a system containing different
types of wireless channels with dissimilar characteristics.
Furthermore, the works do not study the time-slotted NFC
channel characteristics and quantify the TCP performance
based on latency, throughput, retransmissions and bandwidth
utilization for different bit rates and BERs.

8. Conclusions

This work focused on enabling Internet connectivity to
cordless kitchen appliances. In order to provide an efficient
and seamless communication with the appliance, we pro-
posed the bridge architecture to enable connectivity via the
time-slotted NFC channel of the cordless kitchen.

As most of the IoT applications rely on the TCP pro-
tocol, this work mainly focused on adapting TCP to the
cordless kitchen system. We identified two major problems,
namely spurious retransmissions and packet drops at the
NFC interface, that arise while adapting TCP to the time-
slotted NFC channel. To eliminate spurious retransmissions,
we provided a generalized solution to compute optimum
RTO values for TCP/IP packets tunneled over the NFC chan-
nel. As TCP does not consider the payload sizes for RTO
estimation, spurious retransmissions were observed when
there was high variability in packet sizes. To mitigate this,
we proposed a new algorithm that dynamically estimates
and updates the RTO values of the packets considering
their payload sizes and changing channel delays. The algo-
rithm is designed to adapt and perform well even when the
WiFi/Ethernet channel has large delay compared to the NFC
channel. For the data set considered, a reduction of 29.32%
in latency is observed using this algorithm compared to VJ’s
algorithm used in the LwIP stack. To avoid packet drops in
the NFC module resulting from small inter-packet delays,
we introduced an NFC channel sensing mechanism in the
cordless kitchen system. Using all these techniques, up to
38% reduction in the system latency is achieved at an NFC
bit rate of 11.2 kbps and up to 53% at 24 kbps.

We also did a parametric analysis considering param-
eters that affect the system performance such as the TCP
MSS, CWND size, NFC BER and non-TCP/IP control mes-
sages. Take-aways of this study include: (a) recommended
MSS value is ≥ 1024 B to get a good performance; (b) the
initial CWND size does not have a significant impact on
the system latency, and (c) the system has relatively better

performance with bursty errors in the NFC channel than
with random bit errors.
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