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Abstract—This paper proposes a modeling and analysis tech-
nique to verify SoC address maps. The approach involves (i)
modeling the specification and implementation address map using
a unified graph model, and (ii) analysis of equivalence in terms of
address maps between two such models. Using a state-of-the-art
mid-size SoC design, we demonstrate the proposed solution is able
to analyze and verify address maps of complex SoC designs and
to identify the causes of discrepancies.

I. INTRODUCTION

Specification and implementation of System-on-Chip (SoC)
address maps are typically manual tasks. To discover mistakes,
functional verification is performed in iterative, time-consuming
cycles. Industry trends [1] show that on average, verification
takes up at least 50% of median project time. With decreasing
time-to-market for SoC development, techniques that speed up
verification are needed.

To address this need, this work proposes a unified graph-
based data model and analysis technique to perform a static,
formal verification of SoC address map implementations
against their specifications. A specification describes the in-
tended (global) address map as seen by all initiators in the SoC,
while an implementation describes the realized address map
implemented by the composition of the IP blocks in the SoC.
The implementations are described in IP-XACT [2] format and
the specifications are described in a spreadsheet format.

IP-XACT can describe hierarchical SoC integrations by
abstracting reusable IP blocks into component objects and
connecting them in design objects. An interconnection between
a target and initiator interface maps the target memory elements
to the initiator address space. Furthermore, it can define hi-
erarchical interconnections between two initiator or target bus
interfaces, resulting in a hierarchical structure of address maps.

Universal Verification Methodology (UVM) [3] is a popular
verification technique at the SoC integration stage that reduces
verification time. The difference with UVM is that our proposed
technique verifies static address maps in an explicit, formal, and
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structural manner as opposed to the implicit, simulation-based,
functional manner of UVM. This enables early discovery of
errors in static address maps, thereby potentially reducing the
number of verification cycles required.

II. ADDRESS MAP GRAPHS

This work proposes a directed graph model to represent both
the address map specifications and implementations of a design,
called the address map graph (AMG). It may be disconnected
and cyclic. Each node represents a memory element with a
base address and address range. Each directed edge represents
an address map between two memory elements. An edge has a
source node, target node, and possible offset at which addresses
are mapped to the source node. A set of consecutive edges
forms a path, starting in a root node and ending in a leaf node,
as shown along the top of Fig. 1. The dashed lines under each
node and edge represent address axes, while the bars represent
the mapped addresses. Edge offsets are indicated by an arrow.
Offsets and constraining address space boundaries may result
inaccessible addresses mapped outside of the source address
space, we call clipping. Each path has a resulting interval of
root node addresses mapped to an equally sized interval in
the leaf node. These two address intervals we call the domain
D and codomain C. Together, they define the bitmapping of
a path. We have developed a recursive calculation to define
bitmappings for acyclic paths. Furthermore, given a bijective
map between root and leaf nodes of two graphs, we define
graph bitmapping equivalence (GBE) to describe if their
combined set of bitmappings are equal. In addition, we
define partial equivalence to hold if the domain and codomain
of a bitmapping are respectively subsets of the domain and
codomain of another bitmapping. This typically means that only
part of the specified bitmapping is implemented.

Our solution consists of a modular flow as outlined in Fig. 2.
It accepts an IP-XACT design description and an address
map specification spreadsheet, and processes them both into
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Fig. 2. Approach overview with our innovation indicated in green

our graph model. To compute the SoC address maps, we
recursively traverse the SoC component hierarchy. In general,
all components and their elements relevant to the address map
are converted into nodes, and their memory constructs into
edges. Both models are then further analyzed to determine GBE
and generate a GBE report containing all equivalences.

In contrast to our model, existing literature [4] represents
nodes as IP-XACT bus interface elements, and edges as their
connections through various mapping structures. However, its
recursive construction of the model over hierarchical IP-XACT
components has inspired our general approach to construct our
model. Its model is used for the purpose of visualization and
editing of the address maps in Kactus2 [5] as opposed to our
purpose of verification.

III. EXPERIMENTAL EVALUATION

To evaluate the effectiveness of our approach, we demon-
strate it with the IP-XACT description and address maps
specification spreadsheet of a state-of-the-art, medium-size SoC
design. The design has passed all simulation-based verification
steps of its design flow before application of our solution flow.

We have implemented the solution flow as outlined in Fig. 2,
where each program is a generator that is executable by the
IP-XACT design environment. We have processed the address
maps specified by the spreadsheet and implemented by the IP-
XACT design description into a specification AMG H and
implementation AMG G, respectively. Table I summarizes the
properties of both graphs. The large number of nodes and
edges of the implementation AMG relative to the specification
AMG indicates the capability to capture the complexity of the
design. Application of the rest of our solution flow showed
GBE did not hold and that equivalence of bitmappings were
distributed according to Table II. Around 9% of bitmappings
were non-equivalent. Inspection of reported faulty bitmappings

TABLE I
PROPERTIES OF EVALUATED AMG GRAPHS

Evaluation P . Specification ~ Implementation
valuation Property AMG H AMG G

Number of nodes 120 2018

- Number of root nodes 5 658

- Number of leaf nodes 115 650
Number of edges 134 6151
Automatically mapped 73 316
Manually mapped 18 31

TABLE II

EVALUATION GBE REPORT SUMMARY

Bitmapping Category Result
Number of equiv. bitmappings 66
Number of partial equiv. bitmappings 90
Number of non-equiv. bitmappings 15
- Caused by implementation 8
- Caused by specification 7

facilitated the identification of the following causes of the non-
equivalences: incomplete specification, incomplete IP-XACT
design description, gaps in merged bitmappings, inconsistent
codomain offsets, and use of address handling not described
in IP-XACT. These results indicate the capability to identify
inconsistencies in a verified design.

IV. DISCUSSION AND FUTURE WORK

The results demonstrate our solution’s ability to identify
hard-to-find inconsistencies between implemented and specified
address maps for complex SoC designs. Compared to UVM,
our solution requires minimal configuration, and provides
nearly automatic and immediate formal verification of static
address maps. Further research can be conducted to evaluate
the effectiveness of our solution in enhancing or comple-
menting existing methods like UVM, such as by reducing
the number of verification cycles, generating register models
from AMG models as input for simulation, or how found
address map inconsistencies can guide the definition of cover
groups. Furthermore, our approach can be extended to handle
runtime-dependent IP-XACT properties as introduced by IEEE
1685-2022. This could involve the introduction of symbolic
expression in proposed definitions, such that GBE involves
resolution of symbolic equations.
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