Session 10

PODC 22, July 25-29, 2022, Salerno, Italy

Parameterized Verification under Release Acquire is
PSPACE-complete

Shankaranarayanan Krishna
krishnas@cse.iitb.ac.in
IIT Bombay
Mumbeai, India

Roland Meyer

roland.meyer@tu-bs.de
TU Braunschweig
Braunschweig, Germany

ABSTRACT

We study the safety verification problem for parameterized systems
under the release-acquire (RA) semantics. In the non-parameterized
setting, access to atomic compare-and-swap (CAS) instructions ren-
ders the safety verification problem undecidable. In the light of
this result, we consider parameterized systems consisting of an
unbounded number of environment threads executing identical but
CAS-free programs combined with a fixed number of distinguished
threads that are unrestricted. Our first contribution is an effective
and simplified RA semantics for such systems. We leverage the sim-
plified semantics to show that safety verification becomes PSPACE
in the parameterized case, an optimistic result for algorithmic veri-
fication. Our proof uses an encoding to Datalog which, in addition
to the complexity upper bound, suggests a verification algorithm
based on Horn clause solvers. We also provide a matching lower
bound showing that safety verification is PSPACE-hard.

CCS CONCEPTS

- Theory of computation — Program verification; - Software
and its engineering — Formal software verification;

KEYWORDS

Model-checking, Parameterized verification, Shared memory, Weak
memory models, Release-Acquire semantics

ACM Reference Format:

Shankaranarayanan Krishna, Adwait Godbole, Roland Meyer, and Soham
Chakraborty. 2022. Parameterized Verification under Release Acquire is
PSPACE-complete. In Proceedings of the 2022 ACM Symposium on Principles
of Distributed Computing (PODC °22), July 25-29, 2022, Salerno, Italy. ACM,
New York, NY, USA, 11 pages. https://doi.org/10.1145/3519270.3538445

1 INTRODUCTION

Release-acquire (RA) is a popular fragment of C++11 [12] (in which
reads are annotated by acquire and writes by release) that strikes a
good balance between programmability and performance and has

PODC °22, July 25-29, 2022, Salerno, Italy.

© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9262-4/22/07...$15.00
https://doi.org/10.1145/3519270.3538445

This work is licensed under a Creative Commons Attribution
International 4.0 License.

482

Adwait Godbole
adwait@berkeley.edu
UC Berkeley
Berkeley, USA

Soham Chakraborty
s.s.chakraborty@tudelft.nl
TU Delft
Delft, Netherlands

received considerable attention (see e.g., [7, 24, 26, 28, 32, 35, 39—
41]). The model is not limited to concurrent programs, though. RA
has tight links [33] with causal consistency (CC) [6], a prominent
consistency guarantee in distributed databases [36]. In partcular,
variants of RA, namely Weak Release-Acquire (WRA) and Strong
Release-Acquire (SRA) [32] have been observed to be equivalent to
the transactional models of CC and causal convergence (CCv) in
the single instruction transaction setting [13, 30, 31]. Our results
can be extended in a straightforward manner to these models.

We are interested in the decidability and complexity of safety ver-
ification for RA implementations. Common to RA implementations
and distributed databases is that they tend to offer functionality to
multi-threaded client programs, be it means of synchronization or
access to shared data. Clients to such RA implementations all call
and execute the same code, and their identity does not have an in-
fluence on the functionality they get, an assumption often referred
as “indistinguishability”. As pointed out by Attiya and Rajsbaum
[11], indistinguishability is one of the pillars of computer science
and has been the basis for abstraction techniques, lower bounds,
and impossibility results. When verifying the RA implementation,
the consequence of indistinguishability is that we can abstract the
client program to the invocations of the offered functionality [16].
The result is a so-called instance of the RA implementation in which
concurrent threads execute the code of interest. There is a subtlety.
As the RA implementation should be correct for every client, we
cannot fix the instance to be verified. We have to prove correctness
irrespective of the number of threads executing the code. This is
the classical formulation of a parameterized system as it has been
studied over the last 35 years [16].

To explain the challenges of parameterized verification under RA,
it will help to understand how to program under RA. The slogan of
RA is never read “overwritten” values [33]. Assume we have shared
variables x and vy, initially 0, and a thread first stores 1 to y and
then 1 to x. Assume a second thread reads the 1 from x. Under
RA, that thread can no longer read the value 0 from y. Formulated
axiomatically [8], the reads-from, modification order, program order,
and from-read should be acyclic [33]. While less concise, there
are operational formulations of RA that make explicit information
about the computation which will be useful for our development [26,
27, 38]. The high-level picture is this. Program and modification
order are encoded as natural numbers, called timestamps. Each
thread stores locally a view object, a map from shared variables

https://doi.org/10.1145/3519270.3538445
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3519270.3538445

Session 10

PODC 22, July 25-29, 2022, Salerno, Italy

Variables x and y initially 0 Minit m2
producer consumer X201, 0,220 mlm-[y,], XHO] A Ao Ay m]-[x,4, XH7]
Alir=y Ty =1 y—0 y— 10 y 10
. ——1): . i i . x 0 X7
)Lzzlf(r ._1)‘ TZ:for 1in1.‘z. tl@/\l,rzo[] t]@Al,r:O[XHO] tl@/\c,,d,r=1[]
A3 : x =1 T3 : s =X y—0 y—0 y— 10
R _ (i 9o 0
ox=1 |15:y:=2 y—0 y 10 y—10

Figure 1: A producer-consumer program (left) and an execution snippet with two threads playing the roles of producer and
consumer, respectively (right). We have z € N, x,y shared variables, r, s local registers, and @ representing non-deterministic

choice.

to timestamps. This map reflects the thread’s progress in terms of
seeing or, as above, hearing from stores to shared variables. The
communication is organized in a way that achieves the desired
acyclicity. Store instructions generate messages that decorate the
variable-value pair by a view. This view is the one held by the thread
except that the timestamp of the variable being written is raised
to a strictly higher value. The shared memory is implemented as
a pool to which the generated messages are added and in which
they remain forever. When loading a message from the pool, the
timestamp of the variable given by the message must be at least
the timestamp in the thread. The views are then joined so that the
receiver cannot load values older than what the sender has seen.

An Execution under RA. Consider the program in Figure 1. The
initial shared memory mjyj; consists of two messages, one per vari-
able. The green box below mijn;; represents the program counter
of each thread (A, 7), the values of their local registers r resp. s,
and their local views. After the store at 71, the local view of the
consumer is changed to ;‘:100, by increasing the timestamp of y to
some t € N (here 10) larger than the current value for y (here 0).
Then a message is added to mjyj; extending it to m;. When loading
a message from the pool, the timestamp of the variable given by
the message must be at least the timestamp of the same variable
in the thread’s local view. The views are then joined so that the
receiver cannot load values older than what the message generator
has seen. When Thread 1, the producer, executes A1, it loads the
x—0

y10° The

shared memory is implemented as a pool of messages to which
the generated messages are added and in which they remain for-
ever. Continuing on the example, another message is added when
Thread 1 executes A3 and makes a store for x, generating the mem-
ory my (note the increase in the timestamp of x). Let Thread 2
execute the load instruction 73 after Thread 1 executed A3. The
local view of Thread 2 before 73 is 22 . Thread 2 can load the

y—10°
] from

my, because the timestamp associated to x in either message is at
least as large as Thread 2’s view on x. After loading, the local view
of Thread 2 will either be yx»:)loo %, depending on the load.
The timestamps render the RA semantics infinite-state, which
makes algorithmic verification difficult. Indeed, the problem of
solving safety verification under RA in a complete way has recently
been studied and proven to be undecidable even for programs with
finite data domains [1]. Despite considerable efforts [1, 17, 31], the

message [y, 1, ;‘%100] in my, resulting in the local view

x—0
y—0

X7
y—10

message [x, 0,] from mijyj or the message [x, 4,

or

483

community is missing an expressive class of programs for which
the safety verification problem under RA is tractable. We observe
that all these works focus on the non-parameterized setting. As
argued in the introduction, the parameterized setting is equally
common for RA implementations. Yet, for parameterized systems
the problem has not been studied at all. We contribute such a study
and find that it brings the desired tractability to verification.

Problem Statement. We consider parameterized systems consist-
ing of arbitrarily many environment (env) threads executing the
same program and an apriori fixed number of distinguished (dis)
threads executing possibly different programs. Programs are writ-
ten in a simple while-language Com with the following statements:

c ==skip | assume e(r) | assert false | r:=e(r) |
e | c®c | ¢ | ri=x| x:=r | cas(x,ri,rz)

We obtain an instance of the system by fixing the number of
env threads. Programs compute on (thread-local) registers r from
the finite set Reg using assume, assert, assignments, sequential
composition, non-deterministic choice, and iteration. Conditionals
if and iteratives while can be derived from these operators, and
we use them where convenient. The shared memory is modeled
through variables x which are accessed by means ofload r := x, store
x = r, and compare-and-swap operations cas(x, r, rz). A cas is a
load instruction followed by a store instruction, executed atomically.
We have a finite set Var of shared variables, and work with the data
domain Dom. We do not insist on a shape of expressions e but
require an interpretation [e] : Dom™ — Dom that respects the
arity n of the expression. The problem considered is as follows.

Safety Verification for Parameterized Systems:

Given a parameterized system, is there a system in-
stance such that some computation of that instance
reaches an assertion violation?

The complexity of the problem depends on the system class
under consideration. We denote system classes by signatures of
the form env(type) || disi(type) || --- || disn(type). The “types”
constrain the programs executed by the threads, and we consider
two restrictions: a loop-free control flow, denoted by acyc, and the
instruction set which forbids the atomic compare-and-swap (CAS)
command, denoted by nocas. Thus, env(nocas, acyc) || dis(acyc)
represents the class of systems in which the arbitrarily many env
threads neither have loops nor CAS operations and a single distin-
guished dis thread executes a loop-free program.

Session 10

[| disi(nocas) || disg(nocas) || dis3 || disg ‘

dis(nocas) || dis(nocas)

PODC 22, July 25-29, 2022, Salerno, Italy

‘ disi(acyc) || - - - || disp(acyc)

(1]

env(nocas)
env(acyc)

non primitive recursive [1] ‘
undecidable (even without dis threads, [22])

PSPACE-complete (§4,5)

Table 1: Overview of the complexity results. Each entry corresponds to a system class where the type of the environment (env)
resp. distinguished (dis) threads is given by the row resp. column. Safety verification is undecidable for classes in red.

We focus on the class env(nocas) || disi(acyc) || - - - || disp(acyc),
where the env threads execute a CAS-free program (identical for
all of them), and the dis threads execute loop-free programs that
may contain CAS operations. We forbid CAS operations for the env
threads due to the following result of ours: in the presence of CAS,
even loop-free env threads are sufficient for undecidability.

THEOREM 1.1. Parameterized safety verification for env(acyc) is
undecidable.

To motivate the class of parameterized programs we consider,
we look at a number of concurrency benchmarks from the liter-
ature [29, 34, 37]. The Phoenix-2.0 benchmarks from Kozyrakis
[29] are shared memory concurrent programs that perform data-
intensive processing tasks, the programs from Lahav and Mar-
galit [34] are used for robustness analysis, and the benchmarks
from [37] are concurrent data structures. To classify the bench-
marks in our terms, the programs peterson-ra-bratosz, rcu [34], as
well as the Phoenix benchmark programs [29] (histogram, kmeans,
linear-regression, matrix_multiply, pca, string_match, word_count,
sort_pthread) contain a fixed-size loop that can be unrolled and no
cas accesses. This means they belong to the class env(nocas, acyc).
Likewise, the benchmarks dekker-fences [37], lamport-2-ra, lamport-
2-3-ra, peterson-ra [34] fall into the class env(nocas). Finally, we
also have the benchmarks barrier, chase-lev-deque, and peterson-ra-
bratosz from [37]. The program chase-lev-dequeue contains a loop
with a fixed bound which can be unrolled completely and a CAS
access which is not within any loop; barrier and peterson-ra-bratosz
contain wait loops (read-till-specific-value). Wait loops can be re-
modeled as a load followed by an assume statement, and hence
these benchmarks fall into the class env(nocas) || disy(acyc) || --- ||
disp(acyc).

Our Contributions. We list the main contributions of the paper.
Table 1 summarizes the landscape of complexity results.

A Simplified Semantics. Our first contribution is a simplified
semantics (§3) for parameterized systems of the form env(nocas)
that is equivalent with the standard RA semantics as far as safety
verification is concerned, and can be seen as an extension of the RA
semantics to the parameterized case. The simplified semantics uses
the notion of timestamp abstraction, which allows us to be imprecise
about the timestamps of the env threads. Our simplified semantics
is not restricted to the case of having indistinguishable threads,
but also works when we allow distinguished threads, without any
restrictions.

PSPACE Upper Bound As our second contribution, we give a
PSPACE-algorithm (§4) for the safety verification problem in the
class env(nocas) || disj(acyc) || --- || disp(acyc). This class cap-
tures bounded model checking [19] where the distinguished threads
are explored up to an under-approximate loop-unrolling bound. Our

484

PSPACE upper bound is obtained by encoding the safety verifica-
tion problem into the query evaluation problem for linear Datalog,
known to be in PSPACE [23]. The linear Datalog format is sup-
ported by Horn-clause solvers [14, 15], a state-of-the-art backend
in verification.

Lower Bounds. Our third contribution is a matching lower bound
for the safety verification problem in the above class. Actually,
we provide a stronger lower bound, namely for env(nocas, acyc)
which implies that safety verification of env(nocas) || disi(acyc) ||
-+« || disp(acyc) is PSPACE-complete. Additionally, to justify our
choice of CAS-free env threads, we prove that safety verification
for env(acyc) is undecidable (even for loop-free programs).

Related Work Atig et al. showed that safety verification is decid-
able for x86-TSO [3, 9]. This has been generalized to models with
non-speculative writes [10] and with persistence [2]. These decision
procedures rely on well-structuredness arguments [5, 21], often
leading to high complexities. Verification for parameterized TSO
programs has been considered in [4]. Esparza, et. al. studied the
complexity of leader-contributor systems [20]. At the heart of their
technique is the so-called copycat-lemma. Our simplified semantics
relies on an infinite-supply property which can be thought of as a
copycat variant for RA. The verification of concurrent programs
under RA in the non-parameterized setting has been studied in [1],
where safety verification is shown to be undecidable for programs
having four distinguished threads with CAS operations and non-
primitive-recursive for systems having two distinguished threads
and no CAS operations.

Supplementary material. This paper is accompanied by a full
version [22] which contains additional material and proofs.

2 THE RELEASE-ACQUIRE SEMANTICS

A parameterized system consists of an unknown and potentially
large number of threads, all running the same program. Threads
compute locally over a set of registers and interact with each other
by writing to and reading from a shared memory. The interaction
with the shared memory is under the Release Acquire (RA) seman-
tics [27, 33, 38]. Below we present the operational semantics of RA
[27, 38]. Recall the program syntax from the introduction and that
we work with parameterized systems having unboundedly many
env threads.

Local Configurations. The RA semantics enforces a total order
on all stores to the same variable. We model these total orders
by Time = N and refer to elements of Time as timestamps. Using
the total orders, each thread keeps track of its progress in the
computation. It maintains a view from View = Var — Time, that
maps each shared variable x to the timestamp of the most recent
event the thread has observed on x. The thread keeps track of the
program from Com to be executed next (which can in practice be

Session 10

represented as a program counter) , and the register valuation from
RVal = Reg — Dom. The set of thread-local configurations is thus
LCF = Com X RVal X View.

Unbounded Threads. The number of threads is not known a pri-
ori. Let TID = N be the set of thread identifiers. The thread-local
configuration map then assigns a local configuration to each thread:
LCFMap = TID — LCF.

Views. The views maintained by the threads are used for synchro-
nization. They determine where in the (appropriate) total order
a thread can place a store and from which stores it can load a
value. To this end, the shared memory holds messages - variable-
value pairs enriched by a view - of the form (x,d, vw): Msgs =
Var X Dom X View.

Shared Memory. A memory state is a set of such messages, and
we use Mem = 2MS8S for the set of all memory states. With this,
the set of all configurations of a parameterized system under RA is:
CF = Mem X LCFMap.

Transitions. To define the transition relation among configura-
tions, we first give a thread-local transition relation among thread-
local configurations — € LCF X LAB x LCF in Figure 2. Thread-
local transitions may be labelled with messages when represent-
ing interaction with the shared memory (load, store, and CAS):
({Id, st} x Msgs) U ({cas} X Msgs X Msgs). Transitions that op-
erate only on the local state of a thread are unlabeled, and re-
ferred to as silent transitions. The set of possible labels is LAB =
{e} U ({Id, st} x Msgs) U ({cas} X Msgs x Msgs). We elaborate on
the load, store, and CAS transitions by which a thread with local
view vw interacts with the shared memory.

Load. A load transition r := x picks a message (x, d, vw’) from the
shared memory and updates register r with the value d. The message
should not be outdated, meaning the timestamp of x in the message,
vw’(x), should be at least the thread’s current timestamp for x, vw(x).
The timestamps of other variables do not influence the feasibility
of the load transition. They are taken into account, however, when
the load is performed. The thread’s local view is updated by joining
the current view vw and vw’ by taking the maximum timestamp
per address; (vw LI vw’) = Ax. max(vw(x), vw’(x)).

Store. When a thread executes a store x := r it adds a message
(x,d, vw’) to the memory, where d is the value held by the register
r. The new thread-local view (and the message view), vw’, is ob-
tained from the current vw by increasing the time-stamp of x to a
fresh timestamp. We use vw <y vw’ to mean vw(x) < vw’(x) and
vw(y) = vw/(y) for all y # x.

CAS. A CAS transition is a load and store instruction executed
atomically. An instruction cas(x, r1, r2) has the intuitive meaning
atomic{r := x; assume r = rq; x := ra}. The instruction loads the
shared variable x, checks whether the value matches that of ry, and,
if it does, sets it to the value of ra. The check and the assignment
happen atomically which means the timestamp ts of the load and
the timestamp ts’ of the store should be adjacent, ts” = ts + 1.
The transition relation among configurations— € CF X TID x
(Msgs U {e}) x CF is defined in Figure 2. It is labeled by a thread
identifier and possibly a message (if the transition interacts with
the shared memory). In the case of loads, we require the memory to
hold the message to be loaded. In the case of stores, the message to

485

PODC 22, July 25-29, 2022, Salerno, Italy

be stored should not conflict with the memory. In the case of CAS,
we require both of the above, and that the two messages should have
consecutive timestamps. For now, two messages are non-conflicting
if either they are on different variables or their timestamps are
different. We defer a full definition of non-conflict to later where
we can give it a broader perspective.

Initial Configuration. Fix a parameterized system c of interest.
The initial thread-local configuration is Icfinit = (c, rvo, vwg), where
the register valuation assigns rvo(r) = 0 to all registers and the
view has vwg(x) = 0 for all x € Var. The initial configuration of
the parameterized system is cfy = (Memipit, [cfminit). The initial
memory Memijnjt holds messages where all shared variables store
value djnjt € Dom and the view that is constantly zero. The initial
thread-local configuration map assigns Icfmijpit(th) = Icfinit to all
threads. A computation (or execution or run) is a finite sequence of
consecutive transitions
(thy, msg,)

(thz, msg,) (thp, msg,,)
cfy ..

p = Cf()
It is initialized if cfy = cfinjt. We use TS(p) for the set of all non-
zero timestamps that occur in all configurations across all variables.
We use TID(p) to refer to the set of thread identifiers labeling the
transitions. For a set TID” C TID of thread identifiers, we use p | 1|/
to project the computation to transitions from the given threads.
With first(p) = cfy and last(p) = cf,, we access the first resp. last
configurations in the computation.

cfy.

3 A SIMPLIFIED SEMANTICS

In this section, we propose a simplified semantics for the class of
systems env(nocas) || disy || - - - || dis,. The key insight behind the
simplification is Lemma 3.3 (Infinite Supply Lemma) which shows
that if some env thread th generates a message (x, val, vw) in a com-
putation p, then p can be extended to a computation where a clone
of th generates the message (x, val, vw’) with vw’ = vw[x > ¢] for
some t > vw(x). The lemma and hence the simplification result rely
on the following assumption: arbitrarily many env threads execute
identical, CAS-free programs.

Making clones of env threads. Let us call a message msg an env
message if it is generated in a computation p by an env thread,
and define dis messages similarly. The fact that the number of env
threads is arbitrarily high allows clone env threads to duplicate
the computation and hence the generated messages. CAS-freeness
is crucial here, as it guarantees the duplicated computation to be
valid under RA. To ensure that the clone env threads can mimic the
env computation in p, we require that dis messages can be read by
the env clones whenever they can be read by the env threads in p.
This means that we respect the relative order among timestamps
between env and dis threads.

Making space for clones. To accommodate the timestamps of the
clone env messages in the extended computation, we create unused
timestamps along Time. Clones generate their messages in this
unused region via timestamp lifting (§3.1). Then, we define how to
combine the original computation p with that of the clones via an
operation called superposition (§3.2). Finally, Lemma 3.3 shows how
clones can generate messages with arbitrarily higher timestamps.
Timestamp abstraction. Since we can duplicate-at-will the env
messages, we need not store the entire set of env messages produced.

Session 10

rv(i)=d vw <, vw’

(ST-LocAL)

st, (x,d, vw’) (Skip

(x =71, rv, vw) rv, vw’)

rv(ry) =d; rv(r) = dp

(CAS-LocAL)

(LD-LocAL)

vw(x) < vw'(x) = ts

PODC 22, July 25-29, 2022, Salerno, Italy

vw(x) < vw'(x) v =rv[rd]

Id, (x,d, vw’) (Skip

(r ==x, rv, vw) v, vw L vw’)

w=vw[x > ts+1] vw’ =vwlUvw

(cas(x, rq, r), rv, vw)

Id, (x,d1,vw’) st (x,da,

) (skip, rv, vw"")

lcfm(th) = Icf Icf "M%, |ef msg € m

h,
(m, Icfm) 8 (oo Iefm(th — Ief'])

(LD-GLOBAL)

Icfm(th) = Icf Icf A&MS8L Sbmsgs o
(CAS-GLOBAL)

(ST-GLoBAL)

msg; €m msg, #m

lefm(th) = Icf lcf 222, ¢’

h,
(m, Icfm) T8,

msg # m

(m U {msg}, lcfm[th > Icf'])

Icfm(th) = Icf lcf — Icf’

h,
(m, Icfm) %8,

(m U {msg, }, lcfm[th — Icf'])

(UNLABELLED) -
(m, lefm) — (m, lcfm[th — Icf’])

Figure 2: Shared memory transitions: local transition relation (blue, silent transitions omitted) and global transition relation

(green).

Those with the smallest timestamps act as sufficient representatives.
Additionally, when a thread reads from an env message, we need not
be bothered about timestamp comparisons since we could always
generate a clone with as high a (missing) timestamp as required.
We capture this notion with timestamp abstraction (§3.4).

3.1 Timestamp Lifting

Timestamp Transformations. In our development, we make use
of timestamp transformations yi : Time — Time. We extend this to
views vw with a collection of per variable timestamp transforma-
tions M = {p* }xevar, where p* transforms the timestamps of vari-
able x. The transformed view M(vw) : Var — Time is Ax.z*(vw(x)).
We also extend timestamp transformations to messages, memories,
configurations, and computations by transforming the view entries.

RA-valid timestamp lifting. A timestamp transformation M =
{1 }xevar is an RA-valid timestamp lifting for a computation p if it
satisfies two properties for each x € Var: (1) it is strictly increasing
in that for all #1, ¢, € N with #; < t2 we have p*(t1) < p*(t2) and
moreover p*(0) = 0, (2) CAS-timestamps remain consecutive in
that a CAS operation on x with (load, store) timestamps (¢, ¢ + 1)
leads to p*(t + 1) = p*(t) + 1, . Note that M(cfinjt) = cfinjt- The
following lemma says that the run M(p) obtained by modifying the
timestamps of an RA computation p with an RA-valid timestamp
lifting M is also an RA computation.

LEmMA 3.1 (TIMESTAMP LIFTING). Let M = {p*}xevar be an RA-
valid timestamp lifting. If p is an RA computation, then so is M(p).
If a configuration cf is reachable, so is M(cf).

Lemma 3.1 tells us how to make space for clone env threads in a
given computation p. Next we see how to obtain a new computation
by embedding the clone computations in p.

3.2 Superposition

We define the superposition p » p’ of two computations p, p’ as
the computation that first executes p and then p’, and such that
the threads transitioning in p resp. p’ are disjoint. This requires
us to combine the memory in last(p) with the memory of every

486

configuration in p’. The combination, in turn, requires p and p’ to
be non-conflicting, which we discuss first.

Conflict. We need a notion of conflict not only for messages as
given by the RA semantics, but also for memories, configurations,
and computations. Two messages msg; = (x1, d1, vwy) and msg, =
(x2, d2, vwy) are non-conflicting, denoted by msg; # msg,, if either
their variables are different, x; # x2, the timestamps are different,
vwi(x1) # vwa(xz), or the timestamps are both zero, vwi(x1) =
0 = vwy(x2). Two memory states are non-conflicting, m; # my, if
for all msg; € m; and msg, € my, we have msg; # msg,. Two
configurations are non-conflicting, cfq # cfy, if their memory states
are non-conflicting. Two computations are non-conflicting, denoted
p # p’, if they use different threads and non-conflicting messages,
TID(p) N TID(p") = 0 and last(p) # last(p’).
The superposition of two non-conflicting computations is

prp’ = pi(last(p)®p").

We define the addition operation -®. The addition of a configuration
cf to a computation p = cfothemsg), - (themsg,) £ vields
the new computation

(thy, msg,)

(thp, msg,,

cf-@p = (cf-@cfp)) (cf-@®cfp).

The addition of configurations cf; = (mj1, Icfmy), cfa = (mg, [cfmy)
is the configuration cf; @ cfz = (my U mg, Icfm), where Icfm(th) =
lcfmy(th) if lefmi(th) # Icfinie and Icfm(th) = Icfmay(th) other-
wise. In particular, note that the initial configuration is neutral
for addition, that is cf-@cfy = cf. Consequently, when p # p’
holds and p’ is initialized, we have, last(p) = last(p) @ first(p’) =
first(last(p) @ p’).

The concatenation p1; p2 expects computations p; and pz with
last(p1) = first(p2) and returns the sequence consisting of the
transitions in p; followed by the transitions in py. We write p |eny
and p | 4;s to denote the projections of p to env resp. dis. Let Msgs(p)
be the memory in last(p), and Msgs(p | 4is) € Msgs(p) the subset
of messages added by dis threads during p. The following lemma
shows when superposition leads to a valid computation under RA.

Session 10

LEMMA 3.2 (SUPERPOSITION). Consider RA computations p, p’

with p leny #p” Lenv and Msgs(p l4is) = Msgs(p’ |dis). Then the
superposition p > (p’ leny) is an RA computation.

3.3 Infinite Supply Lemma

Let p be a computation in which an env message msg = (x, d, vw)
is generated. We will show how to duplicate the message. We space
out the timestamps of Msgs(p) using timestamp lifting so that we
create holes (unused timestamps) along Time. Then we generate
clones of env threads, denoted by copy(env). The holes are made
to accomodate the timestamps of copy(env) and the (higher) times-
tamp of the copy of msg. We preserve the order of timestamps in
copy(env) threads relative to those of dis threads. This ensures that
reads-from dependencies between env and dis are maintained.
Define the computation p as a clone of p |cny that is executed
by copy(env) threads. The write timestamps used by copy(env)
threads are the unoccupied timestamps generated by the timestamp
lifting operation M(p). We show an example of this via a graphic.
Let eT' resp. dT' denote the timestamps chosen by env and dis along
p (first row).
RA computation p: init dT? eT® dT! eT! eT?
eT? dT!

0 1
eT, eTy

1 2
eT, eTy

2
eTy

Timestamp lifted computation M(p): init dT°
Clone copy(p |eny) computation p: init

The second row shows the lifted computation (lifted timestamps
have subscript a) M(p) and the holes (faded). The third row shows
holes being used by copy(env) for p (subscript b). The construction
guarantees M(p) # p and superposition M(p)» p is allowed. In this
computation, p generates a clone of the message msg = (x, d, vw),
namely msg’ = (x, d, vw’) with higher vw’(x). Additionally, since
eTi, eTli) have the same position relative to all dT/ timestamps, so
do vw(y), vw’(y) for all variables y # x.

Now we state the Infinite Supply Lemma. As helper notation, for
a computation p and each variable x, we denote the timestamps of
stores of dis threads on x as tsf < ts} <---.

LEmMMA 3.3 (INFINITE SUPPLY). Let p be an RA computation in
which an env thread generates the message (x, d, vw). Foreach t* € N,
there exist timestamp lifting functions My = {1 }xevar and Mz =
{15 }xevar, and an RA computation p; so that

MI(P) > MZ(plenv) > p1

is an RA computation. This computation generates a message (x, d, vw’)
satisfying (ts comes from p)

(1) Yi((t" < tsf Avw(x) < tsS) = vw'(x) < (1)),
(2) Vi, Vy # x, vw(y) < ts? = vw/(y) < pi’(ts?),
(3) vw'(x) 2 py(t").

To see the lemma, understand M;(p) as the timestamp lifted
computation with holes. Computation Ma(p |eny) is the copy(env)
run, and p; is generated by another set of clones that produce the
new message (with higher timestamp). We note that run triplication
is not strictly necessary for message duplication, but makes the
proof easier. Points (1) and (2) in the lemma refer to the relative
ordering between env and dis timestamps, (3) refers to the new
message having an arbitrarily high x timestamp.

487

PODC 22, July 25-29, 2022, Salerno, Italy

3.4 Abstracting the Timestamps

We introduce the timestamp abstraction, the key building block for
the simplified semantics. Considering the asymmetry between the
dis and env messages, we distinguish the timestamps for the two
types of threads.

Timestamp Abstraction. If an env thread has read a message
(x,d,vw) from a dis thread with timestamp ts = vw(x) and has
generated a message msg on x, then clones of msg are available with
arbitrarily high timestamps at least as high as ts. To capture this
in our abstraction, we assign the env message msg a timestamp ts*
that is by definition larger than ts. We define the set of timestamps
in the simplified semantics as N & N*, where N* contains for each
ts € N a timestamp ts*. The timestamps are equipped with the
order < in which ts* is greater than ts and smaller than ts + 1:
0 <0* <1< 1% <... Timestamps of the form ts € N are used for
the stores of dis threads while those of the form ts* are used for
env threads. We admit multiple stores with the same timestamp ts*,
but at most one store for timestamps of the form ts. This abstracts
timestamps of multiple env messages between two dis messages by
a single ts* timestamp. Initial messages have timestamp 0 as usual.

Simplified Semantics, on an Example. We illustrate the simpli-
fied semantics in Figure 3 by parameterizing the program from
Figure 1. The formal definition of the simplified semantics can
be found in the full version of the paper [22]. The parameterized
program has a single dis thread running program consumer, and
arbitrarily many env threads running producer. We consider a com-
putation in which dis, and [(out of the unboundedly many) env
threads participate. To refer to the different instances of the env
threads, we decorate the instruction labels by superscripts from
{1,...,1}.

The consumer thread generates timestamps of the form ts, 1 in
the example. The producer threads generate timestamps of the form
tsh,..., ts?. There can be several writes with timestamp ts*, in
particular some ts} may be equal. Additionally, when reading from
the producer generated messages, consumer does not perform any
timestamp checks, but only updates its view by taking joins. As a
result, the load with value 2 during the second loop iteration (i=2)
is feasible even if tsgr < tszr, unlike in the classical RA semantics.
Due to the lack of timestamp comparisons, consumer can perform
the loop arbitrarily many times (z > [), and the number of env
threads needed is independent of z.

The simplified semantics captures in a precise way the reach-
ability problem in the original semantics. Let a4, be the function
that drops all views from messages and local configurations, and
let =4, be the equality of local configurations modulo views.

THEOREM 3.4 (SOUNDNESs AND COMPLETENESS). A configura-
tion cf is reachable in RA iff there is an abstract configuration cfde
reachable in the simplified semantics so that cfde =de Ade(cf).

4 PSPACE UPPER BOUND FOR SAFETY
VERIFICATION

This section discusses the safety verification problem for the class
env(nocas) || disi(acyc) || - - - || disp(acyc). Assuming a finite data
domain Dom, we show that the problem can be solved in PSPACE
by leveraging the simplified semantics from Section 3. Our approach

Session 10

PODC 22, July 25-29, 2022, Salerno, Italy

Minit mi m2
0 + +
[X,O,XHO]'[Y,O,XHO] minit-[y,llx'_>] ml-[x,l,ﬂ]... [x,[,x'_)t[]
y—0 y—0 y—1 y—1 y— 1
msg, msg, msg., msg;! msg,!
2 x 0 4 x 0 =
0 1.1 07 /\l../
env[@/\ﬁ,rZO [XH] i env’@/\lz, r=1 [XH - s o x>t
y—0 y 1) env@/\3,r:1[1]
: x—0 . x+— 0 y=
dlSl@Tl,S=O[] dis;@7,, s=0[] . x+— 0
y—0 y—1 disi@1t,, s=0
y—1
S x> tf i x>t x>t T Ty
env@A;,r=1 [ye €NV @Az, r =1 [], dis;@ 15,5 =1 [] -
y y—1 y—1 (i=1)

T3, Ty " x >t ; !
Wenv @/13,r=1[1],...,env @A, r=
y -

+
X =t

X
(envl@Ag,rﬂ[],...,env’@A’,r=1[
y—1 y

=

|—>'t,+
—1

Xt

; Xty
1

il

], disi@1,,s=1,.,1 [

], dis|@ 15,5 = e [

Ty T *
] i>2)

y y— 1

X max{ti*}

y—1

Figure 3: Execution under the simplified semantics, producer transitions and messages are given in red, consumer transitions
and messages in blue. The execution begins with the consumer thread generating a message on y with value 1 and timestamp 1

leading to the memory m;. The producer threads executing A%"'l

read from this message and reach states /1;"'1. They generate

messages on x with values {1,...,[} shown in memory my. These are then read by the consumer as it loops around 73, 74 for
different iterates i, (i=1, i=2, i>2) as shown along the transition.

is to encode the safety verification problem into a Datalog program.
The encoding is interesting for two reasons: (1) it yields a complexity
upper bound that, given [1], came as a surprise, and (2) it provides
practical automated verification opportunities, considering that
Datalog-based Horn-clause solvers are state-of-the-art in program
verification [14, 15].

THEOREM 4.1. The safety verification problem for env(nocas) ||
disi(acyc) || - - - || disp(acyc) is non-deterministic polynomial-time
relative to the query evaluation problem in linear Datalog (NPPSPACE),
and hence is in PSPACE.

Linear Datalog is a syntactically restricted variant of Datalog
for which query evaluation is in PSPACE. Theorem 4.1 mentions
non-deterministic polynomial time relative to the linear Datalog
oracle. We provide a non-deterministic poly-time procedure makeP
that converts a given verification instance to a Datalog problem P
such that (1) for an unsafe instance, atleast one execution of makeP
results in P with successful query evaluation, and (2) for a safe
instance, no execution of makeP gives P with successful query
evaluation.

The generated Datalog problem P = (Prog, g) consists of (1) a
Datalog program Prog and (2) a ground atom g. A Datalog pro-
gram [18] consists of a predicate set Preds, a data domain Data,
and a set of inference rules Rules. An inference rule has the form
head : — bodyy,...,body,, where head and body; are positive lit-
erals. A rule with one literal in the body is a linear rule, one without

488

a body is called a fact. A linear Datalog program is one where all
rules are linear or facts.

An instantiation of a rule is the result of replacing each occur-
rence of a variable in the rule by a constant, and a ground atom is a
predicate in which all terms are constants. For every instantiation
of a rule, if all ground atoms constituting the body are true then
the ground atom in the head can be inferred to be true. The query
evaluation problem for Datalog is, given a problem instance (Prog, g)
as above, determine whether Prog + g, meaning we can infer the
atom g from the program Prog using the given inference rules. The
combined complexity (in terms of Prog and g as input) of query
evaluation [23] for linear Datalog is PSPACE, while non-linear rules
raise it to NEXPTIME [25, 42]. We do not directly reduce safety ver-
ification to query evaluation in linear Datalog, but instead use an
intermediate notion of Cache Datalog. We proceed as follows.

(1) For ease of encoding, we introduce Cache Datalog, Datalog
with an additional parameter, the Cache, that is decisive in
controlling the complexity of encodings as follows: every
Cache Datalog program can be turned into a linear Datalog
program at a cost that is linear in the size of the program
and the Cache (Lemma 4.2);

makeP generates Cache Datalog programs Prog and a query
instance (Prog, g) such that Prog + g iff the given verification
instance is unsafe, thereby constituting a correct reduction
(Lemma 4.3). Further, a Cache of polynomial size is sufficient
for query evaluation (Lemma 4.4).

~

Session 10

Cache Datalog. A Cache is a set of ground atoms that is used
to control the inference process. In the presence of a Cache, the
semantics of Datalog is adapted by the following two rules.

Add: For an instantiated rule, the ground atom in the head can be
inferred and added to Cache only when all the ground atoms in
the body are in Cache.

Drop: Atoms in Cache can be dropped non-deterministically.

The standard semantics of Datalog can be seen in Cache Datalog
by monotonically adding all inferred atoms (starting with facts)
to the Cache and never dropping anything. To show the PSPACE
upper bound, we use a notion of inference that bounds the size of
the Cache. For a Cache Datalog program Prog and k € N, we write
Prog +; g to mean that ground atom g can be inferred from Prog
with a computation in which |Cache| < k.

LEmMA 4.2. Given Cache Datalog program Prog, ground atom g,
and bound k, in time quadratic in |Prog| + |g| + k we can construct a
linear Datalog program Prog’ so that Prog v g iff Prog’ + g.

4.1 Datalog Encoding
Theorem 3.4 tells us that safety verification under RA is equivalent
to safety verification in the simplified semantics. Safety verification
in the simplified semantics, in turn, can be reduced to the following
Message Generation (MG) problem.

Message Generation (MG):

Given system c and goal message msg* = (x*,d*,_), is
there a reachable configuration cfde = (mde, [cfmde)

with msg* € mde (for some vwd€)?

To see the connection between MG and safety verification, note
that we can replace each assert false statement in the program
by x* := d* for variable x* and value d* unused elsewhere. The
system is unsafe if and only if a goal message msg* = (x*, d*, vwd¢)

is generated for some vwAe.

While encoding into Datalog, we non-deterministically guess vwd¢.
For this, we crucially show that there are only exponentially-many
choices of vwde. Given c, msg”, our non-deterministic poly-time

procedure makeP satisfies the following.

LEMMA 4.3. Given parametrized system c and goal message msg?¥,
Message Generation holds iff there is an execution of makeP that
generates a query instance (Prog, g) with Prog + g. The construction
of Prog and g is in (non-deterministic) time polynomial in |c|.

The procedure makeP generates one query instance (Prog, g)
per execution. Here, we give the intuition, the details of makeP can
be found in the full version [22]. Since the parameterized system
consists of n loop-free dis threads, each can execute only linearly-
many instructions in their size. The total number of instructions
executed (and so the number of timestamps used) by the dis threads
is thus polynomial in the combined size of the dis programs ijis' Let
this bound be T. Then we have the timestamps {0,0%,--- ,T,T*},
and this number of timestamps forms the crux of the polynomial
bound in Lemma 4.3. Procedure makeP guesses the dis threads’
part of the computation when generating a query instance.

489

PODC 22, July 25-29, 2022, Salerno, Italy

Program Prog uses four predicates. The environment message
predicate emp(x, d, vw9¢) represents an available env message on
variable x with value d and view vw9¢. The environment thread
predicate etp(lc, rv, vwde) encodes the env thread configuration,
where Ic is the control state, rv the register valuation, and vwd€ the
thread view. We have similar message and thread predicates for the
dis threads. The distinguished message predicate dmp(x, d, vw9¢)
represents an available dis message. Additionally, for each dis
thread i, we have a distinguished thread predicate dtp;(lc, rv, vwide)
that encodes the configuration of the thread dis;.

As rules, we have the fact dmp(x, dinit, Vwﬁfit) for each variable x
with djnjt the initial value and vwidneit the initial view. We moreover

have the facts etp(Ainit, rVinit,VWid,:t) and dtp;(Ainit, rvinit,vwid:it)
that represent the initial states of the env resp. dis threads. We also
have rules corresponding to the env transitions and the guessed dis
thread run fragments. Finally, the query atom g is a ground atom
of the form emp or dmp capturing the goal message msg*. The
instances generated in the non-deterministic branches of makeP

differ only in the guessed dis run and in the atom g.

4.2 Cache Size

With the encoding at hand, the challenge is to establish a polynomial
bound on the cache size for the query instances generated by makeP.
Let Qp = |Dom||Var| + |dis| where |dis]| is the combined size of all
dis threads. A Cache of size O(Qg) is sufficient to infer g.

LEMMA 4.4. For each (Prog, g) generated by makeP, Prog + g if
and only if Prog v g withk € O(Qg).

To see that the above size of Cache is sufficient, we analyze the
structure of computations in the simplified semantics. The analysis
will reveal a dependency relation among the generated messages.
This dependency relation will give enough information to guide
the Datalog computation so as to use a small Cache.

Consider computation pde ending in configuration Iast(pde) =
(m9e, Icfm9®). For every message msgd® in memory m9¢, we use
genthread(msgd¢) for the first thread which added msgd¢ to mde,
(Recall that the simplified semantics admits the repeated insertion
of env messages due to the reuse of timestamps from N*). We define
depend(msgd®) as the set of messages which genthread(msgd®) has
read before generating the first instance of msgd€. Further below,
we will also need the read-count rc(msgd¢, msg’) € N, the number
of times genthread(msgd®) reads msg’ € depend(msgd®) before
generating msgd.

Definition 1. The dependency graph of a computation pde with
last(pde) = (mde, lcfmde) is the directed graph GpdC = (V,E) with
V =md¢ andE = depend, the vertices are the messages and we have

an edge (msg‘lje, msgge) cE ifmsg‘lje € depend(msgge).

As depend(-) is based on the linear order of the computation,
the dependency graph is acyclic. We denote the sets of sink and
source vertices of G by sink(G) resp. source(G). A path in G is also
called a dependency sequence. The height of a vertex v is the length
of a longest path from a source vertex to v. The maximal height
over all vertices is height(G). See Figure 4 for an example.
Compact Computations. Unfortunately, dependency graphs may
contain exponentially many vertices (due to the views), and given

Session 10

(v,2,0t0F)

T~

(x,1,010%) < (y,1,00T)

/ | |

(y,0,00) (x,0,00) (y,0,00)

(x,1,070%) < (y,1,00F)

PODC 22, July 25-29, 2022, Salerno, Italy

,2,0T0F
(y) thy

// @
/71

// 0

i n
- X

/71

< X 3 9
1

N 2K <

< 7 < 9

AN

(x,0,00)

1]
N X

Figure 4: Two possible dependency graphs for the code snippet. Both th; and thy are env threads. The color of each message
msg gives genthread(msg), with th; being orange, th; violet, and init gray. We denote the view as a vector txf,. Since we only

consider the thread adding a message for the first time genthread(y, 2,0707%) can be either th; (left graph) or th; (right graph).

the PSPACE-hardness there is no way to reduce this to polynomial
size. Yet, there are two parameters that we can reduce, the fan-in of
each vertex v, the number of messages read by genthread(v) before
generating v, and and the height of the dependency graph. We call
a computation pde compact if its dependency graph G e satisfies
the following two bounds. (1) Every message v depends on a small
number of other messages, |depend(v)| < Qp. (2) The dependency
sequences are polynomially long, that is, height(G) < Qo.If a
vertex/message msg in the dependency graph has fan-in > Qo, then,
thanks to the simplified semantics, genthread(msg) can read from
an earlier message with the same variable/value pair. Likewise, if
the dependency sequence is longer than Qp, then it will contain
two messages with the same variable and value. The segment of
the sequence between these two can be truncated without affecting
the remainder of the computation. The following lemma says that
compact computations are sufficient:

LEMMA 4.5. Any message that can be generated in the simplified
semantics can be generated by a compact computation.

In Cache Datalog, the inference of an atom g from a program Prog
involves a sequence of applications of the Add (to Cache) and Drop
(from Cache) rules that ends with g being inferred. Such a sequence
for Prog + g corresponds to a run pd¢ under the simplified RA
semantics. The run p9¢ can be compacted to pde, with Lemma 4.5.
From the dependency graph of pde, we can read off an inference
strategy that keeps the Cache size polynomial in |Var|, |[Dom|, and
|cgis|- The following lemma formalizes the argument and concludes
the proof of Lemma 4.4.

LEMMA 4.6 (DATALOG INFERENCE STRATEGY). Let makeP generate
the query instance (Prog, g). The inference for Prog + g implies the
existence of an execution p3¢ under the simplified semantics, which
can be compacted to pde’. The computation pde’ can be mapped back
to a new inference sequence such that Prog v g fork € O(Qg).

4.3 Quantifying the number of env threads to
generate msg”

While parameterization is useful to model systems with an apriori
unknown number of components, for (non-parameterized) systems
with a large, but fixed number of components, parameterization
is sound but not complete. That is, a bug in the non-parameterized
system implies that it will be detected in the parameterized version
of the system, however, the converse is not necessarily true.

490

We now determine a concrete value at which parameterization
becomes complete. That is, if a non-parameterized system has at
least this number of env threads, then there is a bug in the non-
parameterized system iff there is a bug in the corresponding param-
eterized variant. In general, the bound can be doubly exponential
in the system parameters |Var|, |Dom|, |dis|. However, for certain
programs, it can be much lower, reducing the gap with which pa-
rameterization over-approximates a non-parameterized system.

Attributing costs to nodes. We attribute costs to nodes in the
dependency graph via the function cost : m4¢ — N. Intuitively, the
cost of a message corresponds to the number of env threads required
for generating the message. For an initial message, cost(msg) = 0.
For an env message,

2

msg’ emde| .,

cost(msg) = 1 + rc(msg, msg’) - cost(msg”).

For a dis message,

2

msg’ emde| .,

cost(msg) = rc(msg, msg’) - cost(msg”).

For a dependency graph G which generates the goal message msg,
the cost of the graph is defined as cost(G) = cost(msg®).

(O S
m* = (y,2), z
_ 7
>(x, D1~

-
—

(y,1),0

~

Figure 5: Cost annotated dependency graph for the producer-
consumer example (z € N, the cost of the msg” message is the
loop-bound for the consumer).

Consider the producer-consumer example in Figure 1. We are
interested the reachability of 75. Figure 5 shows the dependency
graph with the costs added to the nodes. We have cost(G) = z,
the cost of the target message msg* = (y, 2) is the loop-iteration
count of the consumer. Note that we have modeled the consumer
as dis thread and the producers as env threads. The cost shows
that z-many env threads are sufficient to generate message msg”.
However, in reality, [env threads suffice, and hence the cost is an
over-approximate bound.

Session 10

5 PSPACE-HARDNESS OF env(nocas, acyc)

We show that the semantic simplification we have given is tight,
and further simplification is not possible. Having shown that safety
verification of env(nocas) || disj(acyc) || --- || disp(acyc) is in
PSPACE, we now give a matching lower bound. For the lower bound,
it suffices to consider the variant without dis threads and with only
loop-free env threads, env(nocas, acyc). Even more, the result refers
to Parameterized RA in its simplest form, called PureRA, in which
(1) registers are forbidden and (2) stores can only write value one
to a memory that is initially zero. PureRA eliminates thread-local
computations and lays bare the complexity inherent to reasoning
purely about the synchronization possible in RA. Suprisingly, the
problem is PSPACE-hard even for this restricted form. Note that
PSPACE-hardness in the presence of local registers is trivial, since
PSPACE-computations can be encoded with register valuations.

Cenv = CAG D CSATC D CrE[0] @ * - * @ CFE[n-1] D Cassert
cag = pick(up); pick(er); pick(uq); - - - ; pick(up);s =1
where pick(u) = (t, = 0)® (f, = 0)
csatc = assume (s = 1); check(®);
((assume (ty,, = 0);an,1 = 1;)®
(assume (fy,, = 0);an,0 = 1))
cpg[ij = assume (aj+1,0 = 1);assume (aj+1,1 = 1);
(assume (fe;,, = 0) ® assume (te;,, = 0));
((assume (ty; = 0);a;1 = 1)®
(assume (fy, = 0);a;,0 = 1))
Cassert = assume (ap,0 = 1);assume (ag,1 = 1);assert false

Figure 6: Program c,, executed by the env threads is a non-
deterministic choice between functions cag, csaT, Crg[j), and

Cassert-

We prove the lower bound by a reduction from the canonical
PSPACE-complete problem, TQBF, described as follows. Given a
Quantified Boolean Formula

¥ = Vugde; Yuq ,Un)

over variables Vars(¥) = {ug, ..., un, €1, ..., ey}, decide whether ¥
is true. Formula ¥ has n+1 universally and n existentially quantified
variables. Given a TQBF instance ¥, we construct an instance of
the parametrized safety verification problem for PureRA consisting
of the program ceny (only env threads), such that ceny is unsafe
iff the TQBF instance is true. Assuming the TQBF instance is ¥
from above, the program cepy consists of functions (sub-programs),
one of which may be executed non-deterministically. The task
of checking whether ¥ holds is distributed over the env threads
executing these functions. Each function has a particular role which
we now describe.

- cag: The Assignment Guesser guesses a possible satisfying
assignment for Vars(¥).

- csaTc: The Satisfiability Checker checks satisfiability of ® w.r.t.
an assignment guessed by cag.

-+« dep Yupn ®(ug, €1, . ..

491

PODC 22, July 25-29, 2022, Salerno, Italy

- cpg[i]: The Y3 (ForallExists) Checker at level 0 < i < n -1
verifies that the (i+1)th quantifier alternation Yu;Je; 41 is respected
by the guessed assignments. This proceeds in levels, where the
function cpg[j41] at level i + 1 triggers the function cggyy) at level i,
till we have verified that all assignments satisfying ® confirm the
truth of .

- Cassert: The Assertion Checker reaches assert false when all
the previous functions act as intended, implying that the formula
was true.

Due to the parameterization, an arbitrary number of threads may
execute the different functions at the same time. However, there is
no interference between the threads, and there is a natural order
between the roles: cgaTc requires cag to function as intended, and
CFE[j] Fequires cAG, csaTC, and cpgfj) withn -1 2> j > i.

We show a novel way to encode the guessed assignments to
the Boolean variables in the RA views: for each b € Vars(¥), we
maintain shared variables t;, f;,. A view vw encodes b as

(vw(tp) =0 & b=1)A(vW(fp) =0 &< b=0).

Then, by the RA semantics, the value of b is true if the init message
on ty, is readable (recall that the init message is readable only if
the thread-local view on t is 0). Finally, we need to check that
quantifier alternation is maintained. For all i € [n...1], a set of
threads checks that the alternation Yu;—13e; is respected by the
guessed assignments. Then they pass on their assignments to the
checkers at level i — 1. This sets up a dependency structure (similar
to Section 4) so that a special message can be written iff ¥ is true.

THEOREM 5.1. Parameterized verification for env(nocas, acyc) is
PSPACE-hard, even in PureRA.

6 CONCLUSION

Atomic compare-and-swap (CAS) operations are indispensible for
practical implementations of distributed protocols. At the same time,
they hinder verification efforts. Undecidability of safety verification
in the non-parameterized setting [1] and even in our loop-free
parameterized setting env(acyc) are a testament to this. We tried
to reconcile the two by studying the controlled use of CAS in
parameterized systems (CAS-free env threads, loop-free dis threads).
For such systems, we were able to simplify the RA semantics by
abstracting from the timestamps of env threads. The simplified
semantics is sound and complete for safety verification and leads to
a PSPACE-upper bound. We provide a matching PSPACE-hardness
result that gives an insight into the complexity inherent to the
synchronization capabilities of RA.

We conclude with interesting avenues for future work. A problem
arising from this work is the decidability of CAS-free parameterized
systems env(nocas)||disj(nocas) || - - - || disp(nocas) which seems
to be as elusive as its non-parameterized twin disj(nocas) || - - ||
disp(nocas). We believe the ideas in this paper can be adapted to
causally consistent shared memory models [31] and transactional
programs [13] in the parameterized setting.

ACKNOWLEDGMENTS

This work was partly supported by SERB MATRICS grant
MTR/2019/000095.

Session 10

REFERENCES

(1]
(2]

(3]

[4

flaa

[10]

[11

[12

[14]

[15]

[16

[17]

(18]

[19

[20]

[21]

[22

P. A. Abdulla, J. Arora, M. F. Atig, and S. N. Krishna. 2019. Verification of programs
under the release-acquire semantics. In PLDI. ACM, 1117-1132.

Parosh Aziz Abdulla, Mohamed Faouzi Atig, Ahmed Bouajjani, K. Narayan Kumar,
and Prakash Saivasan. 2021. Deciding reachability under persistent x86-TSO.
Proc. ACM Program. Lang. 5, POPL (2021), 1-32. https://doi.org/10.1145/3434337
Parosh Aziz Abdulla, Mohamed Faouzi Atig, Ahmed Bouajjani, and Tuan Phong
Ngo. 2018. A Load-Buffer Semantics for Total Store Ordering. Log. Methods
Comput. Sci. 14, 1 (2018). https://doi.org/10.23638/LMCS-14(1:9)2018

Parosh Aziz Abdulla, Mohamed Faouzi Atig, and Rojin Rezvan. 2020. Parameter-
ized verification under TSO is PSPACE-complete. Proc. ACM Program. Lang. 4,
POPL (2020), 26:1-26:29. https://doi.org/10.1145/3371094

Parosh Aziz Abdulla and Bengt Jonsson. 1993. Verifying Programs with Unreliable
Channels. In Proceedings of the Eighth Annual Symposium on Logic in Computer
Science (LICS "93), Montreal, Canada, June 19-23, 1993. IEEE Computer Society,
160-170. https://doi.org/10.1109/LICS.1993.287591

Mustaque Ahamad, Gil Neiger, James E. Burns, Prince Kohli, and Phillip W.
Hutto. 1995. Causal Memory: Definitions, Implementation, and Programming.
Distributed Comput. 9, 1 (1995), 37-49. https://doi.org/10.1007/BF01784241
Jade Alglave, Luc Maranget, and Michael Tautschnig. 2014. Herding Cats: Mod-
elling, Simulation, Testing, and Data Mining for Weak Memory. ACM Trans.
Program. Lang. Syst. 36, 2, Article 7 (July 2014), 74 pages. https://doi.org/10.1145/
2627752

Jade Alglave, Luc Maranget, and Michael Tautschnig. 2014. Herding Cats: Mod-
elling, Simulation, Testing, and Data Mining for Weak Memory. ACM Trans.
Program. Lang. Syst. 36, 2 (2014), 7:1-7:74.

Mohamed Faouzi Atig, Ahmed Bouajjani, Sebastian Burckhardt, and Madanlal
Musuvathi. 2010. On the verification problem for weak memory models. In
Proceedings of the 37th ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, POPL 2010, Madrid, Spain, January 17-23, 2010, Manuel V.
Hermenegildo and Jens Palsberg (Eds.). ACM, 7-18. https://doi.org/10.1145/
1706299.1706303

Mohamed Faouzi Atig, Ahmed Bouajjani, Sebastian Burckhardt, and Madanlal
Musuvathi. 2012. What’s Decidable about Weak Memory Models?. In Program-
ming Languages and Systems - 21st European Symposium on Programming, ESOP
2012, Held as Part of the European Joint Conferences on Theory and Practice of
Software, ETAPS 2012, Tallinn, Estonia, March 24 - April 1, 2012. Proceedings (Lec-
ture Notes in Computer Science, Vol. 7211), Helmut Seidl (Ed.). Springer, 26-46.
https://doi.org/10.1007/978-3-642-28869-2_2

Hagit Attiya and Sergio Rajsbaum. 2020. Indistinguishability. Commun. ACM 63,
5 (2020), 90-99. https://doi.org/10.1145/3376902

Mark Batty, Scott Owens, Susmit Sarkar, Peter Sewell, and Tjark Weber. 2011.
Mathematizing C++ Concurrency. SIGPLAN Not. 46, 1 (Jan. 2011), 55-66. https:
//doi.org/10.1145/1925844.1926394

Sidi Mohamed Beillahi, Ahmed Bouajjani, and Constantin Enea. 2019. Robustness
Against Transactional Causal Consistency. In 30th International Conference on
Concurrency Theory, CONCUR 2019, August 27-30, 2019, Amsterdam, the Nether-
lands. 30:1-30:18. https://doi.org/10.4230/LIPIcs. CONCUR.2019.30

Nikolaj Bjerner, Arie Gurfinkel, Ken McMillan, and Andrey Rybalchenko. 2015.
Horn clause solvers for program verification. In Fields of Logic and Computation
II. Springer, 24-51.

Nikolaj Bjerner, Ken McMillan, and Andrey Rybalchenko. 2013. On solving
universally quantified Horn clauses. In SAS (LNCS, Vol. 7935). Springer, Springer,
105-125.

Roderick Bloem, Swen Jacobs, Ayrat Khalimov, Igor Konnov, Sasha Rubin, Helmut
Veith, and Josef Widder. 2016. Decidability in Parameterized Verification. SIGACT
News 47, 2 (2016), 53-64. https://doi.org/10.1145/2951860.2951873

Ahmed Bouajjani, Constantin Enea, Rachid Guerraoui, and Jad Hamza. 2017. On
verifying causal consistency. In Proceedings of the 44th ACM SIGPLAN Symposium
on Principles of Programming Languages, POPL 2017, Paris, France, January 18-20,
2017, Giuseppe Castagna and Andrew D. Gordon (Eds.). ACM, 626-638. http:
//dl.acm.org/citation.cfm?id=3009888

Stefano Ceri, Georg Gottlob, and Letizia Tanca. 1990. Syntax and semantics of
datalog. In Logic Programming and Databases. Springer, 77-93.

Edmund M. Clarke, Armin Biere, Richard Raimi, and Yunshan Zhu. 2001. Bounded
Model Checking Using Satisfiability Solving. Formal Methods Syst. Des. 19, 1
(2001), 7-34.

Javier Esparza, Pierre Ganty, and Rupak Majumdar. 2016. Parameterized Verifica-
tion of Asynchronous Shared-Memory Systems. J. ACM 63, 1 (2016), 10:1-10:48.
https://doi.org/10.1145/2842603

Alain Finkel and Philippe Schnoebelen. 2001. Well-structured transition systems
everywhere! Theor. Comput. Sci. 256, 1-2 (2001), 63-92. https://doi.org/10.1016/
50304-3975(00)00102-X

Adwait Godbole, Shankara Narayanan Krishna, and Roland Meyer. 2021. Safety
Verification of Parameterized Systems under Release-Acquire. https://doi.org/
10.48550/ARXI1V.2101.12123

492

[23

[24

[25]

[26

[27

[28

[29

(30]

[31

[32

[33

[34

[35

[36

[37

[38

@
20,

[40]

[41

[42

PODC 22, July 25-29, 2022, Salerno, Italy

Georg Gottlob and Christos Papadimitriou. 2003. On the complexity of single-rule
datalog queries. Information and Computation 183, 1 (2003), 104-122.

Mengda He, Viktor Vafeiadis, Shengchao Qin, and Joao F. Ferreira. 2018. GPS
$$+$$ + : Reasoning About Fences and Relaxed Atomics. Int. j. Parallel Program.
46, 6 (2018), 1157-1183.

Neil Immerman. 2012. Descriptive complexity. Springer Science & Business
Media.

Jan-Oliver Kaiser, Hoang-Hai Dang, Derek Dreyer, Ori Lahav, and Viktor
Vafeiadis. 2017. Strong Logic for Weak Memory: Reasoning About Release-
Acquire Consistency in Iris. In 31st European Conference on Object-Oriented Pro-
gramming, ECOOP 2017, June 19-23, 2017, Barcelona, Spain (LIPIcs, Vol. 74), Peter
Miiller (Ed.). Schloss Dagstuhl - Leibniz-Zentrum fir Informatik, 17:1-17:29.
https://doi.org/10.4230/LIPIcs.ECOOP.2017.17

Jeehoon Kang, Chung-Kil Hur, Ori Lahav, Viktor Vafeiadis, and Derek Dreyer.
2017. A promising semantics for relaxed-memory concurrency. In POPL. ACM,
175-189.

Michalis Kokologiannakis, Ori Lahav, Konstantinos Sagonas, and Viktor Vafeiadis.
2018. Effective stateless model checking for C/C++ concurrency. Proc. ACM
Program. Lang. 2, POPL (2018), 17:1-17:32. https://doi.org/10.1145/3158105
Christos Kozyrakis. [n.d.]. Phoenix 2.0 Benchmarks. https://github.com/kozyraki/
phoenix.

Ori Lahav. 2019. Verification under Causally Consistent Shared Memory. ACM
SIGLOG News 6, 2 (apr 2019), 43-56. https://doi.org/10.1145/3326938.3326942
Ori Lahav and Udi Boker. 2020. Decidable verification under a causally consistent
shared memory. In Proceedings of the 41st ACM SIGPLAN International Conference
on Programming Language Design and Implementation, PLDI 2020, London, UK,
June 15-20, 2020, Alastair F. Donaldson and Emina Torlak (Eds.). ACM, 211-226.
https://doi.org/10.1145/3385412.3385966

Ori Lahav, Nick Giannarakis, and Viktor Vafeiadis. 2016. Taming release-acquire
consistency. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL 2016, St. Petersburg, FL, USA,
January 20 - 22, 2016, Rastislav Bodik and Rupak Majumdar (Eds.). ACM, 649-662.
https://doi.org/10.1145/2837614.2837643

Ori Lahav, Nick Giannarakis, and Viktor Vafeiadis. 2016. Taming release-acquire
consistency. In POPL. ACM, 649-662.

Ori Lahav and Roy Margalit. 2019. Robustness against Release/Acquire Semantics.
In PLDI 2019. 1262AS141. https://doi.org/10.1145/3314221.3314604

Ori Lahav and Viktor Vafeiadis. 2015. Owicki-Gries Reasoning for Weak Memory
Models. In ICALP (LNCS, Vol. 9135). Springer, 311-323.

Wryatt Lloyd, Michael J. Freedman, Michael Kaminsky, and David G. Andersen.
2011. Don’t settle for eventual: scalable causal consistency for wide-area storage
with COPS.. In SOSP, Ted Wobber and Peter Druschel (Eds.). ACM, 401-416.
http://dblp.uni-trier.de/db/conf/sosp/sosp2011.html#LloydFKA11

Brian Norris. [n.d.]. Model Checker Benchmarks. https://github.com/
computersforpeace/model-checker-benchmarks.

Anton Podkopaev, Ilya Sergey, and Aleksandar Nanevski. 2016. Operational
Aspects of C/C++ Concurrency. CoRR abs/1606.01400 (2016). arXiv:1606.01400
http://arxiv.org/abs/1606.01400

Azalea Raad, Ori Lahav, and Viktor Vafeiadis. 2018. On Parallel Snapshot Isola-
tion and Release/Acquire Consistency. In Programming Languages and Systems
- 27th European Symposium on Programming, ESOP 2018, Held as Part of the
European Joint Conferences on Theory and Practice of Software, ETAPS 2018, Thes-
saloniki, Greece, April 14-20, 2018, Proceedings. 940-967. https://doi.org/10.1007/
978-3-319-89884-1_33

Aaron Turon, Viktor Vafeiadis, and Derek Dreyer. 2014. GPS: navigating weak
memory with ghosts, protocols, and separation. In OOPSLA. ACM, 691-707.
Viktor Vafeiadis and Chinmay Narayan. 2013. Relaxed separation logic: a program
logic for C11 concurrency. In OOPSLA. ACM, 867-884.

M Vardi. 1982. The complexity of relational database queries. In Proc. STOC.
137-146.

https://doi.org/10.1145/3434337
https://doi.org/10.23638/LMCS-14(1:9)2018
https://doi.org/10.1145/3371094
https://doi.org/10.1109/LICS.1993.287591
https://doi.org/10.1007/BF01784241
https://doi.org/10.1145/2627752
https://doi.org/10.1145/2627752
https://doi.org/10.1145/1706299.1706303
https://doi.org/10.1145/1706299.1706303
https://doi.org/10.1007/978-3-642-28869-2_2
https://doi.org/10.1145/3376902
https://doi.org/10.1145/1925844.1926394
https://doi.org/10.1145/1925844.1926394
https://doi.org/10.4230/LIPIcs.CONCUR.2019.30
https://doi.org/10.1145/2951860.2951873
http://dl.acm.org/citation.cfm?id=3009888
http://dl.acm.org/citation.cfm?id=3009888
https://doi.org/10.1145/2842603
https://doi.org/10.1016/S0304-3975(00)00102-X
https://doi.org/10.1016/S0304-3975(00)00102-X
https://doi.org/10.48550/ARXIV.2101.12123
https://doi.org/10.48550/ARXIV.2101.12123
https://doi.org/10.4230/LIPIcs.ECOOP.2017.17
https://doi.org/10.1145/3158105
https://github.com/kozyraki/phoenix
https://github.com/kozyraki/phoenix
https://doi.org/10.1145/3326938.3326942
https://doi.org/10.1145/3385412.3385966
https://doi.org/10.1145/2837614.2837643
https://doi.org/10.1145/3314221.3314604
http://dblp.uni-trier.de/db/conf/sosp/sosp2011.html#LloydFKA11
https://github.com/computersforpeace/model-checker-benchmarks
https://github.com/computersforpeace/model-checker-benchmarks
http://arxiv.org/abs/1606.01400
http://arxiv.org/abs/1606.01400
https://doi.org/10.1007/978-3-319-89884-1_33
https://doi.org/10.1007/978-3-319-89884-1_33

	Abstract
	1 Introduction
	2 The Release-Acquire Semantics
	3 A Simplified Semantics
	3.1 Timestamp Lifting
	3.2 Superposition
	3.3 Infinite Supply Lemma
	3.4 Abstracting the Timestamps

	4 PSPACE Upper Bound for Safety Verification
	4.1 Datalog Encoding
	4.2 Cache Size
	4.3 Quantifying the number of redenv threads to generate msg#

	5 PSPACE-hardness of redenv(nocas, acyc)
	6 Conclusion
	Acknowledgments
	References

