Promising 2.0: Global Optimizations
in Relaxed Memory Concurrency

Sung-Hwan Lee Minki Cho
Seoul National University =~ Seoul National University
Korea Korea

sunghwan.lee@sf.snu.ac.kr minki.cho@sf.snu.ac.kr

Anton Podkopaev Soham Chakraborty
National Research IIT Delhi
University Higher School India

of Economics & MPI-SWS
Russia & Germany
podkopaev@mpi-sws.org

soham@cse.iitd.ac.in

Chung-Kil Hur Ori Lahav Viktor Vafeiadis
Seoul National University Tel Aviv University MPI-SWS
Korea Israel Germany

gil.hur@sf.snu.ac.kr
Abstract

For more than fifteen years, researchers have tried to support
global optimizations in a usable semantics for a concurrent
programming language, yet this task has been proven to be
very difficult because of (1) the infamous “out of thin air”
problem, and (2) the subtle interaction between global and
thread-local optimizations.

In this paper, we present a solution to this problem by
redesigning a key component of the promising semantics
(PS) of Kang et al. Our updated PS 2.0 model supports all
the results known about the original PS model (i.e., thread-
local optimizations, hardware mappings, DRF theorems), but
additionally enables transformations based on global value-
range analysis as well as register promotion (i.e., making
accesses to a shared location local if the location is accessed
by only one thread). PS 2.0 also resolves a problem with the
compilation of relaxed RMWs to ARMv8, which required an
unintended extra fence.

CCS Concepts: « Theory of computation — Concur-
rency; Operational semantics; « Software and its en-
gineering — Semantics.

Keywords: Relaxed Memory Concurrency; Operational Se-
mantics; Compiler Optimizations

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
PLDI °20, June 15-20, 2020, London, UK

© 2020 Copyright held by the owner/author(s). Publication rights licensed
to ACM.

ACM ISBN 978-1-4503-7613-6/20/06.
https://doi.org/10.1145/3385412.3386010

orilahav@tau.ac.il

viktor@mpi-sws.org

ACM Reference Format:

Sung-Hwan Lee, Minki Cho, Anton Podkopaev, Soham Chakraborty,
Chung-Kil Hur, Ori Lahav, and Viktor Vafeiadis. 2020. Promis-
ing 2.0: Global Optimizations in Relaxed Memory Concurrency.
In Proceedings of the 41st ACM SIGPLAN International Conference
on Programming Language Design and Implementation (PLDI "20),
June 15-20, 2020, London, UK. ACM, New York, NY, USA, 23 pages.
https://doi.org/10.1145/3385412.3386010

1 Introduction

A major challenge in programming language semantics has
been to define a weak memory model for a concurrent pro-
gramming language supporting efficient compilation to the
mainstream hardware platforms (i.e., x86, POWER, ARMv7,
ARMv8, RISC-V) including all applicable compiler optimiza-
tions and yet avoiding semantics quirks, such as “out of thin
air” reads [16], that prevent formal reasoning about pro-
grams and break DRF guarantees (the latter provide simpler
semantics to data-race-free programs). In particular, such
a semantics must allow the following annotated outcome
(assuming all variables are initialized to zero and all accesses
are relaxed).
a=x /1
y:=1
This outcome is observable after a compiler transformation
that reorders the (independent) accesses of thread 1, while on
ARM [20] it is even observable without the transformation.
While there are multiple partial solutions to this challenge
[7, 8, 12, 16, 18], none of them properly supports global com-
piler optimizations, namely program transformations whose
validity depends on some global analysis. Examples of such
transformations are (a) removal of null pointer checks based
on global null-pointer analysis; (b) removal of array bounds
checks based on global size analysis; and (c) register pro-
motion, i.e., converting accesses to a shared variable that
happens to be used by only one thread to local accesses. The
latter is very important in languages like Java that have only

b=y /1

x:=b (LB)

https://doi.org/10.1145/3385412.3386010
https://doi.org/10.1145/3385412.3386010

PLDI 20, June 15-20, 2020, London, UK

atomic accesses, but is also useful for C/C++. For instance, in
single-threaded programs, it allows the removal of locks, as
well as the promotion to register accesses of inlined function
calls of concurrent data-structures.

The desire to support global optimizations in concurrent
programming languages goes at least as back as 15 years
ago with the Java memory model (JMM) [16]. In fact, the
very first JMM “causality test case” is centered around value-
range analysis. Assuming all variables are initialized to 0,
JMM allows the annotated outcome of the following example:

a=x /1 -
if a > 0 then b=y /1 (JMM1)
Y= 1 x:=b

“Decision: Allowed, since interthread compiler anal-
ysis could determine that x and y are always non-
negative, allowing simplification of a > 0 to true,
and allowing write y := 1 to be moved early.” [10]
Supporting global optimizations, however, is rather chal-
lenging because of their interaction with local transforma-
tions. Global optimizations generally depend on invariants
deduced by some global analysis but these invariants need
not hold in the source program; they might hold after some
local transformations have been applied. In the following
example, (only) after the local elimination of the overwritten
x := 42 assignment, the condition a < 10 becomes a global
invariant, and so can be simplified to true as in JMM1.

a=x /1 x =42
ifa<10then || b=y /1 (LB-G)
y:=1 x:=b

In more complex cases, a global optimization may enable
a local transformation, which may further enable another
global optimization, which may enable another local opti-
mization, and so on. As a result, supporting both global and
local transformations is very difficult, and none of the so-
lutions so far has managed to fully support global analysis
along with all the expected thread-local transformations.

In this paper, we present the first memory model that
solves this challenge: (i) it allows the aforementioned global
optimizations (value-range analysis and register promotion);
(ii) it validates the thread-local compiler optimizations that
are validated by the C/C++11 model [13] (e.g., roach-mo-
tel reorderings [21]); (iii) it can be efficiently mapped to
the mainstream hardware platforms (x86, POWER, ARMv7,
ARMv8, RISC-V); and (iv) it supports reasoning principles in
the form of DRF guarantees, allowing programmers to resort
to simpler well-behaved models when data races are appro-
priately restricted. In developing our model we mainly use
(i)—(iii) to conclude that some behavior should be allowed;
while (iv) tells us which behaviors must be forbidden.

As a starting point, we take the promising semantics (PS)
of Kang et al. [12], a concurrency semantics that satisfies
almost all our desiderata. It supports almost all C/C++11

S.-H. Lee, M. Cho, A. Podkopaey, S. Chakraborty, C.-K. Hur, O. Lahayv, V. Vafeiadis

features, all expected thread-local compiler optimizations,
and several DRF theorems. In addition, Podkopaev et al. [19]
established the correctness of a mapping from PS to hard-
ware.! The main drawback of PS is that it does not support
global optimizations.

PS is an operational semantics which represents shared
memory as a set of messages (i.e., writes). To support out-of-
order execution, PS employs a non-standard step, allowing
a thread to promise to perform a write in the future, which
enables other threads to read from it before the write is
actually executed.

The technical challenge resides in identifying the exact
conditions on such promise steps so that basic guarantees
(like DRF and no “thin-air values”) are maintained.

In PS, these conditions are completely thread-local: the
thread performing the promise must be able to run in iso-
lation from all extensions of the current state and fulfill all
its outstanding promises. While thread-locality is useful,
quantifying over all extensions of the current state prevents
optimizations based on global analysis because some exten-
sions may well not satisfy the invariant produced by the
analysis.

Checking for promise fulfillment only from the current
state without extension enables global analysis, but breaks
the DRF guarantee (see §4). Our solution is therefore to check
promise fulfillment for a carefully crafted extension of the
current state, which we call capped memory. Because capped
memory does not contain any new values, it is consistent
with optimizations based on global value analysis. However,
it still does not allow optimizations like register promotion.

To support register promotion, we introduce reservations,
which allow a thread to secure an exclusive right to per-
form an atomic read-modify-write instruction reading from
a certain message without fixing the value that it will write
(because, for example, that might not have yet been resolved).
In addition, reservations resolve a problem with the compi-
lation of PS to ARMv8, whose intended mapping of RMWs
was unsound and required an extra fence [19].2

With these two new concepts, we are able to retain the
thread-local nature of PS and yet fully support global opti-
mizations and the intended mapping of RMWs along with
all the results available for PS. Our redesigned PS 2.0 model
is the first weak memory model that achieves these results.
To establish confidence in our model, we have formalized
our key results in the Coq proof assistant.

Outline. In the following, we first review the PS defini-
tion (§2), and why it does not support global optimizations

1 Albeit, the mapping of RMWs to ARMvS contains one more barrier (“Id
fence”) than intended because the intended mapping is unsound.

2Qur current mechanized proof requires a fake control dependency from
relaxed fetch-and-add instructions, which is currently not added by standard
compilers. We believe that the compilation from our model without this
dependency is sound as well, and leave the formal proof to a future work
(see also §6.5).

Promising 2.0

(§3). We then present our PS 2.0 model both informally in
an incremental fashion (§4) and formally all together (§5). In
§6, we establish the correctness of mappings from PS 2.0 to
hardware, and show that PS 2.0 supports all the local trans-
formations and reasoning principles known to be allowed
by PS, as well as register promotion, and the introduction
of ‘assert’ statements for invariants derived by global analy-
sis. The mechanization of our main results in Coq, the full
model definitions, and written proofs of additional claims
are available in [1].

2 Introduction to the Promising Semantics

In this section, we introduce the promising semantics (PS)
of Kang et al. [12]. For simplicity, we present only a frag-
ment of PS containing only three kinds of memory accesses:
relaxed (the default mode), release writes (rel), and acquire
reads (acq). Read-modify-write (RMW) instructions, such as
compare-and-swap (CAS) and fetch-and-add (FADD), carry
two access modes—one for the exclusive read and one for the
write. We put aside other access modes, fences, and release
sequences, as they are orthogonal to the contribution of this
paper. We refer the reader to [12] for the full PS model.

Domains. We assume non-empty sets Loc of locations
and Val of values. We also assume a set Time of timestamps,
which is totally and densely ordered by < with 0 as its
minimum. (In our examples, we take non-negative ratio-
nal numbers as timestamps with their usual ordering.) A
view, V € View = Loc — Time, records the largest known
timestamp for each memory location. A timestamp interval
is a pair of timestamps (f,¢] with f < tor f =t = 0.1t
represents the range of timestamps from (but not including)
f up to and including ¢.

Memory. In PS, the memory is a set of messages represent-
ing all previously executed writes. A message m is of the form
(x:v@(f,t],R), where x € Loc is the location, v € Val is the
stored value, (f,t] is a timestamp interval, and R € View is
the message view. The latter is used to model release-acquire
synchronization and will be explained shortly. Initially, the
memory consists of an initialization message for every loca-
tion carrying the value 0, the interval (0, 0], and the bottom
view L = Ax. 0. We require that any two messages with the
same location in memory have disjoint timestamp intervals.
The timestamp (also called the “to™timestamp) of a mas-
sage (x : 0@(f, t], R) is the upper bound t of the message’s
timestamp interval. The lower bound f, called the “from™-
timestamp, is needed to handle atomic updates (a.k.a. RMW
operations) as explained below.

Machine State. PS is an operational model where threads
execute in an interleaved fashion. The machine state is a pair
3 = (78, M), where 78 assigns a thread state TS to every
thread and M is a (global) memory. A thread state is a triple
TS = (0, V, P) where o is the local store recording the values

PLDI 20, June 15-20, 2020, London, UK

of its local variables, V € View is the thread view, and P
is a set of messages representing the thread’s outstanding
promises.

Relaxed Reads and Writes. Thread views are instrumen-
tal in providing correct semantics to memory accesses. The
thread view, V, records the “knowledge” of each thread, i.e.,
the timestamp of the most recent message that it has ob-
served for each location. It is used to forbid a thread to read
from a (stale) message m if the thread is aware of a “newer”
message, i.e., when V(x) is greater than the message’s times-
tamp. Similarly, when a thread adds messages of location x
to the memory, it has to pick a timestamp ¢ for the added
message that is greater than its view of x (V(x) < t):

READ. A thread can read from memory M by simply
observing a message (x:v@(f,t],_) € M provided that
V(x) < t, and updating its view for x to ¢.

WRITE. A thread adds a new message m = (x : v@(f, t], L)
to the memory where the timestamp ¢t is greater than the
thread’s view of x (V(x) < t) and there is no other message
with the same location and overlapping timestamp interval
in the memory. Relaxed writes set the message view to L,
which maps each location to timestamp 0.

The following example illustrates how timestamps of mes-
sages and views interact. Note that we assume that both
threads start with the initial thread view that maps x and
y to 0, and that every location is initialized to 0: the ini-
tial memory only contains messages (x : 0@(0, 0], L) and
(y:0@(0,0],L).3

x:=1 y:=1 (SB)

a=y /0| b:=x /0

Here, both threads are allowed to read from the initialization
messages, 0. When thread 1 performs the write to x, it will
add a message (x : 0@(f, t], L) by choosing some ¢ > f > 0.
During this write, thread 1 should increase its view of x to t,
while maintaining V (y) to be 0 as it was. Hence, thread 1 is
still allowed to read 0 from y in the subsequent execution.
As thread 2 can be executed in the same way, both threads
are allowed to read 0.

Relaxed Atomic Updates. Atomic updates (a.k.a. RMW
operations) are essentially a pair of accesses to the same
location—a read followed by a write—with an additional
atomicity guarantee: the read reads from a message that
immediately precedes the one added by the write. PS em-
ploys timestamp intervals (rather than single timestamps)
to enforce atomicity.

UPDATE. When a thread performs an RMW, it first reads a
message (x : v@(f, t], L), and then writes the updated mes-
sage with “from”-timestamp equal to ¢, i.e, a message of the
form (x : v’@(t,t'], L). This results in consecutive messages

3In all our code examples, we assume that all memory accesses are relaxed
(rlx memory order) unless annotated otherwise.

PLDI 20, June 15-20, 2020, London, UK

(f,t], (t,t'], forbidding other writes to be later placed be-
tween the two messages (recall that messages with the same
location must have disjoint timestamp intervals).

This constraint, in particular, means that two competing
RMWs cannot read from the same message, as the following
“parallel increment” example demonstrates.*

a:=FADD(x,1) /0 || b:=FADD(x,1) /0 (Upd)

Without loss of generality, suppose that thread 1 executed
first. As it performs an RMW operation, it must “attach” the
message it adds to an existing message. Since the only exist-
ing message in this stage is the initial one (x : 0@(0, 0], L),
thread 1 will first add a message m = (x : 1@(0, t], L) with
some f > 0 to the memory. Then, the RMW of thread 2 can-
not also read from the initial message because its interval
would overlap with the (0,] interval of m. Therefore, the
annotated behavior is forbidden. More abstractly speaking,
the timestamps intervals of PS express a dense total order
on messages to the same location together with immediate
adjacency constraints on this order, which are required for
handling RMW operations.

Release and Acquire Accesses. To provide the appropri-
ate semantics to release and acquire accesses, PS uses the
message views. Indeed, a release write should transfer the
current knowledge of the thread to other threads that read
the message by an acquire read. Thus, (i) a release write
operation puts the current thread view in the message view
of the added message; and (ii) an acquire read operation in-
corporates the view of the message being read in the thread
view (by taking the pointwise maximum).

READ is defined the same as before, except that when
the thread performs an acquire read, it increases its view to
contain not only the (“to”) timestamp of the message read
but also the view of that message.

WRITE is defined as before, except that release writes
record the thread view in the message being added, whereas
relaxed writes record the L view.

As a result, the acquiring thread is confined in its future
reads at least as the releasing thread was confined when it
“released” the message being “acquired”. As a simple example,
consider the following:

a:=y*9 /1
x:=1
rel if a = 1 then (MP)
yo= b=x /0

Here, if thread 2 reads 1 from y, which is written by thread 1,
both threads are synchronized through release and acquire.
Thus, thread 2 obtains the knowledge of thread 1, namely its
view for x is increased to include the timestamp of x := 1 of
thread 1. Therefore, after reading 1 from y, thread 2 is not
allowed to read the initial value 0 from x.

4Here and henceforth, we assume that RMW instructions such as FADD and

CAS return the value that was read during the read-modify-write operation
(before the update).

S.-H. Lee, M. Cho, A. Podkopaey, S. Chakraborty, C.-K. Hur, O. Lahayv, V. Vafeiadis

Release/acquire RMW operations also transfer thread views
via message views as release writes and acquire reads do.

Promises. The main novelty of PS lies in its way to enable
the reordering of a read followed by a write (of different loca-
tions), needed to explain the outcome of the LB program in
§1. Thus, besides step-by-step program execution, PS allows
threads to non-deterministically promise their future writes.
This is done by simply adding a message (whose interval
does not overlap with that of any existing message to the
same location) to the memory. Later, the execution of write
instructions may also fulfill an existing promise (rather than
add a message to the memory). Thread promises are kept in
the thread state, and removed when the promise is fulfilled.
Naturally, at the end of the execution all promises must be
fulfilled.

PROMISE. At any point, a thread can add a message to
both its set of promises and the memory.

FULFILL. A thread can fulfill its promise by executing a
(non-release) write instruction, by removing a message from
the thread’s set of promises. PS does not allow release writes
to be promised, i.e., a promise cannot be fulfilled through a
release write instruction.

In the LB program above, thread 1 may promise y := 1 at
first. This allows thread 2 to read 1 from y and write it back
to x. Then, thread 1 can read 1 from x, which was written
by thread 2, and fulfill its promise.

Certification. To ensure that promises do not make the
semantics overly weak, each sequence of steps by a thread
(before “yielding control to the scheduler”) has to be certified:
the thread that took the steps should be able to fulfill all its
promises when executed in isolation. Indeed, revisiting the
LB program above, note that at the point of promising y := 1
(in the very beginning of the run), thread 1 can run and
perform y := 1 without any “help” of other threads.

Certification (i.e., the thread-local run fulfilling all out-
standing promises of the thread) is necessary to avoid “thin-
air reads” as demonstrated by the following variant of LB:

a=x /1
y:=a

b=y /1

et (OOTA)

As every thread simply copies the value it reads, both threads
are not supposed to read any other value than 0 from the
memory. However, the annotated behavior, often called out-
of-thin-air, is allowed in C11 [3]. In PS, if a thread could
promise without certification, this behavior would be al-
lowed by the same execution as the one for LB. However,
with the certification requirement, thread 1 cannot promise
y := 1, as, when running in isolation, thread 1 will only write
y:=0.

PS requires a certification to exist for every future memory
(i.e., any memory that extends the current memory). In §3, we
explain the reason for this condition and its consequences.

Promising 2.0

Machine Step. A thread configuration (TS, M) can take
one of READ, WRITE, UPDATE, PROMISE, and FULFILL
steps, denoted by (TS, M) — (TS’, M’). In addition, a thread
configuration is called consistent if for every future memory
Meyture of M, there exist TS” and M’ such that (where TS.prm
denotes the set of outstanding promises in thread state TS):

(TS, Mpyture) =" (TS, M"Y A TS prm=0
In turn, the machine step is defined as follows:

(TS(i), M) =+ (TS", M)
(TS, M’} is consistent

(TS, M)y — (TS[i+— TS'],M")

We note that the machine step is completely thread-local:
it is only determined by the local state of the executing
thread and the global memory, independently of the other
threads’ states. Thread-locality is a key design principle of
PS. It is what makes PS conceptually well-behaved, and,
technically speaking, it allows one to prove the validity of
various local program transformations, which are performed
by compilers and/or hardware, using standard thread-local
simulation arguments.

To show a concrete example, we list the execution steps
of PS leading to the annotated behavior of the LB program
(items prefixed with "C" represent certification steps):

(1) Thread 1 promises (y : 1@(1, 2], L).

(C1) Starting from an arbitrary extension of the current
memory, thread 1 reads (x : 0@(0, 0], L), the initial
message of x.

(C2) Thread 1 fulfills its promise (y : 1@(1, 2], L).

(2) Thread 2 reads (y : 1@(1,2], L).

(3) Thread 2 writes (x : 1@(1, 2], L).

(4) Thread 1 reads (x:1@(1,2], L).

(C1) Starting from an arbitrary extension of the current

memory, Thread 1 fulfills its promise (y : 1@(1, 2], L).

(5) Thread 1 fulfills its promise (y : 1@(1, 2], L).

DRF-RA Guarantee. We end this introductory section
by informally describing DRF-RA, one of the main program-
ming guarantees provided by PS. Generally speaking, DRF
guarantees ensure that race-free programs have strong (i.e.,
more restrictive) semantics. To be more applicable and allow
their use without even knowing the weaker semantics, race
freedom is checked assuming the strong semantics.

In particular, DRF-RA is focused on release/acquire se-
mantics (RA), and states that: if under RA semantics some
program P has no data race involving relaxed accesses (i.e.,
all races are on rel/acq accesses), then all behaviors that
PS allows for P are also allowed for P by the RA semantics.
Here, (i) by RA semantics we mean the model obtained from
PS by treating all reads as acq reads, all writes as rel writes,
and all RMWs as acqrel; and (ii) as PS is an operational
model, data-races are naturally defined as states in which

PLDI 20, June 15-20, 2020, London, UK

two different threads can access the same location and at
least one of these accesses is writing.

For example, by analyzing the MP example under RA se-
mantics, one can easily observe that the only race is on the
rel/acq accesses to y. (Importantly, such analysis safely
ignores promises, since these are not allowed under RA.)
Then, DRF-RA implies that MP has only RA behaviors. In
contrast, in the LB example, non-RA behaviors are possible,
and, indeed, under RA semantics, there are races on relaxed
accesses (to both x and y).

In the sequel, DRF-RA provides us with the main guideline
for making sure that our semantics is not overly weak (that is,
we exclude any semantics that breaks DRF-RA). DRF-RA also
serves as a main step towards “DRF-Lock”, which states that
properly locked programs have only sequentially consistent
semantics.’

3 Problem Overview

As we will shortly demonstrate, the main challenge in PS is to
come up with an appropriate thread-local condition for cer-
tifying the promises made by a thread. Maintaining thread-
locality is instrumental in proving correctness of many com-
piler transformations, but is difficult to achieve given that
promises of different threads may interact.

As we briefly mentioned above, PS requires a certification
to exist for any memory that extends the current memory.
We start by explaining why certifying promises only from
the current memory (without quantifying over all future
memories) is not good enough. Kang et al. [12] observed that
such model may deadlock: the promising thread may fail to
fulfill its promise since the memory was changed since the
promise was made. In this work, we observe that a model that
requires certifying promises only from the current memory
has much more severe consequences. It actually breaks the
DRF-RA guarantee as illustrated below:

a := FADD* ! (x,1) /0 || b := FADD?%¢!(x,1) /0

if a = 0 then if b = 0 then
y:=1 c=y /1 (CDRF)
if c = 1 then
x:=0

Under RA semantics only one thread can enter the if-branch,
and the only race is between the two FADDs. Hence, to
maintain DRF-RA, we need to disallow the annotated be-
havior where both threads read 0 from x. To prevent this
behavior, we need to disallow thread 1 to promise y := 1 in
the beginning of the run. Indeed, by reading such a promise,
thread 2 can write x := 0, and then, thread 1 can perform
its update to x and fulfill its outstanding promise. However,
if we completely ignore the possible interference by other

5The more standard DRF-SC, guaranteeing sequentially consistent seman-
tics when all races (assuming SC semantics) are on SC accesses, is not
applicable here since PS lacks SC accesses. The extension of PS with SC
accesses is left to future work.

PLDI 20, June 15-20, 2020, London, UK

threads, thread 1 may promise y := 1, as it can be certified
in a local run of thread 1 that starts from the initial memory
and reads the initial message of x.

Abstractly, what went wrong is that two threads compete
on the same resource (i.e., to perform an RMW reading from
the initialization message); one of them makes a promise
assuming it will get the resource first but the other thread
wins the competition in the actual run. This not only causes
deadlock (which is semantically inconsequential), but also
breaks DRF-RA.

To address this, PS followed a simple approach: it required
that threads certify their promises starting from any exten-
sion of the current memory. One such particular extension
is the memory that will arise when the required resource is
acquired by some other thread. Hence, this condition does
not allow threads to promise writes assuming they will win
a competition on some resource.

Revisiting CDRF, PS’s certification condition blocks the
promise of y := 1. For example, when certifying against
Mgyture that, in addition to the initialization messages, con-
sists of a message m = (x : 42@(0, _], _), thread 1 is forced to
read from m when performing its FADD, and cannot fulfill
its promise. Since Mypyre is @ possible future memory of the
initial memory, thread 1 cannot promise y := 1.

PS’s future memory quantification maintains the thread-
locality principle and suffices for establishing DRF-RA. How-
ever, next, we demonstrate that this very conservative over-
approximation of possible interference is too strong to sup-
port global optimizations, and it is also the source of un-
soundness of the intended compilation scheme to ARMvS8.

Value-Range Analysis. PS does not support global opti-
mizations based on value-range analysis. To see this, consider
a variant of the LB-G program above that does not have the
redundant store to x in thread 2 and has a CAS instruction
in thread 1.

a:=CAS(x,0,1) /1

if a < 10 then

y:=1

In PS, the annotated behavior is disallowed. Indeed, to obtain
this behavior, thread 1 has to promise y := 1. This promise,
however, cannot be certified for every future memory Mgypyre-
For example, if, in addition to the initialization messages, the
future memory Mgyyre consists of a single message of the
form (x:57@(0,_],_), then the CAS instruction can only
read 57, and the write y := 1 is not executed. However, by
observing the global invariant x < 10 Ay < 10, a global com-
piler analysis may transform this program to the following:

a:=CAS(x,0,1) /1| b=y /1
y:=1 x:=b
Now, the annotated behavior is allowed (the promise y := 1is

not blocked anymore), rendering the optimization unsound.
This is particularly unsatisfying because PS ensures that

= <o

= 1
0

S.-H. Lee, M. Cho, A. Podkopaey, S. Chakraborty, C.-K. Hur, O. Lahayv, V. Vafeiadis

x < 10 is globally valid in this program (via its “invariant
logic” [12, §5.5]), but does not allow an optimizing compiler
to make use of this fact.

Register Promotion. A similar problem arises for a differ-
ent kind of global optimization, namely register promotion:

a=x /1 _

¢ := FADD(z,a) /0 b=y /1 (RP)
x:=b

y:=1+c¢

PS disallows the annotated behavior. Again, thread 1 cannot
promise y := 1, since an arbitrary future memory may not
allow it to read z = 0 when performing the RMW. (Note also
the RMW writing z := 1 cannot be promised before y := 1
since it requires to read x := 1 first.) Nevertheless, a global
compiler analysis may notice that z is a local variable in the
source program, and perform register promotion, replacing
¢ := FADD(z, a) with ¢ := 0 (since this FADD always returns
0). Now, PS allows the annotated behavior (nothing blocks
the promise y := 1), rendering register promotion unsound.

Unsound Compilation Scheme to ARMv8. A different
problem in PS, found while formally establishing the cor-
rectness of compilation to ARMv8 [19], is that the intended
mapping of RMWs to ARMv8 is broken. In fact, this problem
stems from the exact same reason as the two problems above.

While PS disallows the annotated behavior of the RP
program above, when following the intended mapping to
ARMv3 [6], ARMvS allows the annotated behavior for the tar-
get program.® Roughly speaking, although the instructions
cannot be reordered at the source level, they can be reordered
at the micro-architecture level. FADD is effectively turned
into two special instructions, a load exclusive followed by a
store exclusive. Since there is no dependency between the
load of x and the exclusive load of z, the two loads could
be executed out of order. Similarly, the two stores could be
executed out of order, and so the store to y could effectively
be executed before the load of x, which in turn leads to the
annotated behavior.

What went wrong? These three problems all arise be-
cause PS’s certification requirement against every memory
extension is overly conservative in approximating the inter-
ference by other threads. The challenge lies in relaxing this
condition in a way that will ensure the soundness of global
optimizations while maintaining thread-locality.

As CDRF shows, simply relaxing the certification require-
ment by requiring certification only against the current mem-
ory is not an option. Another naive remedy would be to
restrict the certification to extensions of the current memory
that can actually arise in the given program. This approach,
however, is bound to fail:

®Here the fact that no other thread accesses z is immaterial. ARMvS8 allows
this behavior also when, say, a third thread executes z := 5.

Promising 2.0

« First, due to the intricate interaction with local optimiza-
tions, a precise approximation of other threads effect on
memory is too strong—we may have a preceding local op-
timization that reduces the behaviors of the other threads.
For instance, consider the following program:

a:=CAS(x,0,1) /1| x:=42
if a < 10 then b=y /1 (GA+E)
y:=1 x:=b

Here, x := 42 occurs in a possible future memory, but a
compiler may soundly eliminate this write.

Second, this approach is not thread-local, and, since other
threads may promise as well, it immediately leads to trou-
blesome cyclic reasoning: whether thread 1 may promise
a write depends on behavior of thread 2 that may include
promise steps that again depend on behavior of thread 1.

4 Solution Overview

In this section, we present the key ideas behind our modified
PS model, which we call PS 2.0. Section 4.1 describes the no-
tion of capped memory, which enables value-range analysis,
while §4.2 discusses reservations, an additional mechanism
needed to support register promotion and recover the cor-
rectness of the mapping to ARMv8. Section 4.3 discusses our
modeling of undefined behavior (which we use to formally
specify value range analysis). Finally, §4.4 describes certain
trade-offs in our model.

4.1 Capped Memory

We note that PS’s certification against every memory exten-
sion is quantifying over two aspects of possible interference:
message values and message views.

We observe that quantifying only over message views
suffices for DRF-RA. By carefully analyzing CDRF, we can
see that for DRF-RA, one has to make sure that during the
certification of promises, no acquire-release RMW reads from
a message that already exists in the memory. Indeed, (i) due
to interference by other threads, such RMW may not have
the opportunity to read from that message in the actual run;
and (ii) such racy RMWs may exist (the DRF-RA assumption
does not prevent them). Together, (i) and (ii) invalidate the
DRF-RA guarantee (as happens in CDRF). We observe here
that this is the only role of the future memory quantification
that is required for ensuring DRF-RA.

The conservative future memory quantification of PS in-
deed disallows such problematic RMWs during certification.
In fact, even certification against memory extensions that
do not introduce new values in the future memory suffices
for DRF-RA. For example, in CDRF, when certifying against
Mpyture that, in addition to the initialization messages, has
a message form m = (x: 0@(0, _|, R) with R(y) > t, thread
1 is forced to read m when performing its FADD. Since it
is an acquire FADD, it will increase the thread view of y
to R(y), which will not allow it to fulfill its promise. More

PLDI 20, June 15-20, 2020, London, UK

generally, when a thread promises a message of the form
(x:0@(f,t],V) in the current memory M, there is always
a possible memory extension Mgypyre of M that forces (non-
promised) RMWs of location y performed during certification
(which read from a message in Mgyure) to read from a specific
message mgmlre € Mfyture Whose view of x is greater than or
equal to t. When such RMWs are acquire RMWs, this will
force the thread to increase its view of x to at least ¢, which,
in turn, does not allow the thread to fulfill its promise.

Remark 1. Completely disallowing release-acquire RMWs
during certification is too strong. We should allow them to
read from local writes added during certification, since no
other thread can prevent them from doing so.

We further observe that value-range analysis concerns
message values, but it is insensitive to message views. As
we saw for the GA program above, the conservative future
memory quantification of PS is doing too much: it forbids
any promise that depends on the value read by an RMW,
which invalidates value-range analysis. However, we note
that there is no problem in disallowing the following variant
of GA that uses an acquire CAS instead of a relaxed one:

a = CAS®Y(x,0,1) /1
if a < 10 then
y:=1

Although value analysis may deduce that a < 10 is always
true, it cannot justify the reordering of a :== CAS#%(x, 0, 1)
and y := 1, since acquire accesses in general cannot be re-
ordered with subsequent accesses. In other words, an anal-
ysis that is based solely of values does not give any infor-
mation about the views of read messages, so that any opti-
mization based on such analysis cannot enable reordering
of acquire RMWs.

Based on these observations, it seems natural to replace
the conservative future memory quantification of PS with a
requirement to certify against all extensions of the current
memory M that employ values that already exist in M (for
each location). While this approach makes value-range anal-
ysis sound and maintains DRF-RA, it is still too strong for
the combination of local and global optimizations. Indeed,
consider the following variant of the GA+E program above.

b=y /1
= b (GAacq)

f = flag
X =42 if f =1 then =
x:=0 a:=CAS(x,0,1) /1 b:ly7 "
flagrel =1 if a < 10 then rE
y:=1
(GA+E’)

In order for thread 2 to promise y := 1, the write to flag
has to be executed first. (Note that a release write cannot be
promised.) Therefore, the value 42 for x exists in memory
when the promise y := 1 is made, but, to support both the
elimination of overwritten values and global value analysis,
x := 42 should not be considered as a possible extension of

PLDI 20, June 15-20, 2020, London, UK

Loc. Loc.
x| - | vy, _ ‘ x| - | vy, _ ‘vl,V‘
vl sL 7 v Jeat
Timestamp Timestamp
M M

Figure 1. An example of the capped memory

the current memory. We observe that it is enough, however,
to consider memory extensions whose additional messages
only use values of maximal messages (which were not yet
overwritten) to each location.

Now, instead of quantifying over a restricted set of mem-
ory extensions, we identify the most restrictive such exten-
sion, which we called the “capped memory”. This leads to a
conceptually simpler certification condition, where certifica-
tion is needed only against one particular memory, which
is uniquely determined by the current memory. The capped
memory Mofa memory M is obtained by:

« Filling all “gaps” between existing messages so that non-
promised RMWs can only read from the maximal message
of the relevant location. In other words, for every two mes-
sagesmy = (x:_@(_t],_yand my = (x:_@(f,_],_)
with t < f and no message in between, we block the
space between t and f. (The exact mechanism to achieve
this, “reservations”, is discussed in §4.2.)

« For every location x, attaching a “cap message” m, with
a globally maximal view to the latest message to x in M:

My = (x 15x@@3; +1], V)

where 1, and v, are the “to”-timestamp and the value of

the message to x in M with the maximal “to”-timestamp,

and V) is given by:

Vm =Ay. max{t | (y: _@(_t],_) € M}.

Fig. 1 depicts an example of the capped memory construc-
tion. The shaded area in M represents the blocked space.

Starting from M, any (non-promised) RMWs reading from
a message in M are forced to read from the i, messages
(since the timestamp interval [0, %] is completely occupied).
Because these messages carry maximal views, acquire RMWs
reading from them cannot be executed during certification,
as it will increase the thread view to V), which, in turn, will

prevent the thread from fulfilling its outstanding promises.
In turn, the new machine step is then simplified as follows:

(T§\(i),M} -t (TS, M")
3T1S”. (TS, M’y =" (TS”,) A TS .prm = 0
(TS, M) — (TS[i+— TS'],M")
Since the capped memory is clearly one possible future

memory, the semantics we obtain is clearly weaker than PS.
It is (i) weak enough to allow the annotated behaviors of GA

S.-H. Lee, M. Cho, A. Podkopaey, S. Chakraborty, C.-K. Hur, O. Lahayv, V. Vafeiadis

and RP above: certification against the capped memory will
notlead to a > 10 in GA and to ¢ # 0 in RP; and, on the other
hand, (ii) strong enough to forbid the annotated behavior
of CDRF above: certification against the capped memory
will not allow the y := 1 promise. In particular, by using the
maximal messages for constructing capped memory, thread 2
of GA+E’ can promise y := 1 and certify it while the message
x := 42 (which is overwritten by x := 0) is in the memory.

Remark 2. The original PS quantification over all future
memories could equivalently quantify over all memories de-
fined just like the capped memory, except for using arbitrary
values for the cap messages. Capped memory is more than
that: it sets the value of each cap messages to that of the
corresponding maximal message.

4.2 Reservations

While capped memory suffices for justifying the weak out-
comes of the examples seen so far, it is still too strong to
support register promotion and to validate the intended map-
ping to ARMv8. Consider the following variant of RP that
uses an acquire RMW in thread 1.

a=x /1 _
¢ := FADD*(z,a) /0 i B Z /1 (RPacq)
y:=1 -

The weakening of PS presented in §4.1 disallows the anno-
tated behavior. Thread 1 cannot promise y := 1 because its
certification has to execute a non-promised acquire RMW
reading from an existing message against the capped mem-
ory; and also it cannot promise the RMW z := 1 before y := 1
because its certification requires reading x := 1. Neverthe-
less, as for RP, a global analysis may notice that z is accessed
only by one thread and perform register promotion, yield-
ing the annotated outcome. (Similarly, ARMv8 allows the
annotated behavior of the corresponding target program.)

We note that the standard (Java) optimization of removing
locks used by only one thread requires to perform register
promotion on local locations accessed by acquire RMWs.
Indeed, lock acquisitions are essentially acquire RMWs.

So, how can we allow such behaviors without harming
DRF-RA? Our idea here is to enhance PS by allowing one to
declare which thread will win the competition to perform
an RMW reading from a given message m. Once such a dec-
laration is made, RMWs performed by other threads cannot
read from m.

The technical mechanism for these declarations is simple:
we add a “reservation” step to PS, allowing a thread to re-
serve a timestamp interval that it plans to use later, without
committing on how it will use it (what value and view will
be picked). Once an interval is reserved, other threads are
blocked from reusing timestamps in this interval. Intuitively,
a reservation corresponds to promising the “read part” of
the RMW, which confines the behavior of other threads. In
particular, if a thread reserves an interval (, t;] attached to

Promising 2.0

some message (f, t1], then other threads cannot read from
the (f, t;] message with an RMW operation.

Since reservations are included in the machine memory
(just like normal writes and promises), the semantics re-
mains thread-local. Technically, reservations take the form
(x: (f,t]) where x € Loc and (f, t] is a timestamp interval.
To meet their purpose, we allow attaching reservations only
immediately after existing concrete messages (f should be
the “to”-timestamp of some existing message to the same lo-
cation). Threads are also allowed to cancel their reservations
(provided they can still certify their outstanding promises) if
they no longer need to block an interval. This is technically
needed for the soundness of register promotion (see [1, §B]).

Returning to the RPacq program above, reservations allow
the annotated outcome. Thread 1 can first reserve the interval
(0, 1] for z. Then, it can promise y := 1 and certify its promise
by using its own reservation to perform the RMW.

Intuitively, reservations are closer to the implementation
of RMWs in ARM: reserving the read part of an RMW first
and then writing the RMW at the reserved space later corre-
sponds to execution of a load exclusive first and a (successful)
write exclusive later.

Reservations are also used in the definition of the capped
memory to fill the gaps between messages to the same lo-
cation (§4.1). In the presence of reservations, however, the
capped memory definition requires some care. First, the value
of the cap messages m, should be the value of the maximal
concrete message to x (reservations do not carry values). Sec-
ond, when constructing the capped memory for thread i, if
the maximal message to some location y is a reservation of
thread i itself, then we do not add a cap message for y. In
effect, during certification, the thread can execute any RMW
on y but only after filling the reserved space on y. Other
threads cannot execute an RMW on reservations of thread i,
and so cannot interfere with respect to y.

4.3 Undefined Behavior

So far, we have described value-range optimizations by in-
formally referring to a global analysis performed by the
compiler. For our formal development, we introduce unde-
fined behavior (UB). We note that UB, which is not supported
in the original PS model, is also useful in a broader context
(e.g., to give sensible semantics to expressions like x/0).

In order to formally define global optimizations, we in-
clude in our language an abort instruction, abort, which
causes UB. In turn, for a global invariant I (formally defined
in §6.2), we allow the program transformation introducing
at arbitrary program points the instruction assert(I), which
is a syntactic sugar to if —I then abort. This paves the way
to further local optimizations, such as:

assert(x € {0,1})
a:=Xx ~>
if a € {0,1} then ¢

PLDI 20, June 15-20, 2020, London, UK

The standard semantics of UB is “catch-fire”: UB should
be thought as allowing any arbitrary sequence of opera-
tions. This enables common compiler optimizations (e.g.,
if e then c else abort ~ c). Nevertheless, to make sure
the semantics is not overly weak, like any thread step, for
taking an abort-step, the certification condition has to be
satisfied (where the certifying thread may replace abort by
any sequence of operations).

Our formal condition for taking an abort-step is some-
what simpler: we require that for every location x, the cur-
rent view of the aborting thread for x should be lower than
the “to”-timestamp of all the outstanding promises for x of
that thread. We say a thread is promise-consistent when this
condition is met. Recall that a thread can take a write step to
a location x when the thread view of x is lower than the “to”-
timestamp of the writing message. In turn, considering that
taking an abort-step is capable of executing arbitrary write
instructions, a thread is able to fulfill its outstanding promises
when aborting if and only if it is promise-consistent.

4.4 Relaxed RMWs in Certifications

In PS 2.0, we opted to allow relaxed RMWs (that were non-
promised before and read from a message that exists in the
current memory) during certification of promises. This de-
sign choice can cause execution deadlocks:

a :=FADD(x,1) /0

ym1ta b := FADD(x, 1)

(deadlock)

Suppose that in the beginning of the run the thread 1 promises
y := 1. This promise can be certified against the capped mem-
ory by reading from the cap message of x (whose value is 0).
Now, thread 2 can perform its RMW, and block thread 1 from
fulfilling its promise. Although allowing such deadlocks is
awkward, they are inconsequential, since deadlocking runs
are discarded from the definition of observable behavior.

Similarly, this choice enables somewhat dubious behaviors
that seem to invalidate atomicity of relaxed RMWs: for in-
stance, CDRF can have the annotated behavior if one FADD
is made rlx. Such behaviors are actually unavoidable if one
insists on allowing all (local and global) optimizations al-
lowed by PS 2.0 ([1, §C] provides an example).

A stronger alternative would be to disallow relaxed RMWs
during certification unless they were promised before the
certification, or they read from a message that is added to
the memory during certification. This can be easily achieved
by defining the capped memory (against which threads cer-
tify their promises) to include a reservation instead of a cap
message, which disallows to read from cap messages during
certification. The resulting model is deadlock-free and it sup-
ports all (global and local) optimizations supported by PS 2.0,
except for the local reordering of a relaxed RMW followed
by a write. To see this consider the following example:

a:=FADD(x,1) /1| b=y /1

v 1 b (LB-RMW)

PLDI 20, June 15-20, 2020, London, UK

To read the annotated values, the run must start with thread 1
promising y := 1. Such a promise can only be certified if we
allow relaxed RMWs that read an existing message during
certification. Nevertheless, reordering the two instructions in
thread 1 clearly exhibits the annotated behavior. In particular,
since ARMvS8 performs such reorderings, the mapping to
ARMvS should always include a dependency from relaxed
RMWs, thereby incurring some (probably small) overhead.

5 Formal Model

In this section, we present our formal model, called PS 2.0,
which combines and makes precise the ideas outlined above.
For simplicity, we omit some features that were included in
PS (plain accesses, fences, release sequences, and split and
lower of promises).” All of these features are handled just
like in PS and are included in our Coq formalization. The
full operational semantics and the programming language
are presented in [1, §A].

To keep the presentation simple and abstract, we do not
fix a particular programming language syntax, and rather
assume that the thread semantics is already provided as a
labeled transition system, with transition labels Silent for
a silent thread transition with no memory effect, R(o, x, v)
for reads, W(o, x, v) for writes, U(oy, 0w, X, Uy, Uy) for RMWs,
Fail for failing assertions, Sys(v) for a system calls.

The o, 0, 0, variables denote access modes, which can be
either rlx or ra. We use ra for both release and acquire,
and include two access modes in RMW labels: a read mode
and a write mode. These naturally encode the syntax of the
examples we discussed above, e.g.,

FADD — U(rlx,rlx,...) FADD?? — U(ra, rlx,...)

FADD**! _, U(ra,ra,..) FADD™! — U(rlxra,..)

Next, we present the components of the PS 2.0 model.

Time. Time is a set of timestamps that is totally and densely
ordered by < with a minimum value, denoted by 0.

Views. A view is a function V : View £ Loc — Time. We
use L and LI to denote the natural bottom elements and join
operations for views (pointwise extensions of the timestamp
0 and max operation on timestamps).

Concrete Messages. A concrete message takes the form
m = (x:0@(f, t],R) where x € Loc,v € Val, f,t € Time,
and R € View, such that f < tor f = ¢ =0, and R(x) < t.
We denote by m.1loc, m.val, m.from, m.to, and m.view the
components of m.

Reservations. A reservationtakesthe formm = (x : (f,t]),
where x € Loc, and f,t € Time such that f < t. We denote
by m.loc, m.from, and m.to the components of m.

7In particular, note that the system calls in this simplified model do not
enforce sequentially consistent fences.

10

S.-H. Lee, M. Cho, A. Podkopaey, S. Chakraborty, C.-K. Hur, O. Lahayv, V. Vafeiadis

Messages. A message is either a concrete message or a
reservation. Two messages m; and m;, are disjoint, denoted by
my # my, if they have different locations or disjoint timestamp
intervals:

mi#my; = my.loc # my.loc VvV
mi.to < my.from V my.to < my;.from

Two sets M; and M, of messages are disjoint, denoted by
M; # M, if my # my for every my € M; and my € M.

Memory. A memory is a (nonempty) pairwise disjoint
finite set of messages. We write M(x) for the sub-memory
{m e M| mloc=x}and M for the set {m € M | m =
(_:_@(_ _],_) } of concrete messages in M.

Memory Operations. A memory M supports the inser-
tion for a message m denoted by M ¢ m and given by
M U {m}. It is only defined if: (i) {m} # M, (ii) if m is a con-
crete message with m.1loc = x, then no message m’ € M(x)
has m’.from = m.to, and (iii) if m is a reservation with
m.loc = x, then there is some concrete message m’ € Z\7I(x)
such that m’.to = m.from. Note that the second condition
enforces that once a message is not an RMW (i.e,, its “from”-
timestamp is not attached to another message), it never be-
comes an RMW (i.e,, its “from”-timestamp remains detached).
Technically, this condition is required for the soundness of
the register promotion.

Closed View. Given a view V and a memory M, we write
V e M if, for every x € Loc, we have V(x) = m.to for some
concrete message m € M(x).

Thread States. A thread state is a triple TS = (o, V, P),
where o is a local state, V is a thread view, and P is a memory.
We denote by TS.st, TS.view, and TS.prm the components
of a thread state TS.

Thread Configuration Steps. A thread configuration is a
pair (TS, M), where TS is a thread state and M is a memory.
We use L as a thread configuration after a failure.

Fig. 2 presents the full list of thread configuration steps,
which we discuss now. To avoid repetition, we use the helpers
READ-HELPER and WRITE-HELPER. In these helpers, {x@t}
denotes the view assigning t to x and 0 to other locations.

PROMISE. A thread can take a PROMISE-step by adding a
concrete message m to the set of outstanding promises P and
update the memory M to M <% m.

RESERVE and cANCEL. These two steps are specific to
PS 2.0 model. In a RESERVE-step a thread reserves a times-
tamp interval by adding it to both the memory M and the
set of outstanding promises 7S.prm. The thread is allowed
to drop the reservation from the set of outstanding promises
and the memory using the CANCEL-step.

READ. In this step a thread reads the value of a location x
from a message m € M and extend its view. Following the
READ-HELPER, the thread’s view of location x is extended to

Promising 2.0 PLDI 20, June 15-20, 2020, London, UK

Memory Helpers: Thread Helpers:
(MEMORY: NEW) (WRITE-HELPER)
m=(x:_@tLR) V() <t
(P, M) m, (P, M & m) (READ-HELPER) V' =V u{x@t}
m={(x: @, t,RYeM V(x) <t o=rlx=R=1
(MEMORY: FULFILL) o=rlx =V =Vu{x@t} o=ra=>Pkx)=0AR=V’
mePp o=ra=V =Vu{x@t} UR (P, M) 55 (', M")
(P.M) =5 (P\ {m}, M) WV, My 28 (v, M) (V, P, MY 2y (VP! M)
Thread Steps:
(PROMISE)
m={:_@(_].R) (RESERVE) (CANCEL)
M=M&m ReM m=_:(__1) M=M&mn m={(:(,])eP

(o, V. P),M) > ({0, V,PU{m}),M) (o, V,P),M)— ({o,V,P U {m}), M) (o, V.P),M) = ((o,V,P\ {m}), M\ {m})

(READ) (WRITE) (UPDATE)
R(o.x,0) W(o0,x,0) o U(0r,0w,%,0¢,0w) o
m=(x:0@(,_],_) m=(x:0@(__],_) me=(x:0:@(t],) mw=(x:ow@(_]_)
(v, My 2258 (V! M) (V,P, My 225y (VP! M) WV, My 2250 (vIoMy (VP MY 2 v P M
{o,V,P),M)— {{o’,V',P),M) {{o,V,P),M)— {({o’,V',P"),M") (o, V, Py, M) — (", V" ,P"),M")
(SILENT) (SYSTEM CALL) (FAILURE)
Silent, o’ o —Sﬂ)—) o’ P=0 o Fail, 1 (o,V, P) is promise-consistent
(VDM = U VLM oy by my 229, (o v, Py,) (@ V. Py M) =5 1
Machine Steps:

(MACHINE SYSTEM CALL)
(MACHINE NORMAL)

(TS (i), My = (TS', M) (TS(i), M) —* M (TS', M’) (MACHINE FAIL) -
(TS’, M’} is consistent (TS’, M’} is consistent (TS(i), M) »* == 1
(T8.M) = (TSli = IS]. M) T8, My 2 (T S[i o T, M) (7S, My T2, |

Figure 2. Formal operational semantics

timestamp ¢t. When the read is an acquire read, the view is FAILURE. We only allow a thread configuration (TS, M)
also updated by the message view R. to fail if TS is promise-consistent:
WRITE and UPDATE. The write and the update steps cover

two cases: a fresh write to memory (MEMORY:NEW) and a ful- vm € TS.prm, TS.view(m.loc) < m.to

fillment of an outstanding promise (MEMORY:FULFILL). When Cap View and Messages. The last message of a memory
a thread writes a message m with location x along with M to a location x, denoted by iy, is given by:

timestamp (_, t], t extends the thread’s view of location x to

memory M. A release write step additionally ensures that the myx = arg max m.to

thread has no outstanding promise on location x. Moreover, meM(x)

a release write attaches the updated thread view V” to the

The cap view of a memory M, denoted by Vi, is given by:
message m. The update step is similar, except that it first

reads a message with a timestamp interval (_, t], and then, VM = Ax. ﬁM to
writes a message with an interval (¢, _]. _

SILENT. A thread takes a SILENT-step to perform thread- By definition, we have Vjy € M. The cap message of a memory
local computation which updates only the local thread state. M to alocation x, denoted by My, is given by:

SYSTEM CALL. A thread takes a SYSTEM CALL-step that —~ — — — =
emits an event with the call’s input and output values. Myt = (X i M. val@ (M £0, My £ + 1, Vi)

Capped Memory. The capped memory of a memory M
with respect to a set of promises P, denoted by Mp, is an
extension of M, constructed in two steps:

11

PLDI 20, June 15-20, 2020, London, UK

1. For every my, my € M withm;.loc = my.loc, m;.to <
m;.to, and there is no message m’ € M(mj.loc) such
that m;.to < m’.to < my.to, we include a reservation
(my.1oc: (mq.to, my.from]) to Mp.

2. We include a cap message my; in Mp for every loca-
tion x unless Mz, is a reservation in P.

Consistency. A thread configuration (TS, M) is called con-
sistent if there exist TS’, M’ such that:

(TS, Mrs pen) —* (TS, M) A TS .prm =0

Machine steps. A machine state is a pair MS = (7S, M)
consisting of a function 7S assigning a thread state to every
thread, and a memory M. The initial state MS® (for a given
program) consists of the function 7.5° mapping each thread i
to its initial state o7, the L thread view (all timestamps are
0), and an empty set of promises; and the initial memory M°
consisting of one message (x : 0@(0,0], L) for each location
x. The three possible machine steps are given at the bottom
of Fig. 2. We use L as a machine state after a failure.

Behaviors. To define what is externally observable during
executions of a program P, we use the system calls that P’s
executions perform. More precisely, every execution induces
a sequence of system calls, and the set of behaviors of P,
denoted Beh(P), consists of all such sequences induced by
executions of P. When a Fail occurs during the execution,
Beh(P) consists of the sequence of system calls performed
before the failure followed by an arbitrary sequence of sys-
tem calls (reflecting an undefined behavior).

6 Results

We next present the results of PS 2.0. Except for Theorems 6.6
to 6.8 (whose proofs are given in [1]), all other results are
fully mechanized in the Coq proof assistant. These results
hold for the full model defined in [1, §A], not only for the
simplified fragment presented in §5.

6.1 Thread-Local Optimizations

A transformation Py ~> Py is sound if it does not introduce
behaviors under any (parallel and sequential) context:

V C, Beh(C[Puc]) 2 Beh(C[Pygi]) -

PS 2.0 allows all compiler transformations supported by PS.
Additionally, it supports replacing abort by arbitrary code
(more precisely, abort; C; ~» (). Since assert(e) is defined
as if —e then abort, the following transformations are valid:

1. assert(e); C ~» assert(e);C[true/e]
2. assert(e) ~ skip

Thanks to thread-locality of PS and PS 2.0, we proved a
theorem that combines and lifts the local simulation relations
(almost without any reasoning on certifications) between
pairs of threads S;, T; into a global simulation relation be-
tween the composed programs S; || ... || Sy and Ty || ... || T.

12

S.-H. Lee, M. Cho, A. Podkopaey, S. Chakraborty, C.-K. Hur, O. Lahayv, V. Vafeiadis

This theorem allows us to easily prove soundness of the
thread-local transformations using sequential and thread-
local simulation relations. See Kang [11] and our Coq for-
malization for more details.

6.2 Value-Range Optimizations

First, we provide a global value-range analysis and prove
its soundness in PS2.0. A value-range analysis is a tuple
A = (J,S1,...,5,), where J] € Loc — P(Val) represents a
set of possible values for each location and S; C State; a
set of possible local states of the underlying language (i.e.,
excluding the thread views) for each thread i. The analysis is
sound for a program P if (i) the initial value for each location
is in J and the initial state of each thread i in P is in S;;
(ii) taking a step from each state in S; necessarily leads to
a state in S; assuming that it only reads a value in J and
guaranteeing that it only writes a value in J.

Now, we show that sound analysis for P holds in every
reachable state of P.

Theorem 6.1 (Soundness of Value-Range Analysis). For a
sound value-range analysis (J, S, ...,Sp) for P, if (TS, M) is
a reachable machine state for P, then TS (i).st € S; for every
thread i, and m.val € J(x) for everym € M(x).

Second, we prove the soundness of global optimizations
based on sound value-range analysis. An optimization based
on a value-range analysis A = (J,Sy,...,S,) can be seen
as inserting assert(e) at positions in thread i when e is
always evaluated to true. For this, we define a relation,
global_opt(A, Py, Pygt), which holds when Py is obtained
from Py by inserting valid assertions based on A.

Theorem 6.2 (Soundness of Global Optimizations). For a
sound value-range analysis A of Py, and for P such that
global_opt(A, Py, Pygt), we have Beh(Pg) 2 Beh(Pg).

6.3 Register Promotion

We prove soundness of register promotion. We denote by
promote(s, x, r) the statement obtained from a statement s
by promoting the accesses to memory location x to accesses
to register r (see [1, §D] for a formal definition).

Theorem 6.3 (Soundness of Register Promotion). For a pro-
gram si1|| ... ||sn, if memory location x is only accessed by s;
(i.e, not occurring in s; for every j # i) and register r is fresh
in's; (i.e., not occurring in s;), we have:

Beh(si]| ... ||sn) 2 Beh(sq]| ... || promote(s;, x,r) || ... ||sn) -

6.4 DRF Theorems

We prove four DRF theorems for PS 2.0: DRF-Promise, DRF-
RA, DRF-Lock-RA and DRF-Lock-SC. First, we need several
definitions:
* Promise-free (PF) semantics is the strengthening of PS 2.0
obtained by revoking the ability to make promises or
reservations.

Promising 2.0

* Release-acquire (RA) is the strengthening of PF obtained
by interpreting all memory operations as if they have ra
access mode.

« Sequential consistency (SC) is the strengthening of RA
obtained by forcing every read of a location x to read from
the message with location x with the maximal timestamp
and every write to a location x to write a message at a
timestamp higher than any other x-message.

In the absence of promises, PS and PS 2.0 coincide:

Theorem 6.4. PF is equivalent to the promise-free fragment
of PS, and thus the same holds for RA and SC.

We say that a machine state is r1x-race-free, if whenever
two different threads may take a non-promise step accessing
the same location and at least one of them is writing, then
both are ra accesses.

Theorem 6.5 (DRF-Promise). If every PF-reachable machine
state for P is r1x-race-free, then Behpp(P) = Behps.0(P).

This theorem is one of the key results of DRF theorems
for PS 2.0. In our Coq formalization, we proved a stronger
version of DRF-Promise, which is presented in [1, §E].

Theorem 6.6 (DRF-RA). Ifevery RA-reachable machine state
for P is r1x-race-free, then Behra (P) = Behpso(P).

Thanks to Theorems 6.4 and 6.5, the proof of DRF-RA for
PS 2.0 is identical to that for PS given in [12].

Our DRF-Lock theorems given below generalize those for
PS given in [12] in two aspects: our Lock are implemented
with an acquire CAS rather than acquire-release CAS that
was assumed in [12]; and our results cover tryLock, not just
Lock and Unlock.

We define tryLock, Lock and Unlock as follows:

a:=tryLock(L) % a:=WCAS*9(L,0,1)
Lock(L) % do a:=tryLock(L) while !a
Unlock(L) = L™l:=90

where WCAS? is the weak CAS operation, which can either
return true after successfully performing CAS®, or return
false after reading any value from L with relaxed mode.

We prove DRF-Lock-RA and DRF-Lock-SC for programs
using the three lock operations. We say such a program is
well-locked if (1) locations are partitioned into lock and non-
lock locations, (2) lock locations are accessed only by the
three lock operations, and (3) Unlock is executed only when
the thread holds the lock.

Theorem 6.7 (DRF-Lock-RA). For a well-locked program P,
if every RA-reachable machine state for P is r1x-race-free for
all non-lock locations, then Behga (P) = Behps,o(P).

Theorem 6.8 (DRF-Lock-SC). For a well-locked program P,
if every SC-reachable machine state reachable for P is race-free
for all non-lock locations, then Behgc (P) = Behps.o(P).

The proofs of these theorems are given in [1, §F].

13

PLDI 20, June 15-20, 2020, London, UK

6.5 Compilation Correctness

Following Podkopaev et al. [19], we prove the correctness of
mapping from PS 2.0 to hardware models (x86-TSO, POWER,
ARMv7, ARMv8, RISC-V) using the Intermediate Memory
Model, IMM, from which intended compilation schemes to
the different architectures are already proved to be correct.

Theorem 6.9 (Correctness of Compilation to IMM). Every
outcome of a program P under IMM is also an outcome of P
under PS 2.0, i.e., Behps,o(P) 2 Behjmm (P).

We note that this result (which is mechanized in Coq)
requires the existence of a control dependency from the read
part of each RMW operation. Such dependency exists “for
free” in CAS operations, since its write operation (a store-
conditional instruction) is anyway control-dependent on
the read operation (a load-link instruction). However, when
compiling FADDs to ARMv8, the compiler has to place “fake”
control dependencies to meet this condition (and be able
to use our theorem). We conjecture that a slightly more
efficient compilation (standard) scheme of FADDs that does
not introduce such dependencies is also sound. We leave this
proof to a future work. In any case, our result is better than
the one for PS by Podkopaev et al. [19] that requires an extra
barrier (“ld fence”) when compiling RMWs to ARMvS.

Remark 3. Asin ARMvS8, our compilation result to RISC-V
uses release/acquire accesses. These accesses are not a part
of RISC-V ISA, but the RISC-V memory model (RVWMO) is
“designed to be forwards-compatible with the potential addition”
of them [24, §14.1].

7 Related Work

We have already discussed the challenges in defining a ‘sweet-
spot’ for a programming language concurrency model, which
is neither too weak (i.e., it provides programmability guaran-
tees) nor too strong (i.e., it allows efficient compilation). Java
was the first language, where considerable effort was put into
defining such a formal model [16], but the model was found
to be flawed in that it did not permit a number of desired
transformations [21]. To remedy this, C/C++ introduced a
very different model based on ‘per-execution’ axioms [3],
which was also shown to be inadequate [2, 13, 22, 23]. More
recently, PS [12], which has already been discussed at length,
addressed this challenge using the idea of locally certifiable
promises. PS 2.0 improves PS by supporting global optimiza-
tions and better compilation of RMWs to ARMv8. We note
that the promise-free fragment of PS 2.0 is identical to the
promise-free fragment of PS.

Besides PS, there are three other approaches based on
event structures [7, 8, 18]. Pichon-Pharabod and Sewell [18]
defined an operational model based on plain event structures.
Execution starts with a structure representing all possible
program execution paths, and proceeds either by commit-
ting a prefix of the structure or by transforming it in a way

PLDI 20, June 15-20, 2020, London, UK

that imitates a compiler optimization (e.g., by reordering ac-
cesses). The model also has a speculation step, whose aim is
to capture transformations based on global value range anal-
ysis, but has side-condition that is rather difficult to check.
The main downside of this model is its complexity, which
hinders the formal development of results about it.

Jeffrey and Riely [8] defined a rather different model based
on event structures, which constructs an execution via a two
player game. The player tries to justify all the read events
of an execution, while the opponent tries to prevent him. At
each step, the player can extend the justified execution by
one read event, provided that for any continuing execution
chosen by the opponent, there is a corresponding write that
produced the appropriate value. The basic model does not
allow the reordering of independent reads, which means that
compilation to ARM and Power are suboptimal. Although
the model was later revised to fix the reordering problem
[9], optimal compilation to hardware remains unresolved.
Moreover, it does not support global optimizations and/or
elimination of overwritten stores, since it forbids the anno-
tated outcome of LB-G (in §1).

Chakraborty and Vafeiadis [7] introduced WEAKESTMO,
a model based on justified event structures, which are con-
structed in an operational fashion by adding one event at a
time provided it can be justified by already existing events.
Justified event structures are then used to extract consistent
executions, which in turn determine the possible outcomes
of a program. While WEAKESTMO resolve PS’s ARMv8 com-
pilation problem [17], it does not formally support global op-
timizations. Moreover, WEAKESTMO does not support a class
of strengthening transformations such as Wrej ~> Fre1; Wrix.
Both PS and PS 2.0 support these transformations.

More recently, Java has been extended with different ac-
cess modes in JDK 9 [14, 15]. Bender and Palsberg [4] formal-
ized this extension with a ‘per-execution’ axiomatic model
similar to RC11 [13]. The model disallows load-store reorder-
ing (LB behaviors) for atomic accesses, while allowing out-
of-thin-air values for plain accesses. Because of the latter,
global value analysis is unsound in this model. It remains
unclear, however, whether transformations based on such
(unsound) analysis might be sound or not.

8 Conclusion

We have presented PS 2.0, the first model that formally en-
ables transformations based on global analysis while support-
ing programmability (via DRF guarantees and soundness of
value-range reasoning) and efficient compilation (including
various compiler thread-local optimizations). The inherent
tension between these desiderata, together with our goal to
have a thread-local small-step operational semantics, natu-
rally leads to a rather intricate model, which is less abstract
than alternative declarative models. Nevertheless, we note

14

S.-H. Lee, M. Cho, A. Podkopaey, S. Chakraborty, C.-K. Hur, O. Lahayv, V. Vafeiadis

that PS 2.0, like its predecessor PS, is modeling weak behav-
iors with just two principles: (i) “views® for out-of-order
execution of reads; and (ii) “promises” for out-of-order exe-
cution of writes. The added complexity of PS 2.0 is twofold:
reservations and capped memory. We view reservations as
a simple and natural addition to the promises mechanism.
Capped memory is less natural and more complex. Fortu-
nately, it is only a part of the certification process and not of
normal execution steps. In addition, the DRF-Promise (and
the other DRF theorems as well, Theorems 6.5 to 6.8) are
methods to simplify the semantics. Programmers may safely
use the PF or the RA fragment of PS 2.0, which has only
views (without any promises, certifications, reservations, or
capped memory), when their programs are avoiding data
race via release-acquire and lock synchronization.

We also note that PS 2.0 allows some seemingly dubious
behaviors, such as “read from unexecuted branch” [5]:

b=y /42
a=x /42 || if b =42
y:=a then x =0 (RFUB)

else x:=42

The annotated behavior is allowed in PS 2.0 (as in PS and
C/C++11). Aiming to support local compiler optimizations,
this is actually unavoidable. Practical compilers (including
gece and llvm) may observe that thread 2 writes 42 to x re-
gardless of which branch is taken, and optimize the program
of thread 2 to b := y; x := 42 (such optimization is a “trace-
preserving transformation” [12]). The resulting program is
essentially the LB program (see §1), whose annotated behav-
ior can be obtained by mainstream architectures.

Finally, to the best of our knowledge, PS 2.0 supports all
practical compiler optimizations performed by mainstream
compilers. As a future goal, we plan to extend it with sequen-
tially consistent accesses (backed up with DRF-SC guarantee)
and C11-style consume accesses.

Acknowledgments

We thank the PLDI’20 reviewers for their helpful feedback.
Chung-Kil Hur is the corresponding author. Sung-Hwan
Lee, Minki Cho, and Chung-Kil Hur were supported by Sam-
sung Research Funding Center of Samsung Electronics un-
der Project Number SRFC-IT1502-53. Anton Podkopaev was
supported by JetBrains Research and RFBR (grant number
18-01-00380). Ori Lahav was supported by the Israel Science
Foundation (grant number 5166651), by Len Blavatnik and
the Blavatnik Family foundation, and by the Alon Young
Faculty Fellowship.

References

[1] 2020. Coq development and supplementary material for this paper.
http://sf.snu.ac.kr/promising2.0

[2] Mark Batty, Mike Dodds, and Alexey Gotsman. 2013. Library abstrac-
tion for C/C++ concurrency. In POPL 2013. 235-248.

http://sf.snu.ac.kr/promising2.0

Promising 2.0

[3] Mark Batty, Scott Owens, Susmit Sarkar, Peter Sewell, and Tjark Weber.

2011. Mathematizing C++ Concurrency. In POPL 2011 (Austin, Texas,
USA). ACM, New York, NY, USA, 55-66. https://doi.org/10.1145/
1926385.1926394

[4] John Bender and Jens Palsberg. 2019. A Formalization of Java’s Con-

[10] JMM causality test cases 2019.

current Access Modes. Proc. ACM Program. Lang. 3, OOPSLA (2019),
142:1-142:28. https://doi.org/10.1145/3360568

Hans-Juergen Boehm. 2019. P1217R2: Out-of-thin-air, revisited, again.
wg21.link/p1217 [Online; accessed 22-March-2020].

C/C++11 mappings to processors 2019. Retrieved July 3, 2019 from
http://www.cl.cam.ac.uk/~pes20/cpp/cppOxmappings.html

Soham Chakraborty and Viktor Vafeiadis. 2019. Grounding thin-air
reads with event structures. Proc. ACM Program. Lang. 3, POPL, Article
70 (Jan. 2019), 28 pages. https://doi.org/10.1145/3290383

Alan Jeffrey and James Riely. 2016. On Thin Air Reads: Towards
an Event Structures Model of Relaxed Memory. In LICS 2016. ACM,
759-767.

Alan Jeffrey and James Riely. 2019. On Thin Air Reads: Towards
an Event Structures Model of Relaxed Memory. Logical Methods in
Computer Science 15, 1 (2019). https://doi.org/10.23638/LMCS-15(1:
33)2019

Retrieved November
17, 2019 from http://www.cs.umd.edu/~pugh/java/memoryModel/
unifiedProposal/testcases.html

[11] Jeehoon Kang. 2019. Reconciling low-level features of C with compiler

optimizations. Ph.D. Dissertation. Seoul National University.

[12] Jeehoon Kang, Chung-Kil Hur, Ori Lahav, Viktor Vafeiadis, and Derek

[13]

Dreyer. 2017. A promising semantics for relaxed-memory concurrency.
In POPL 2017 (Paris, France). ACM, New York, NY, USA, 175-189.
https://doi.org/10.1145/3009837.3009850

Ori Lahav, Viktor Vafeiadis, Jeehoon Kang, Chung-Kil Hur, and Derek
Dreyer. 2017. Repairing Sequential Consistency in C/C++11. In PLDI
2017 (Barcelona, Spain). ACM, New York, NY, USA, 618-632. https:
//doi.org/10.1145/3062341.3062352

15

[14]
[15]
[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

PLDI 20, June 15-20, 2020, London, UK

Doug Lea. 2019. JEP 188: Java Memory Model Update. Retrieved
November 17, 2019 from http://openjdk.java.net/jeps/188
Doug Lea. 2019. Using JDK 9 Memory Order Modes. Retrieved

November 17, 2019 from http://gee.cs.oswego.edu/dl/html/j9mm.html
Jeremy Manson, William Pugh, and Sarita V. Adve. 2005. The Java
memory model. In POPL 2005. ACM, 378-391. https://doi.org/10.1145/
1040305.1040336

Evgenii Moiseenko, Anton Podkopaev, Ori Lahav, Orestis Melkonian,
and Viktor Vafeiadis. 2019. Reconciling Event Structures with Modern
Multiprocessors. arXiv preprint arXiv:1911.06567 (2019).

Jean Pichon-Pharabod and Peter Sewell. 2016. A Concurrency Se-
mantics for Relaxed Atomics That Permits Optimisation and Avoids
Thin-air Executions. In POPL 2016 (St. Petersburg, FL, USA). ACM,
622-633. https://doi.org/10.1145/2837614.2837616

Anton Podkopaev, Ori Lahav, and Viktor Vafeiadis. 2019. Bridging the
Gap Between Programming Languages and Hardware Weak Memory
Models. Proc. ACM Program. Lang. 3, POPL, Article 69 (Jan. 2019),
31 pages. https://doi.org/10.1145/3290382

Christopher Pulte, Shaked Flur, Will Deacon, Jon French, Susmit Sarkar,
and Peter Sewell. 2018. Simplifying ARM concurrency: Multicopy-
atomic axiomatic and operational models for ARMv8. Proc. ACM
Program. Lang. 2, POPL (2018), 19:1-19:29. https://doi.org/10.1145/
3158107

Jaroslav Sevcik and David Aspinall. 2008. On Validity of Program
Transformations in the Java Memory Model. In ECOOP. 27-51.
Viktor Vafeiadis, Thibaut Balabonski, Soham Chakraborty, Robin
Morisset, and Francesco Zappa Nardelli. 2015. Common Compiler
Optimisations Are Invalid in the C11 Memory Model and What We
Can Do About It. In POPL 2015 (Mumbai, India). ACM, New York, NY,

USA, 209-220. https://doi.org/10.1145/2676726.2676995
Viktor Vafeiadis and Chinmay Narayan. 2013. Relaxed Separation

Logic: A program logic for C11 concurrency. In OOPSLA 2013. ACM,
New York, NY, USA, 867-884. https://doi.org/10.1145/2509136.2509532
Andrew Waterman and Krste Asanovi¢. 2017. The RISC-V Instruction
Set Manual Volume I: User-Level ISA. https://riscv.org/specifications/
isa-spec-pdf/

https://doi.org/10.1145/1926385.1926394
https://doi.org/10.1145/1926385.1926394
https://doi.org/10.1145/3360568
wg21.link/p1217
http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
https://doi.org/10.1145/3290383
https://doi.org/10.23638/LMCS-15(1:33)2019
https://doi.org/10.23638/LMCS-15(1:33)2019
http://www.cs.umd.edu/~pugh/java/memoryModel/unifiedProposal/testcases.html
http://www.cs.umd.edu/~pugh/java/memoryModel/unifiedProposal/testcases.html
https://doi.org/10.1145/3009837.3009850
https://doi.org/10.1145/3062341.3062352
https://doi.org/10.1145/3062341.3062352
http://openjdk.java.net/jeps/188
http://gee.cs.oswego.edu/dl/html/j9mm.html
https://doi.org/10.1145/1040305.1040336
https://doi.org/10.1145/1040305.1040336
https://doi.org/10.1145/2837614.2837616
https://doi.org/10.1145/3290382
https://doi.org/10.1145/3158107
https://doi.org/10.1145/3158107
https://doi.org/10.1145/2676726.2676995
https://doi.org/10.1145/2509136.2509532
https://riscv.org/specifications/isa-spec-pdf/
https://riscv.org/specifications/isa-spec-pdf/

PLDI 20, June 15-20, 2020, London, UK S.-H. Lee, M. Cho, A. Podkopaey, S. Chakraborty, C.-K. Hur, O. Lahayv, V. Vafeiadis

pu=s|l..|ls program
s €St = statement
skip skip
| s;s sequence 0 € Mode == pln|rlx|ra access modes
| if e then s else s | do s while e control statements x € Loc locations
|r:=e assignment r € Reg registers
| r=x° load v € Val values
| x°:=r store op1 € Opy == = unary ops.
| r := FADD®*°(x,0) fetch-and-add opp €Opy u= + | —| x| = binary ops.
| r .= CAS*°(x,v,0) compare-and-swap e € Expr == v |r |op; e|eop; e pure expressions
| fence®® | fence ™ | fence®* fences
| r := syscall(e) system call
| abort abort

Figure 3. The language

A Full Model

In this section, we present our full formal model, which accounts for plain accesses, fences, and release sequences, with a
simple programming language of Fig. 3 that we used for constructing the formalized results. Note that we omit the descriptions
on the components which are the same as in §5.

Now the model employs three modes for memory accesses, naturally ordered as follows:

pln C rlx C ra

Furthermore, we introduce transition labels Fcq, Fre1, and Fs for fences.
Timemaps. A timemap is a function T : Loc — Time.

Views. A view is a pair V = (Tp1n, Tr1x) of timemaps satisfying Ty1n < Tr1x. We denote by V.pln and V.rlx the components
of V. View denotes the set of all views.

Memory. A memory is a (nonempty) pairwise disjoint finite set of messages. A memory M supports the following operations
for a message m, where m.1loc = x, m.from = f, m.to=t,and f < t:

« The additive insertion, denoted by M «* m, is given by M U {m}. It is only defined if (i) {m} # M; (ii) if m is a concrete
message, then no message m’ € M has m’.1loc = x and m’.from = t; and (iii) if m is a reservation, then there exists m" € M
with m’.1oc = x and m’.to = f.

« The splitting insertion, denoted by M <> m, is only defined if m is a concrete message and there exists m’ in M such that
m’.loc = x, m’ from = f, and m’.to = t’ with ¢ < ¢, in which case it is given by M\{m'} U {m, (x : v’ @(¢, '], R")}.

 The lowering insertion, denoted by M <= m, is only defined if m is a concrete message (x : v@(f, t], R) and there exists
m’ € M that is identical to m except for m.view < m’.view, in which case it is given by M\{m’} U {m}.

* The cancellation, denoted by M < m, is given by M \ {m}. It is only defined if m is a reservation in M.

We use <, to denote an additive insertion into a set of promises, which does not require the last condition of the additive
insertion: for a memory P and a reservation m, P @p m is defined if {m} # M. To simplify the presentation, we define <&, ,
<L"p ,and <£’p to be the same as 3 ¢ and «“respectively.

Closed Memory. Given a timemap T and a memory M, we write T € M if, for every x € Loc, we have T(x) = m.to for
some concrete message m € M with m.1loc = x. For a view V, we write V € M if T € M for each component timemap T of V.

Thread Views. A thread view is a triple V = (cur, acq, rel), where cur,acq € View and rel € Loc — View satisfying
rel(x) < cur < acq for all x € Loc. We denote by V.cur, V.acq, and V.rel the components of V.

Thread States. A thread state is a triple TS = (o, V, P), where o is a local state, ‘V is a thread view, and P is a memory. We
denote by TS.st, TS.view, and TS.prm the components of a thread state TS.

Thread Configuration Steps. A thread configuration is a triple (TS, S, M), where TS is a thread state, S is a timemap (the
global SC timemap), and M is a memory.
Fig. 4 presents the full list of thread configuration steps. To avoid repetition, we use the additional rules READ-HELPER,
WRITE-HELPER, and SC-FENCE-HELPER. These employ several helpful notations: L and LI denote the natural bottom elements
16

Promising 2.0

(MEMORY: NEW)

(P,M)y 5 (P, M &> m)

(READ-HELPER)
o=pln = cur.pln(x) <t
0 € {rlx,ra}= cur.rlx(x) <t
cur’ =curuVu(o=ra ?R)
acqg’ =acquUV U (0o 2rlx?R)
where V = [pln: (o J rlx? {x@t}),rlx : {x@t}]

PLDI 20, June 15-20, 2020, London, UK

(MEMORY: FULFILL)

—e{&d) PP=Pe—em M=Memnm

(P, My 55 (P'\ {m}, M")

(WRITE-HELPER)
cur.rlx(x) <t
cur’ =curuV acq’ = acqU cur’
rel’ =rel[x — rel(x) LUV U (o =ra?cur’)]
Ry = (0 2 rlx?(rel’(x) URy))
where V = [pln: {x@t},rlx : {x@t}]

(SC-FENCE-HELPER)
S’ =acqrixu S
cur’ = acqg’ =(S8’,S")
rel’ =1_(S’,8")

R:0,x,t,R
(cur, acq, rel) 00 eur, acq’, rel)

((cur, acq, rel), S) Fi>

W:0,x,t,Rr,Ry ’ ’ ’ ’
ittt (cur’,acq’,rel’),S")

(cur, acq, rel) (cur’,acq’,rel’)

(UPDATE)
(WRITE) soxo) U(0r,0w,%,0r, 0) o
ke A ow =ra=Vm’' € P(x). m' view= L
(READ) o=ra=VYm' € P(x). m .view= 1 (x:0. @(_,t: ,RrYEM
o ZoxD), m=(x:0@(_t],R) My =(x : 0y @ (I, ty], Ror)
(x:v@(t].R) € M (P, M) 2 (P, M) (P, M) = (P', M)
Vv R:0,x,t,R (V/ ¥ W:0,x,t,L,R ’ R:0p,X, 10, Ry W0y, X, by, Ry, Ry AV

{o,V,P),S,M)y— {{o’,V’,P),S, M) {o,V,P),S,M)y— (o', V' P'),S,M) o, V,P),S,M)— (', V', P'),S, M)

(SC-FENCE) (SYSTEM CALL)
Fse Sys(v) |,
(REL-FENCE) c—>0 c——0
. F F -
(ACQ F;ENCE) o rel o rel = /1_.cur <(V,S> LN <(V’,S/> <(V,S> s <(V/,S’>
ac
c— ¢ cur’ = acq Vm € P. mview= L Vm € P. mview= L1 Vm € P. mview= L

(o, {cur, acq, rel), P), S, M) —
(o', {cur’, acq,rel), P), S, M)

(o, {cur, acq, rel), P), S, M) —
(o', {cur,acq,rel’), P), S, M)

(o, V,P),S, M) —
(o', V', P),S", M)

(o V. Py, S, My 222,

(o', V', P),S", M)

(FAILURE) . (PROMISE)
Fail, & (SILENT) Sitont mviewe M’ xe{as1Lc}
(o,V, P) is promise-consistent N PP=pP (&P m M=M&Sm
({,V, P), S, M) Fail (o, V,P),S, M) {o,V,P),S,M)— {({d’,V,P),S,M) {o,V,P),S,M)— ({o,V,P'),S,M")

(MACHINE STEP)
(TS(i),S,M) =" (TS',8",M")
<TS/,S’,M’> i) <TS”,S”,M”>
(TS”,8"", M’} is consistent unless e = Fail

(TS, S, M) S (TS[i > TS"], 8", M"")

Figure 4. Full operational semantics.

and join operations for timemaps and for views (pointwise extensions of the initial timestamp 0 and the LI—i.e., max—operation

on timestamps); {x@t} denotes the timemap assigning t to x and 0 to other locations; and (cond ? X) is defined to be X if cond
holds, and L otherwise.

The write and the update steps cover two cases: a fresh write to memory (MEMORY:NEW) and a fulfillment of an outstanding
promise (MEMORY:FULFILL). The latter allows to split the promise or lower its view before its fulfillment.

Failure step. A thread configuration (TS, S, M) can fail if TS is promise-consistent:
Vm € TS.prm, TS.view.cur.rlx(m.loc) < m.to
Cap View and Messages. The last message of a memory M to a location x, denoted by my, ., is given by:
My = arg max m.to

meM
17

PLDI 20, June 15-20, 2020, London, UK S.-H. Lee, M. Cho, A. Podkopaey, S. Chakraborty, C.-K. Hur, O. Lahayv, V. Vafeiadis

The cap timemap and cap view of a memory M is given by:

1>

(Tor, Twr)

The cap message of a memory M to a location x, denoted by iy, is given by:

fMéAx.ﬁﬁx.to and V\M

Mprx = (X : My . val@(Mpx.t0, M. to + 1], Vi)

Consistency. A thread configuration (TS, S, M) is called consistent if for a capped memory]VITSPm of M with respect to

TS.prm and the timemap S = Tj; of MTg_prm, there exist TS’, 8’, M’ such that:

TS.prm

(TS, S, Mrs prm) =" (TS, S, M’) A TS .prm =0

B An Example for Cancellation

We present an example that justifies that canceling of reservations is essential to support register promotion. Consider the
following variant of the RPacq program:

a=x /1

ifa=1 b=y /1 ai=x /1||bi=y /1
then c:= FADD®%(z, 1) B J B '__ J
else d:= FADD*%(w,1) x:=b y=1 x=b
y:=1

In the source program (the left one), since both locations z and w are accessed only by thread 1, a compiler may promote these
locations and remove the whole if-statement. However, if we do not allow a thread to cancel its reservations (i.e., a reservation
should be fulfilled with a concrete message), the annotated behavior, which is clearly observable after the optimization, is not
observable in the source program. Here, in order for thread 1 to promise y := 1, thread 1 should make a reservation to (at least)
one of z or w, as it will execute an acquire RMW in its certification. In fact, at the moment when thread 1 promises y := 1, the
only value thread 1 can read from x is 0, so that the only option for thread 1 is to reserve on w. After making a reservation
to w, thread 1 will never be allowed to read 1 from x even if thread 2 will write x := 1 as thread 1 is obligated to “fulfill” its
reservation on w.

C Weak Behaviors

In this section, we discuss a variant of CDRF, where RMW operations are replaced with relaxed ones. Consider the following
program:
b := WCAS(x,0,2) /true
a:= CAS(x,0,1) /0 || if b then
if a < 1 then ci=y /1
y:=1 if ¢ = 1 then
x:=0
Here, we use a weak compare-and-swap operation WCAS, which is allowed to spuriously fail even if it reads the desired value
it wants to update. We assume that WCAS returns a boolean flag that represents whether the update was successful. PS 2.0
allows the annotated behavior, in particular, where both updates to x succeed.
This might seem to be an overly weak behavior: when thread 2 succeeds WCAS (and updates x to 2), it cannot read 1 from
y since thread 1 cannot update x from 0 to 1.
In fact, however, this behavior is definitely allowed after applying several local optimizations and one global optimization.
First, thread 2 can be (locally) optimized as follows:

=y =y ci=y
: ifc=1 ifc=1 ci=y
@ ff"f’vlctﬁ:flx’ 0.2) ¢ then b= WCAS(x,0.2) g then b:= WCAS(x,0.2) [y ifc=1
¢ b then if b then if b then then b := WCAS(x, 0,0)
=0 x:=0 x:=0 else _:=x
- else _:= WCAS(x,0,2) else :=x

(1) We can reorder the update to x follwed by the read from y by introducing a relaxed read in the else-branch of thread 2.
(2) The update to x can be distributed into the both branch.
(3) Since WCAS always can fail, we can replace WCAS in the else-branch with a relaxed read.

18

Promising 2.0 PLDI 20, June 15-20, 2020, London, UK

promote(s, x, 1) =
match s with
| 51552 = promote(sy, Xp, Ip); promote(sz, Xp, rp)
| if e then s; else s; =
if e then promote(sy, x,,7;,) else promote(ss, xp, 1)
| do s; while e =
do promote(sy, xp,7,) while e
| r=x,"=r:=1p
| xp=r=rp:=r
| r:=FADD "% (x,0) = rp :=rp,+0;1r =1,
| 7:= CAS°2(x, 0014, Unew) =
if rp = v,10 then 1, == vpey;7 = 1 else r :=0
| _=s

Figure 5. An algorithm for register promotion

(4) Finally, we can merge the update to x and the write to x since thread 2 executes the write only when WCAS was
successful.

Now, the optimized program is given by:

a:=CAS(x,0,1) €=y

¢ ifc=1
lf a< .l_tlfen then b = WCAs(xs 03 0)
Y= else _:=x

Here, a global invariant x < 1 A y < 1 holds, which, in turn, a < 1 can be optimized to true. Then the update to x followed by
the write to y can be reordered, so that the annotated behavior is allowed:

c:=y /1

Y= ifc=1

a:=CAS(x,0,1) /0 || then b:= WCAS(x,0,0) /true
else =x

D An Algorithm for Register Promotion

We demonstrate an algorithm used for register promotion in Fig. 5.

E A Stronger Version of DRF-Promise Theorem

In this section, we present a more general version of Theorem 6.5. We start by introducing a new access mode pf, which
appears to be stronger than rlx and weaker than ra:

pln C rlx C pf C ra

A pf-write is not allowed to be promised as a release write is (thus, it cannot be reordered with a precreding read). However,
unlike rel, executing a pf-write does not increase the release view of the writing thread. This applies similar to the pf-fence
operations.

More precisely, the rule (WRITE) in Appendix A is updated, and the rule (PF-FENCE) is newly introduced as follows:

(WRITE)

W(o,x,0) ,
_—

o Jpf =Vm' € P(x). m' view= 1
m=(x:0@(_t],R)

(P, M) N (P', M) (PF-FENCE)
wox,t,LLR _ For .
V—Yy c—0 Vm e P. mview= 1
{o,V,P),S,M)y— {{o’, V' P')S M) (o, {cur, acq, rel), P), S, M) — {{d’, {cur, acq, rel), P),S, M)

Now, we define and prove a generalization of Theorem 6.5.
19

PLDI 20, June 15-20, 2020, London, UK S.-H. Lee, M. Cho, A. Podkopaey, S. Chakraborty, C.-K. Hur, O. Lahayv, V. Vafeiadis

Definition E.1. A machine configuration MS is promise-race-free if whenever two different threads may take a non-promise
step accessing the same location, one of the step is reading (R/U) and the other is writing (W/U), then the access mode of the
write is stronger than pf (Wope or Uy opf). In addition, if both competing steps are RMWs then both have a stronger mode than
Ura,;pf .

Theorem E.2 (DRF-Promise). If every PF-reachable machine state for P is promise-race-free, then Behpr(P) = Behps, o (P).

F Proof of DRF-Lock Theorems

Remark 4. If a program P is well-locked with a set of lock locations L, the following invariant holds for every reachable
memory M during the execution of P.

Vie LY{l:v@(,_], YeEMou=0V o=1A
V({:1@(t,_],R") e M, 3(1: 0@(_, t],R°) € M A
V{l:02°@(L ", R% (I:v'@(, '], RY e M, t°Ct! = R°CR' A
V{l:0@(f.t], YeM, t=1 v H:1@(t,_],) eM
We define tryLock®"? as a := WCAS%91:%2(, 0, 1), where WCAS®>°1°2 js a weak CAS operation, which can either return
true after successfully performing CAS with oy for the read and o, for the write, or return false after reading any value from

L with o,. Note that tryLock in Theorem 6.7 and Theorem 6.8 is the same as tryLockrlX’rlx.
We define nondetLock as follows where choose{a, b} non-deterministically executes one of a or b.

nondetLock’®?(l) £ choose{0,Lock®" ()}

For a program P, we define P[0}, 0,] be a program obtained by replacing every tryLock®"*(l) in P with tryLock® (1), and
P’ be a program that every tryLock®"°(l) in P is replaced with nondetLock®"%().

Lemma F.1 (Strengthening Lock). For a well-locked program P, we have:
Behps0(P) = Behps,o(P[ra,ra]) .
Proof. We show P|[ra, ra] can simulate every execution of P.
First, we define view_attached, wf _attached and wf _attached,,.
view_attached(L,t;,R,V) =V.rix(l)=t; = RCV A V.pln(l) =1t
wf _attached({TSsre, Ssres Msre)) =V € Li{l:_@(_ t1], R1) € My,
(Vi, (Vx, view_attached(l, t;, R;, TS (i).V.rel(x))) A
view_attached(l, t;, R, TS (i).V.cur) A
view_attached(l, t;, Ry, TS (i).V.acq)) A
view_attached(l, t;, R, {Ssre, Ssrc)) A
V{_:_@(,,_],R) € Mgy, view_attached(l, t;,R;,R) .
wf _attached ;,({TSsrc, Ssres More)) =Vl € L (I :_@(_ t1], R;) € My,
(Vx, view_attached(l, t;, Ry, TSs..V.rel(x))) A
view_attached(l, t;, R, TSs..V.cur) A
view_attached(l, tj, R, TSgc.V.acq) A
view_attached(l, t;, Ry, {Ssrc, Ssrc)) A
V{_:_@(,_],R) € Mg, view_attached(l, t;, R, R) .

11>

Remark 5. The following properties on view_attached hold for every (I : _@(_, #],R) € M.
view_attached(l, t;, R, 1)
view_attached(l, t;, R, Vi) A view_attached(l,t;,R,V;) = view_attached(l,t;,R,V; UV5,)
x@ty # l@t; = view_attached(l, 1, R, [pln : {x@ty}, r1x : {x@1x}])
x@ty # l@t; = view_attached(l, 1, R, [pln: (0 O r1x? {x@ty}), rlx : {x@ty}])

20

Promising 2.0 PLDI 20, June 15-20, 2020, London, UK

We define ¥ to be a simulation relation between program states of P[ra, ra] and P. o5.c ¥ 0y if 04 is the same as oy
except every tryLock in the statement of oy has the ordering (ra, ra).
Then we define simulation relations between memories, thread states, and machine configurations as follows:

Mae ¥ Mg 2 V(x:00(f t], Rac) € My,
FRigt, ((x:0@(f,t],Rigt) € Migt A (x ¢ L V 0#1 = Ry C Rigp)) A
V(x:0@(f,t],Rgt) € Mig,
(FReres (x:0@(f,t],Rsre) € Msre) V (x €l A v=1 A (x:(f,t]) € M)
TSgre * TSigt = TSerc.s5t ¥ TSigr.5t A
TSsc.view.cur C TSy view.cur A
TSgc.view.acq C TSy view.acq A
Vx ¢ L, TSc.view.rel(x) C TSig.view.rel(x)
TSqe.P ¥ TSigt.P A
V(x:_@(f,], Rac) € TSsre.P, {(x: _@(f,t], Rigt) € TSig:.P,
(TStgr.view.rel(x) E Ryt = TSgc.view.rel(x) C Ryc) A

(V(x:_@(L f1, Rige) € TSsre-P, (x: _@(_ f1, Rigy) € TSig.P,
R, (- Rtgt = R/ c Rsrc)

tgt src =
<Tssrc> Ssrc; Msrc> L <T5tgts Stgt, Mtgt> = Tssrc 1 Tstgt A Ssrc E Stgt A Msrc < Mtgt A Wf_aﬁaChEdth(<TSsrc: Ssrc> Msrc))
<TSsrc, Ssrc’ Msrc> < <7~Stgt’ Stgt, Mtgt> = (Vi> TSsrc(i) < TStgt(i) A Ssrc - Stgt A Msrc < Mtgt) A
Wf_aﬁaChed(<TSsrc’ Ssrc, Msrc>)

We first start by simulating thread steps: for any thread configurations TCL.. (= { TSsrc, Ssres Msre))s TCtlgt(z (TStgt, Stat, Migt)),
and TCtzgt, such that TC! . & TCtlgt and TCtlgt — TC? , there exists a thread configuration TC?% . such that TCL . — TC?

src tgt> src? SIC src?

TC:, % TCtzgt. Consider the following cases of the thread step taken by target thread configuration, TCtlgt - TCtzgt:

1. tryLock(l) succEess
TS takes the same step as TSy took and both £ and # still hold. We suppose that TS wrote (I:1@(_, t],R)
and the thread view becomes view’. Then, view’.cur.rlx(l) = view’.cur.acq(l) = t. As R is a joined view of
the source thread’s relaxed view and the view of the message the thread read, view_attached(l, t, R, view’.cur) and
view_attached(l, t, R, view’.acq) are satisfied. Therefore, wf_attached,, still holds.

2. tryLock(l) FaIL
There exists a message (I :0@(_, TSsc.view.cur.rlx(l)],R) € Ms.. TSqc reads this message and fails to acquire
the lock regardless of the value v. Since view_attached(l, TSsc.view.cur.rlx(l), R, TSs..view.cur.rlx), we can get
RslrC E TSgc.view.cur.rlx. Therefore, after TSy, reads the message, the thread view of TSy does not increase. As the
thread view of TS remains the same and the thread view of TSy, may increase, £ and wf_attached,, still hold.

3. Unlock(/)
TS takes the same step as TSy took and both £ and ¥ still hold. We suppose that TSy wrote (I:0@(_,t],R)
and the thread view becomes view’. As R is equal to TSs,.view.cur and TSy..view.cur C view'.cur C view .acq,
view_attached(l, t, R, view .cur) and view_attached(l, t, R, view’.acq) are satisfied. Therefore, wf_attached,, still holds.

4. PROMISE
Suppose that (x:0@(f,t], Ryg) is the message TSy newly promised. If x € L, v should be 1. Then TS reserves
(x: (f,t]) in the same place.

In other cases, TS promises (x : v@(f, t], Rsrc), Where Ry is determined as follows.
V1 ¢ L, Rye.pIn(l) = Rige.pIn(l) A Rgre.r1x(I) = Rigr.rix(l)
VI € L, Ryre.pIn(l) = Rye.pln(l) = 1

where ; is a maximum timestamp s.t.
21

PLDI 20, June 15-20, 2020, London, UK S.-H. Lee, M. Cho, A. Podkopaey, S. Chakraborty, C.-K. Hur, O. Lahayv, V. Vafeiadis

H:_@(L 1], R) € Mg, (V" ¢ L, RpIn(l') E Rig.pIn(l’) A Rrlx(l’) C Rig.rix(l’))
By construction, view_attached(l, t;, Ry, Ry.) for every (I : _@(t;, _], R) € Ms.. Therefore, wf_attached,, still holds.

5. OTHER STEPS
TS takes the same step as TS, took. Since TSg.view except the release view on [€ L and a view of every related
message in the M. are lower than those of the target thread configuration, ¥ and ¥ still hold. The source thread’s new
thread view V', the new global timemap S, and any added messages’ views are obtained by joining existing views or
a singleton view that does not contain /. By Remark 5, the resulting new source thread configuration satisfies wf _attached.

In the same way, we can prove that the source thread can simulate the target thread’s certification steps. The only difference
is the cap messages on x € L. Since there is no relaxed RMW on x € L, capped messages does not make any changes on the
above simulation arguments for thread steps. Therefore, if TSg;c * TSig; and TSy is consistent, then TSg. is consistent as well.

Now, given a machine step of the target program, we construct a machine step of the source:

\7/ Msirc’ Mstlgt’ Mstzgt’ Msirc < Mstlgt A (Mstlgt:> Mstzgt)
= IMS%,, (Ms;rc=> MS%.) A MSE. € MS,

Let’s say MSL,. = (TS840 Sl ML), MStgt = (TStgt, . gt) and the i-th thread of MStgt, tgt(l) took the step, so that

MStzgt (TStgt[l - TStth] Stzgt, tgt) for some TSt .- From that MS., . € MStlgt, we have 7S, (i) £ TStlgt

thread configuration can simulate the target steps and indeed become consistent, we have the following:
2 Q2 .
3 TSS[C’ SSrC’ SI'C’ (<7-S rC(l)’ SIC’ SrC> _)+ <TSSI'C’ Sl'C’ SIC>) /\
<TStgt’ tgt>
2
<Tssrc’ src’ src> 2 <Tstgts Stgt’ Mgt>
while leaving the same trace as the target thread steps. Therefore, we achieve the machine step of the source machine
i TS2.), 82 M2.), where (TSL. [i — TS%.], 8%, M2.) < MStgt
Since it is trivial that the initial machine of P[ra, ra] and P are related with <€

Behps.0(P) C Behps,o(P[ra, ral)

(). Since the source

gt) is consistent A

configuration, MS. . N (TS!

src [src [

]

Lemma F.2. For a well-locked program P, Behsc (P’) C Behsc(P) . Furthermore, every machine state reachable in the SC
execution of P’ is reachable in the SC execution of P.

Proof. It is easy to show that every execution of P’ in SC semantics can be simulated by P in SC semantics. Whenever
nondetLock in P’ fails (returns 0), tryLock in P also fails. Whenever nondetLock in P’ is trying to get the lock in a loop, P
does nothing. Finally, whenever nondetLock in P’ succeeds to get a lock, tryLock in P may also get the lock since we know
that the lock is not acquired by any other thread. O

Lemma F.3. For a well-locked program P, we have:

Behga(P) C BehRA(P?) .
Proof. For each step P takes, P? can simulate the exact step with the following simulation relations. First, the machine state of
P? and the machine state of P are the same except the thread views and messages in their memory. Second, the thread views
and messages in the memory of P’ are lower than those in the memory of P.
Whenever tryLock in P succeeds to acquire a lock, nondetLock in P’ also succeeds. Whenever tryLock in P fails,
nondetLock in P’ fails. Since tryLock in P reads a message and nondetLock in P’ does not, views in the machine state of
P’ remain lower. O

F.1 Proof of DRF-Lock-RA (Theorem 6.7)

Proof. By the definition of RA semantics, the RA-execution of P is equal to the RA-execution of P[ra, ra]. Thus, if every
machine state reachable from a RA-execution of a program P is rlx-race-free, then every machine state reachable from a
RA-execution of the program P[ra, ra] is rlx-race-free as well. As a result, we get the following equations.

Behpa (P) = Behpa(P[ra, ra]) (by the definition of RA semantics)
22

Promising 2.0 PLDI 20, June 15-20, 2020, London, UK

= Behps,o(P[ra, ra]) (by Theorem 6.6)
= Behps, o (P) (by Lemma F.1)

F.2 Proof of DRF-Lock-SC (Theorem 6.8)

Proof. By Lemma F.2, we know that every machine state reachable from P’ has no race for all non-lock locations. Since P’
accesses lock locations only using Lock and Unlock, we can apply DRF-LOCK Theorem in [12].

Behsc (P) C Behga (P) (trivial)
C Behga(P?) (by Lemma F.3)
= Behsc (P?) (by DRE-LOCK Theorem in [12])
C Behgc (P) (by Lemma F.2)

Therefore we get Behsc (P) = Behga (P) = Behga(P’) = Behsc (P?). As Theorem 6.7 says Behga (P) = Behps(P), we finally
get Behgc (P) = BehRA(P) = Behpss g (P) O

23

	Abstract
	1 Introduction
	2 Introduction to the Promising Semantics
	3 Problem Overview
	4 Solution Overview
	4.1 Capped Memory
	4.2 Reservations
	4.3 Undefined Behavior
	4.4 Relaxed RMWs in Certifications

	5 Formal Model
	6 Results
	6.1 Thread-Local Optimizations
	6.2 Value-Range Optimizations
	6.3 Register Promotion
	6.4 DRF Theorems
	6.5 Compilation Correctness

	7 Related Work
	8 Conclusion
	Acknowledgments
	References
	A Full Model
	B An Example for Cancellation
	C Weak Behaviors
	D An Algorithm for Register Promotion
	E A Stronger Version of DRF-Promise Theorem
	F Proof of DRF-Lock Theorems
	F.1 Proof of DRF-Lock-RA (thm:drflockra)
	F.2 Proof of DRF-Lock-SC (thm:drflocksc)

