Probabilistic Concurrency Testing for Weak Memory Programs

Mingyu Gao
m.gao-2@student.tudelft.nl
Delft University of Technology
Delft, Netherlands

ABSTRACT

The Probabilistic Concurrency Testing (PCT) algorithm that pro-
vides theoretical guarantees on the probability of detecting concur-
rency bugs does not apply to weak memory programs. The PCT
algorithm builds on the interleaving semantics of sequential con-
sistency, which does not hold for weak memory concurrency. It is
because weak memory concurrency allows additional behaviors
that cannot be produced by any interleaving execution.

In this paper, we generalize PCT to address weak memory con-
currency and present Probabilistic Concurrency Testing for Weak
Memory (PCTWM). We empirically evaluate PCTWM on a set of
well-known weak memory program benchmarks in comparison
to the state-of-the-art weak memory testing tool C11Tester. Our
results show that PCTWM can detect concurrency bugs more fre-
quently than C11Tester.

CCS CONCEPTS

« Software and its engineering — Concurrent programming
structures; Software testing and debugging,.

KEYWORDS

Concurrency, Weak memory, Randomized algorithms, Testing

ACM Reference Format:

Mingyu Gao, Soham Chakraborty, and Burcu Kulahcioglu Ozkan. 2023. Prob-
abilistic Concurrency Testing for Weak Memory Programs. In Proceedings
of the 28th ACM International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, Volume 2 (ASPLOS °23), March
25-29, 2023, Vancouver, BC, Canada. ACM, New York, NY, USA, 14 pages.
https://doi.org/10.1145/3575693.3575729

1 INTRODUCTION

In the multicore era, shared memory concurrency plays a key role
in improving performance in these architectures. To program these
architectures efficiently, the programming languages are introduc-
ing first-class concurrency primitives [4, 6, 12, 18, 19, 33] to provide
platform-independent abstractions on the hardware and processors.
These concurrency primitives empower programmers to achieve
greater performance from the architectures. However, program-
ming with these primitives is often error-prone due to their subtle
semantics. More specifically, these primitives, as well as the archi-
tectures, exhibit additional behaviors that cannot be explained by

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.

ASPLOS °23, March 25-29, 2023, Vancouver, BC, Canada
© 2023 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9916-6/23/03.
https://doi.org/10.1145/3575693.3575729

Soham Chakraborty
s.s.chakraborty @tudelft.nl
Delft University of Technology
Delft, Netherlands

603

Burcu Kulahcioglu Ozkan
b.ozkan@tudelft.nl

Delft University of Technology
Delft, Netherlands

traditional thread interleaving semantics, aka sequential consis-
tency (SC). These behaviors are known as weak memory behaviors,
and these concurrency models are known as weak memory models.

Concurrency poses a significant challenge to testing and verifi-
cation approaches, considering the number of possible executions
even under interleaving semantics. Verification techniques perform
sound analyses, but they scale poorly. On the other hand, testing
approaches scale better but lacks soundness. Though concurrency
testing lacks soundness in general, it is always desirable to achieve
some guarantees on the effectiveness of a testing approach.

The Probabilistic Concurrency Testing (PCT) algorithm [8] is a
randomized concurrency testing algorithm for SC programs that
provides strong theoretical guarantees on the probability of detect-
ing bugs. The probabilistic guarantees of PCT rely on the notion of
bug depth, i.e., the minimum number of ordering constraints between
the concurrent events in a program. Given bug depth d as a test
parameter, PCT characterizes the set of executions with d ordering
constraints and samples a test execution from that set. Focusing on
the executions with a certain bug depth significantly reduces the
sample set. Unlike naive random testing algorithms that detect a
concurrency bug with a probability that is exponentially low in the
number of program events n, PCT guarantees a probability that is
exponentially low only in d.

In this scenario, a natural question arises: can we apply PCT for
testing weak memory programs? We investigate this question in
this paper and observe that the theoretical guarantee of the PCT
algorithm does not apply to testing weak memory programs. It is
because weak memory concurrency relaxes the SC requirements
and allows a more extensive set of program behaviors, many of
which cannot be produced by any interleaving executions in SC.
More specifically, the PCT algorithm builds on the notion of bug
depth that is designed for the interleaving semantics of sequential
consistency, which does not capture weak memory concurrency.

In this paper, we generalize PCT to address weak memory con-
currency and present Probabilistic Concurrency Testing for Weak
Memory (PCTWM). For this, we revise the definition of concurrency
bug depth and generalize it to capture weak memory concurrency.
We define bug depth as the minimum number of communication
relations between the concurrent events in an execution regardless
of their scheduling order. We show that the traditional definition of
bug depth under SC corresponds to a specific case of our definition,
in which the communication relations correspond to the thread
interleavings.

Based on our bug depth definition, we devise the PCTWM al-
gorithm that extends the theoretical guarantees of PCT for weak
memory concurrency. Similar to PCT, PCTWM provides a theo-
retical lower bound on the probability of detecting concurrency
bugs that is exponential only in the depth bound d. Different from
PCT, which samples a test execution with d ordering requirements,


https://doi.org/10.1145/3575693.3575729
https://doi.org/10.1145/3575693.3575729
https://www.acm.org/publications/policies/artifact-review-and-badging-current
http://creativecommons.org/licenses/by/4.0/

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

PCTWM samples a test execution with d communication relations
between the concurrent program events.

We implemented the PCTWM algorithm on top of C11Tester [32],
the state-of-the-art testing framework for weak memory programs.
We evaluated its performance in detecting weak memory concur-
rency bugs on a set of well-known weak memory program bench-
marks in comparison to the C11Tester concurrency testing algo-
rithm. Our results show that PCTWM can detect concurrency bugs
more frequently than C11Tester.

Outline and Contributions. Section 2 provides the required
background on weak memory concurrency and PCT. Section 3
presents an overview of our approach. Section 4 discusses the ax-
iomatic model of weak memory concurrency model which focus
in this work. Section 5 presents the PCTWM algorithm. Section 6
provides the details on our experimental evaluation and results.

2 BACKGROUND
2.1 Weak Memory Concurrency

In shared memory concurrency, threads communicate through
shared memory accesses. The behaviors of these programs are
usually explained by thread interleavings, where shared memory
accesses in each thread execute in syntactic order, and threads
interleave arbitrarily. This is formally known as sequential con-
sistency (SC) [28]. However, concurrent systems usually exhibit
additional program behaviors which cannot be explained by inter-
leaving execution and follow a particular weak memory concurrency
model.

Consider Program SB as an example, where X and Y are shared
variables initialized to zero, and the program has two concurrently
running threads.

X =

X = Y=1,
a=Y;||b=X;

assert(a==1]|b==1)

Y=0

5

(SB)

No interleaving execution violates the assertion in Program SB
as at least one of the writes takes place before the reads. However,
various weak memory architectures such as x86 [40] or Arm [2]
allow the non-SC outcome a = b = 0 and violate the assertion. To
program these architectures, programming languages like C/C++
[18, 19] provides platform-independent abstractions which also
allow this outcome and various other non-SC outcomes in general.

C/C++ Concurrency [18, 19]. C/C++ has different kinds of
accesses that affect the behavior of a shared memory concurrent
program. To begin with, C11 introduces atomic accesses of four
kinds: load, store, atomic update (RMW) such as compare-and-swap
and atomic increment, and memory fence. Each atomic access is
attached with a memory order from relaxed (RLX), acquire (ACQ), re-
lease (REL), acquire-release (ACQ-REL), sequentially-consistent (sc).
In addition, C11 provides shared memory load and store accesses
that are not atomic, aka non-atomics (NA). Thus, based on the kind
of operation and memory order, we categorize the accesses. For
instance, an access is acquire if its order is one of AcQ, ACQ-REL,
sc. Similarly an access is release if its order is one of REL, ACQ-REL,
or sc. The release and acquire accesses establish synchronization,

604

Mingyu Gao, Soham Chakraborty, and Burcu Kulahcioglu Ozkan

for instance, when an acquire read reads from a release write. Go-
ing forward, in Section 4 we discuss the formal model of C/C++
concurrency in detail.

2.2 PCT vs. Naive Random Testing.

Probabilistic Concurrency Testing (PCT) [8] is a randomized concur-
rency testing algorithm designed for SC programs, and it provides
strong theoretical guarantees on the probability of detecting con-
currency bugs. The key to its design is the notion of concurrency
bug depth, which is defined as the number of ordering constraints
between the concurrent events of a program. Given bug depth d,
PCT randomly generates a test execution that encodes a particular
ordering of events with d scheduling constraints.

Consider Program P1 running two threads, where all the memory
accesses are of sc memory order. The program has an assertion
violation if the thread on the right reads X = k.

: assert(X!=k) (P1)

A naive random concurrency testing algorithm chooses the next
event to schedule from the set of all enabled events at each schedul-
ing choice. Such an algorithm detects the violation in the example
with a probability of only 1/ 2k where k is the number of scheduling
choices. To detect it, it must choose the event in the first thread
among the 2 enabled events for all k scheduling choices in the
execution.

PCT differs from naive random testing by sampling an execution
from the set of executions with d ordering constraints. It guaran-
tees a lower bound on the probability of detecting a bug by a test
execution with a probability of at least 1/ (tk9~1) where ¢ is the
number of threads, k is the number of program events, and d is the
bug depth. While naive random testing can detect a bug with an
exponentially small probability in the number of program events,
PCT detects it with an exponentially small probability only in the
bug depth parameter d.

The assertion violation in Program P1 requires a single ordering
constraint d = 1, i.e., the assertion statement in the second thread
must be executed after the X = k statement in the first thread. Given
d = 1, PCT samples a test execution out of two d = 1 executions:
It either chooses a schedule that runs all events in the first thread
before the second thread or it chooses to schedule the second thread
before the first thread. Therefore, it hits the bug with a probability
of 1/2.

3 OVERVIEW

3.1 A Naive Application of PCT to Weak
Memory Concurrency

The probabilistic guarantee of the PCT algorithm [8] on the lower
bound of the probability of finding bugs does not apply to weak
memory programs. We demonstrate this on a naive application of
PCT for testing Program P1 where PCT does not detect the violation
with a probability of 1/2.



Probabilistic Concurrency Testing for Weak Memory Programs

Consider the d = 1 execution of PCT that schedules all events of
the first thread before the second thread. Under weak memory con-
currency, this execution does not necessarily hit the bug. Because
the read event can read from any write event in the first thread.

The example shows that the behavior of the weak memory pro-
grams does not depend on the thread interleavings but on the
selection of the write events that the read events get the values
from. However, the theoretical guarantee of the PCT algorithm
relies on the ordering constraints and the interleaving semantics
of sequential consistency. More specifically, it relies on the notion
of bug depth that is defined as the minimum number of scheduling
constraints that are sufficient to find the bug [8].

3.2 Revising Concurrency Bug Depth

The existing notion of bug depth does not capture weak memory
concurrency bugs. Consider Program SB. The program exhibits a
buggy behavior when both variables a and b load the value 0. The
bug does not depend on the scheduling order of the events; it does
not manifest under any SC executions of the program.

We revise the notion of concurrency bug depth to capture thread
communication rather than thread interleavings. We define the depth
of a concurrency bug as the minimum number of communication
relations between the concurrent events in an execution. A com-
munication relation between two concurrent events communicates
the effects of an event (e.g., writing a value) to another event (e.g.,
reading that value). For example, the depth of the concurrency bug
in Program SB is d = 0 since it does not require any communication
between its thread events. The program events only access the
values of the variables that are available in their thread-local views.

Notice that the revised definition of the bug depth extends the
existing notion, which uses thread interleavings. For the specific
case of sequential consistency, a thread interleaving induces a com-
munication relation: the effects of all the write events in a thread
are communicated to the other threads at the thread interleavings.
For example, the depth of the concurrency bug in Program P1 is
d = 1 under both notions. Under SC, the bug exposes when the
execution meets a single ordering constraint, i.e., when the asser-
tion statement is executed after the X = k statement. Under weak
memory concurrency, the bug exposes in the presence of a single
communication relation between its events, i.e., the communication
of the effect of the write X = k to the read event in the assertion in
the second thread.

3.3 PCTWM: PCT for Weak Memory

Here, we informally introduce the key ideas in the PCTWM algo-
rithm, which we will elaborate in Section 5.

PCTWM extends PCT to generate an execution with d commu-
nication relations instead of d ordering constraints. Bounding the
number of communication relations by d restricts the amount of
thread interaction in an execution. Without any restrictions, a read
operation in a thread can potentially read from a write event in
any thread. However, bounding an execution to have only d com-
munication relations allows only d events to read from an external
value. The other program events read from their thread-local views,
which only keep the updates made available to their threads.

605

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

For example, the d = 0 execution of Program SB does not al-
low any load operations to read an external value. Therefore, both
load operations read the values available in the local views of their
respective threads. Similarly, the d = 0 execution of Program P1
restricts the load operation to read the initial value of X. Alterna-
tively, a d = 1 execution of the program allows the load operation
to read a value written by the remote thread.

Besides the number of communication relations d, PCTWM fur-
ther parametrizes the execution space using a history depth bound-
ing parameter h. The history depth bound restricts the set of store
operations that a load operation can read from based on how old
a value is. It serves to prioritize the executions that load possibly
stale values but not older than h number of store operations. Hence,
a load operation that is chosen to form a communication relation
can read from only h possible values instead of k values, further
reducing the sample set of executions.

For example, a PCTWM execution of Program P1 with d = 1
and h = 2 detects the concurrency bug with probability 1/2. First,
it chooses an event as the sink of the d = 1 communication relation.
This example has only one possible communication sink, i.e., load
operation in the assertion statement. The PCTWM algorithm en-
sures that the selected communication sink event is executed as late
as possible, after the execution of other events. In this example, it
ensures that the assertion statement is executed after all the events
in the first thread, regardless of the initial thread priorities. While
the algorithm executes the selected sink event, it chooses a source
operation for the communication relation within a history depth
h = 2. In this example, it can select to read from either X = (k — 1)
or X = k, each with the probability of 1/2, the latter hitting the bug.

We provide the formal definitions for a communication relation,
source and sink events, thread-local view, the complete PCTWM
algorithm, its theoretical guarantee, and some example test execu-
tions generated by PCTWM in Section 5.

4 WEAK MEMORY CONCURRENCY MODEL

In this section, we discuss the C11 axiomatic model that we will
use to formally define the communication relation, which is a core
concept of PCTWM.

In C11 axiomatic semantics, a program is represented by a set of
executions. An execution consists of a set of events resulting from
shared memory accesses or fences and the relations between these
events.

Event. An event is represented by a tuple (id, tid, lab) where id,
tid, and lab denote a unique identifier, thread identifier, and label
of the event, respectively. A label lab = (op, loc, rVal, wVal) is a
tuple where op denotes the corresponding memory access or fence
operation.

For memory accesses, loc, rVal, and wVal denote the correspond-
ing memory location, the read, and the written value. In case of
fences, loc = rVal = wVal = L. A successful read-modify-write
operation results in an RMW event (U) and, on failure, generates
a read event (R). The set of read, write, RMW, and fence events
are R, W, U, and F, respectively. We write R = R U U to denote
read or RMW, and ‘W = W U U to denote the read or RMW events.
The memory locations are initialized at the start of the execution,
represented by a set of write events.



ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

Relation. Various binary relations connect the events in an exe-
cution. We discuss the notations before explaining them.

Notations. Given a binary relation B, we write B, Bt, B*, B!
to denote its reflexive, transitive, reflexive-transitive closures, and
inverse relations, respectively. Relation imm(B) denotes the imme-
diate relation: imm(B)(x,y) £ B(x,y) A Az B(x, z) A B(z,y). Given
two relations B and By, we denote their composition by By; By. [A]
denotes the identity relation on a set A, i.e. [A](x,y) Zx=yAx €
A. Given a set S and a relation B, maximal(S, B) denotes the B-
maximal events i.e. maximal(S,B) = {e | e € SASN [{e}]; B=0}.

An execution has the following relations between events: The
relation program-order (po) is a strict partial order that captures
the syntactic order between the events. It is a strict total order on
same-thread events. Relation reads-from (rf) relates a write event
with the same-location read events that read from it. A read event
reads from exactly one write event. Relation modification-order
(mo) is a strict total order over same-location write events. Relation
SC is a total order on the SC accesses. From these relations, we
derive the following relations.

e From-read (fr 2 (rf~1;mo) \ [E]) relates a same-location read
and write events; if a read r reads-from a write w and write w’
is mo-after w, then fr(r, w’) holds.

e We adopt the synchronizes-with (sw) relation from RC20 [34].
Relation happens-before (hb) is the transitive closure of po and
sw relations.

[Earec]: ([F1:po) 7 ¢f¥; (po: [F) s [Egace)]
(poUsw)*

SwW

hb =

Execution. An execution X = (E, po, rf, mo, SC) is a tuple where
X.E is the set of events and X.po, X.rf, X.mo, X.SC are set of po, rf,
mo, SC relations between the events in X.E. We represent execution
by an execution graph where the events are represented by nodes,
and the relations are represented by corresponding edges.

Consistency Axioms. C11 defines a set of axioms to check if an
execution is consistent.

o (coherence) The events accessing the same memory location
are coherent. We categorize them in write and read coherence
constraints [26].

— mo;rf’; hb? is irreflexive.
- fr; rf?; hb is irreflexive.

(write-coherence)
(read-coherence)

These constraints effectively enforce sc-per-location, a total order
on same-location memory accesses.

o (Atomicity) The RMW accesses execute atomically. As a result,
(fr;mo) = 0 holds.

e (irrMOSC) The mo and SC orders agree on same-location ac-
cesses, that is, (mo; SC) is irreflexive.

o (SC) The SC accesses are globally ordered. There is a number of
SC order definitions [4, 5, 27, 29, 32, 48].
We follow the one from Cl11Tester [32], thatis, (hb U rf U SC) is
acyclic.
Note that the (SC) axiom enforces that hb is irreflexive (an action
cannot happens-before itself) [5, 48]. Moreover, as po C hb, the
(SC) constraint also enforces that (po U rf) is acyclic and forbids
out-of-thin-air reads.

606

Mingyu Gao, Soham Chakraborty, and Burcu Kulahcioglu Ozkan

5 PCT FOR WEAK MEMORY PROGRAMS

The PCTWM algorithm extends PCT to weak memory programs
in a memory model agnostic way so that its theoretical guarantee
applies to any memory model. The algorithm relies on the two key
concepts of (i) communication relation between concurrent program
events and (ii) local thread view that maintains the set of updates
made available to a thread. This paper defines and constructs these
relations for the C11 memory model.

5.1 Formal Definitions

DEFINITION 1 (VIEW). A view is a map from locations to a set of
maximal-mo events. Given an execution (E, po, rf, mo, SC), view(x) =
maximalmo (Ex) holds where Ey are the set of write or RMW events.

e Combining views on a location x. We write | |,,(view1(x),viewz(x))
to compute the maximal view from view1 (x) and viewz(x) for a
given location x, i.e. maximal(viewy (x) U viewz(x), mo).

e Combining views on all memory locations. Similarly, we write
[ mo (viewy, viewy) to compute | |, (views (x), viewz(x)) for all
memory locations x.

Each thread maintains its own view in an execution. We write t.view
to denote the view of thread t. Essentially, a thread view maintains the
latest write or RMW events observed by the thread for each memory
location.

DEFINITION 2 (COMMUNICATION RELATION). Following the (SC)
constraint in C11Tester model (see section 2), we consider inter-thread
rf, hb, SC as com relations, that is, com = (rf U hb U SC) \ po.

DEFINITION 3 (COMMUNICATION EVENT). A communication rela-
tion is formed between two events: a source event and a sink event
of the communication relation. A source event captures the effect,
which can potentially be communicated to other threads. So, it is
an SC, or a write or a fence event. A sink event communicates the
updates of other threads to its local thread. We call the sink events as
communication events. So, it is an SC, or read or acquire event.

Intuitively, the effect of the events in dom(com) (e.g., writing a
value to a variable, releasing a fence) can potentially be commu-
nicated to an event in codom(com) (e.g., reading the value of a
variable, acquiring a fence) running on another thread. We call the
events in dom(com) as communication sources and the events in
codom(com) as communication sinks.

DEFINITION 4 (BuG DEPTH). The depth of a concurrency bug is
the minimum number of communication relations between the con-
current events in an execution that is sufficient to produce the bug.

DEFINITION 5 (HISTORY DEPTH). The history depth h bounds the
behavior of a read event in an execution so that it reads from an event
that does not have more than h imm(mo)-related successors.

5.2 The PCTWM Algorithm

The PCTWM algorithm randomly generates a test execution with
h-bounded d communication relations between the program events.
The generated test execution allows d selected events to observe h-
bounded updates of external threads and restricts the other events
to access only the values in their thread views.



Probabilistic Concurrency Testing for Weak Memory Programs

Input: kcopm: the number of comm. events in the program
Input: d: bug depth

Input: h: history depth

Data: threads // the list of threads in ascending order of
priorities, the first d positions are initially empty
[di,...,dg] // list of d distinct integers, initialized
randomly between [1, kcom]

reordered // the set of event ids reordered with a
thread priority change, initially empty

i // the number of comm. events observed, initially 0
s // the current execution state, initially s0

Data:
Data:

Data:
Data:

1 Procedure PCTWM (kcom, d, h)
2 while enabled(s) not empty do

3 for th € enabled(s) and th ¢ threads do
4 t « getHighestPrEnabled(threads)
5 e < next(s, t)

6 if isCommunicationEvent(e) then
7 i—i+1

8 if ie{d,...,d;}then

9 // update the priority of ¢

k « indexOf(i, [dy, ...
threads[d — k] « t
reordered < reordered U {e}

10 ,dd])
11

12

13 continue

14

executeAndUpdateView(s, e)

Procedure isCommunicationEvent(e)
return e € (SCUR U Fgacg)

Algorithm 1: The PCTWM algorithm

Generating a test execution for a weak memory program requires
(i) selecting the next event to execute and (ii) selecting the behavior
of this event (e.g., selecting which event to read from). The PCTWM
algorithm binds these two choices and restricts an execution to
switch threads only at d points that correspond to the external
reads or synchronization of the inter-thread events.

We present the PCTWM algorithm (see Algorithm 1) following
the structure of the C11Tester [32] by (i) incorporating d-bounded
test generation in PCT [8], and (ii) maintaining the thread-local
views for computing the behavior of communication events.

The PCTWM algorithm takes the bug depth (d), the history
bound (h), and the number of communication events in the program
(kcom) as test parameters. Then, it samples h-bounded d communi-
cation relations in the execution.

PCTWM maintains a list of threads that keeps the thread ids in
the order of their priorities. It chooses the next event to be sched-
uled using the priority-based approach in PCT. It runs threads in the
order of their priorities and switches between them at randomly se-
lected d points in the execution. The switching points are specified
by the randomly selected tuple of d events, [d, ..., dy], randomly
initialized between [1, kcom |- The execution of the selected d events
is delayed by updating the thread priorities accordingly, and they
are used to form communication relations as they can read from
externally written values of the accessed variables. We also keep

607

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

1 Procedure executeAndUpdateView(t, e)

2 be—1

3 x « e.loc

4 if e € ‘W then

5 ‘ t.view(x) «— e

6 if e € SC then

7 e’ «— getSC(t, e)

8 tview «— | |5 o (t.view, e’.bag)

9 if e € R then
if e € reordered then
// read from any of the store operations
b « readGlobal(t, h)
if isSync(e, b) then
‘ t.view « | |g o (t.view, b.bag)
else
‘ tview(x) « | g mo(t.view(x), b.bag(x))

12
13
14
15
16
else

// read from the local thread view
b « readLocal(t)

if e € Fguco then

17
18

19

20

21 esw « getSWSet(t, e)

22 for ¢’ € esw do

23 | tview [ |g o (t.view, e’ .bag)

24 if e € Fgg then

25 ‘ // no update to the current thread’s view

26 e.bag « t.view

27 s < execute(s, t, b)

Algorithm 2: The executeAndUpdateView procedure that ex-
ecutes an event e and updates its thread’s view.

reordered, which keeps the set of events whose execution is de-
layed. The algorithm variables i and s keep the current number of
communication events and the execution state, respectively.

Similar to C11Tester, we use enabled(s) to denote the set of all
threads enabled in state s, and next(s, t) to refer to the next enabled
event in thread ¢ at state s. We use getHighestPrEnabled(threads)
to get the thread id with the highest priority among threads, and
indexOf (i, list) to get the index of the element i in list.

Procedure PCTWM. The algorithm selects the enabled thread ¢
with the highest thread priority (line 4) and the next enabled event
e of t (line 5). If the event is a communication event, it is potentially
involved in one of the d communication relations. In that case, we
increment the number of communication events encountered in
the execution (line 7) and check if that event is among the ran-
domly selected d events (line 8). If this is the case, we delay the
execution of its thread by updating its priority (line 11) and adding
the event to the set reordered (line 12). On lines 10-11, we update
the priority of the current thread based on event e’s index in the
tuple [dy,...,dg]. Suppose e is identified by i = de, in [dy, . .., dg].
We delay the execution of e so that it executes after all program
events except for the events in [de+1, . . ., dg]. Hence, the algorithm
runs the communication events identified by [d, ..., d4] as late as
possible, preserving their relative order in the tuple. Enforcing a
particular order between these d communication events provides



ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

the visibility of a communication source (dom(com)) event to its
sink (codom(com)) event.

The PCTWM algorithm is agnostic to any memory model by
using the two procedures:

e isCommunicationEvent, which is used to check if an event is
a communication event which is potentially delayed to form
a communication relation (line 6), and

e executeAndUpdateView, which updates the local views of
the thread based on the executed event e (line 14).

In this work, we define these procedures based on the C11 mem-
ory model (described in Section 2), which is also the considered
model by C11Tester.

Procedure isCommunicationEvent. Given an event e, the proce-
dure checks if it is a communication event. Following the definition
of communication events in Section 5.1, a communication event
is: (1) an SC event or (2) a read event, which may read from other
threads, or (3) a synchronization event, which can be a sink of an
inter-thread synchronization (sw) relation.

Procedure executeAndUpdateView. Given the scheduled event
e and its thread t, this procedure executes e and updates the thread-
local view of ¢ accordingly. For each event, we maintain a bag
that captures the thread-local view at the point of its execution.
Whenever an event forms a communication relation where it is
the source event, we communicate its bag to the sink event of the
communication relation. The sink event uses the bag to update its
own thread-local view.

The update depends on the communication relation formed be-
tween the events. On line 2 in Algorithm 2, we keep a reference b
for a read or RMW event e to store the behavior of the write event
e reads-from. We update the view of thread ¢ and the bag of e based
on the type of e.

On lines 4-5, if e is a write or RMW event, then the view of t is
updated only with event e at the location of e i.e. x. On lines 6-8, if e
is an SC event, then the algorithm updates the view of thread t with
the views of that event’s SC-predecessors (returned by getSC). Lines
9-19 handle the read events. If e in the reordered set, i.e., it is selected
as one of the communication sinks, then e reads from a visible
write or RMW event b within history depth A using readGlobal
(line 12). Otherwise, it reads from the value from its thread’s local
view using readLocal (line 19). The readGlobal procedure forms
a communication relation between e and the operation it reads
from i.e., b. Depending on the communication relation e forms, it
can either form a sw relation (checked by isSync) and, therefore,
updates its thread view by all the variables of the bag it receives
from the communication source (line 14), or it only updates its
thread view by only the value of e.loc it reads (line 16). Lines 20-23
handle the synchronization formed if e is an F5acq event. It updates
the thread’s view on all locations with the bags of all events with
which it synchronizes-with. On line 25, if the operation is an Fggy,
then nothing is communicated to the current thread and the thread
view is not updated. Finally, on line 26, The algorithm assigns the
current thread’s view to the bag of the currently executing event e
and executes the event.

608

Mingyu Gao, Soham Chakraborty, and Burcu Kulahcioglu Ozkan

i [X=Y=0]
{(X.ix). (Yoiy)}

— o~

e1 : W(X,1) eq : R(Y,1)
{(X,e1), (Y,iy)} {(X,ix), (Y, e3) }

N "

i \\ // l
R ,
\SWo

ey Frp —~——>e5: FACQ
{(X,e1), (Y, iy)} ,’rf\\ {(X,e1),(Y,e3)}

i .7 N l
e3: W(Y,1) e : R(X,1)
{(X,e1),(Y,e3)}

{(X.e1), (Y, e3)}

{(X.e1), (Y, iy)}

Figure 1: MP1 execution a = 1,b = 1 with views and bags.

Example. Consider the Program MP1 running two threads T'1
and T2. In this program, a = 1, b = 0 results in a bug.

X=Y=0
Xrix = 1;|| @ = Yrixs (MP1)
Frers FACQ;
Yax = 1; || b = Xrixs

The execution in Figure 1 demonstrates how the algorithm en-
sures thatif a = 1, then also b = 1. At the beginning of the execution,
the initial views of the threads T1, T2 are {(X, ix), (Y, iy)}, where
ix and iy are initialization writes of X and Y respectively. The ex-
ecution of e; updates the thread view to {(X, e1), (Y, iy)}, which
remains the same after ey following lines 4-5 and 25 in Algorithm 2,
respectively. Execution of e3 updates the thread view on Y (lines
4-5). The read event e4 reads from e3 (following line 12) and obtains
T1’s view in its bag (we illustrate the communicated bags using
blue-colored views). The relaxed read operation updates the thread
view only for Y, resulting in {(X, ix), (Y, e3)} (line 16). Fence event
es synchronizes with ez and obtain {(X, e1), (Y,iy)} in its bag to
update T2’s view to {(X, e1), (Y, e3)} following lines 20-23, which
overwrites the initialization on X. The next event eq reads the value
1, regardless of whether it reads using readGlobal or readLocal.
Because its current thread view keeps e for the variable X. In that
example, the outcome a = 1, b = 0 triggers a bug.

5.3 Example Executions Generated by PCTWM

We now discuss some example executions generated by PCTWM
for testing Program MP2, which is a message-passing program in
which all the shared memory accesses are relaxed accesses. The
program consists of the parallel execution of three threads, which
we refer to as T1, T2, and T3, from left to right. The execution of
a program that reads Y == 1 and X == 0 in T3 hits an assertion
violation. While proper synchronization of the operations could
prevent the assertion violation, we consider this buggy version
of the program with all relaxed accesses to illustrate the test case
generation of PCTWM and how it detects the bug. The bug has
concurrency bug depth d = 2 since it exposes in an execution with
two communication relations between its threads.

We present three test executions generated by PCTWM with
d =0,d =1, and d = 2 communication relations, respectively.



Probabilistic Concurrency Testing for Weak Memory Programs

i:[X=Y=0]
{(X,ix), (Y,iy) }
e1 : W(X, 1) ez : R(X,0) eq : R(Y,0)
{(X,e1), (Y,iy) } {(X,ix), (Y,iy) } {(X,ix), (Y,iy) }
e3: W(Y,1)

{(X.e1), (Y, e5)}

Figure 2: The d = 0 execution of Program MP2. There is no
communication between the threads.

i:[X=Y=0]
(X, i), (Vi)
/6 l(a) \Q
e1: W(X,1) 7(732) ez : R(X,1) eq : R(Y,0)
{(Xoe), (Y,ig)}  of  {(X e (Y,iy)} (X, ix), (Y, iy)}
o
e3: W(Y,1)

{(X,e1), (Y,e3)}

Figure 3: Ad =1, h = 1 execution of MP2. The illustrated exe-
cution selects [e2] as the sink of the communication relation
and assigns initial priorities as [T1, T2, T3].

X=Y=0
o lif(y==1)
X=1;1ﬁ§:;1) if (X == 0) (MP2)

assert(false);

Generating the execution with d = 0. The d = 0 execution
of Program MP2 (see Figure 2) does not have any communication
relations between the threads. Therefore, all the events access the
values in their thread local views. In the figure, we provide the
thread views (below the events) obtained after executing an event.

Following Algorithm 1, PCTWM generates this execution by
assigning random priorities to the threads and running them serially
in the order of their priorities. Given d = 0, it does not update
priorities at any point in execution and does not introduce any
communication relations into the execution.

Generating an execution with d = 1. The PCTWM algorithm
generates a d = 1 execution of the program by randomly sampling a
communication relation in the execution. Figure 3 providesad =1
and h = 1 execution of the program with randomly assigned initial
thread priorities [T1, T2, T3], respectively, in the decreasing order.

609

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

i:[X=Y=0]
{(X.ix). (Y.iy)}
/ﬁ Jm \Q
e1: W(X, 1) 7(72)7) st R(X, 1) es : R(Y,1)
{(Xoe). (Vo)) of {(Cen). (Yoiy)} {(X1x). (Y, e3)}
4).-7
) - (5)
_-7rf

e3: W(Y,1)
{(X,e1), (Y, e3)}

es5 : R(X,0)
{(X,ix), (Y,es) }

Figure 4: A d = 2, h = 1 execution of MP2. The illustrated exe-
cution selects [eg, e4] as the sinks of the two communication
relations and assigns initial priorities as [T1,T2, T3].

We mark the execution order of the events with the numbers on
the arrows.

Given d = 1, the algorithm switches the execution of threads
at a randomly selected communication event, allowing that event
to read from a value written in another thread (e.g., a read event
can read from an external write event) or synchronize with an
external event (e.g., a read-acquire event can synchronize with a
write-release event, or an SC event can synchronize with another
SC event). In the example execution, the algorithm selects [ez] as
the sink of the communication relation.

The execution starts with running the highest priority thread, T1.
It runs e; and moves to the next thread, T2. Since the next event, ep,
is selected as the sink event of the communication relation, PCTWM
does not immediately run this event. It reduces the priority of T2
to a value smaller than the initial thread priorities. This causes
the communication sink event ey to run after all other events, e.g.,
possibly write events it can externally read from. The algorithm
continues with the currently highest priority thread, T3. The event
e4 reads Y = 0, so the execution does not go into the if branch in
the program. After the completion of T3, the algorithm resumes T2,
running the event e;. Given h = 1, e3 reads from the last written
value of X from ej, forming a communication relation from e; to
ey between the threads T1 and T2. The execution continues with
running e3 and completes.

In an alternative execution with h = 2, PCTWM would select
one of the writes X = 0 or X = 1 uniformly at random for ey to
read from, reading from either the initial value or e, respectively.

Generating an execution with d = 2. PCTWM generates a
d = 2 execution of the program by randomly sampling two com-
munication relations in the execution. Figure 4 provides a d = 2
and h = 1 execution of the program with randomly assigned initial
thread priorities [T1, T2, T3], respectively, in the decreasing order.
Different from the previous example, a d = 2 execution switches
threads at two randomly selected events, allowing these two events
to read from or synchronize with an external event. In this example,
PCTWM selects the tuple [eg, e4] to execute in this order after the
execution of all other events and form communication relations
accessing thread external writes.



ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

The execution starts similarly to the previous example. PCTWM
runs the highest priority thread T1 and continues with T2. Since the
next event, es, is selected as the sink event of the communication
relation, PCTWM does not immediately run this event. It reduces
the priority of T2 and moves to T3. Since the next event, ey, is also
selected as the sink of a communication relation, PCTWM does
not immediately execute e4, but it reduces the priority of T3. Note
that PCTWM updates the priorities of T2 and T3 so that ez and
e4 run in the order they appear in [eg, e4]. Therefore, it runs the
selected events [ey, e4] in that order regardless of their random
initial thread priorities. The execution continues with the current
highest priority thread, T2, allowing e to read from an external
write. Given h = 1, it reads from eq, forming a communication
relation. After the completion of T2, the algorithm resumes T3. The
event e4 forms the second communication relation by reading from
e3. Since the relaxed read operation updates only the thread-local
view of the thread for Y but not for X, e5 reads X = 0. This execution
with d = 2 communication relations produces a buggy execution
where T3 reads Y =1 and X = 0.

The example test executions of Program MP2 highlight several
insights about the PCTWM algorithm. First, more complex execu-
tions with deeper concurrency bugs manifest in the existence of
a higher number of communication relations between concurrent
events. Second, the execution order of the selected d events affects
the set of visible values to a read event to read from. For example,
if the algorithm generates a d = 2 execution by selecting [ey, e2]
instead of [eg, e4], then e4 reads Y = 0, resulting in an execution
that does not produce the bug. Finally, communication relations
update thread local views based on the semantics of the events in
the relation. For example, the communication relation (es, e4) in
Figure 4 updates only the variable Y in the thread local view of T3.
However, if the communication relation (es, e4) formed a synchro-
nization (e.g., e3 was a release-write and e4 was an acquire-read),
the updates on both variables X and Y would be propagated to the
thread local view of T3.

5.4 The Probability of Detecting Bugs

Given a program with k¢, communication events, PCTWM sam-
ples an execution with d communication relations with a history
depth of h with the probability of at least 1/ O((hkeom)?). The
algorithm chooses d events out of kcom events as the sinks of d

kcom

d
d events in a particular order yielding (k"g'")d! < keom? many
ways. For each of the d communication sinks, the algorithm selects
a source event out of h possible events in O(h?) possible ways.
Therefore, the size of the set of executions sampled by the PCTWM
algorithm is bounded by O((hkeom)?). Trivially, the probability
of choosing an execution out of this set is at least 1/0((hkeom)?),
which is exponentially low only in the bug depth parameter d.

communication relations from (“°J™) possible ways. It sorts these

6 EXPERIMENTAL EVALUATION

In this section, we discuss our evaluation of PCTWM on some well-
known data structures and real-world application benchmarks and
compare the results with the state-of-the-art weak memory testing
tool, C11Tester.

610

Mingyu Gao, Soham Chakraborty, and Burcu Kulahcioglu Ozkan

Table 1: Data structure benchmarks.

Benchmark LOC &k kcom d
dekker 50 20 14 0
msqueue 232 49 31 0
barrier 38 15 10 1
cldeque 122 86 56 1
mcslock 75 26 16 1
mpmcqueue 108 19 17 2
linuxrwlocks 90 20 19 2
rwlock 98 84 74 2
seglock 50 20 18 3

Random Testing in C11tester [32]. C11Tester randomly explores
the set of program behaviors by generating test executions in two
steps: (1) randomly selecting the next thread to execute among the
set of all enabled events and (2) randomly selecting a write from a
set of visible writes for a read or update to read-from.

Implementation. We developed both PCT and PCTWM algo-
rithms in the C11Tester framework, which provides interfaces for
implementing the selection of next event to execute, and the se-
lection of program behavior for a read event to read from. Our
implementation of PCT differs from the original algorithm [8], as
our implementation does not produce only sequentially consistent
executions, but it allows for some weak memory behavior. More
specifically, we implement a variant of PCT where the read opera-
tions do not necessarily read the last written value on a variable,
but they read any of the observable values under the given memory
model, selected uniformly at random. Therefore, our implementa-
tion of PCT can trigger the concurrency bugs that occur only under
weak memory behavior.

Benchmarks. We use nine data structure benchmarks (with some
seeded weak memory concurrency bugs by C11Tester), and three
real-world applications Iris [50], a low-latency C++ logging library;
Mabain [13], a key-value store library; Silo [46, 47], a multi-core
in-memory storage engine used in the evaluation of C11Tester.

Table 1 lists the benchmarks together with their lines of code
(LOC), the estimated number of program events (k), the estimated
number of communication events (kcom), and the depth of their
concurrency bugs (d). Similar to PCT, which takes an estimated
number of program events (k) and bug depth d as test parame-
ters, PCTWM takes an estimated number of communication events
(kcom) together with the bug depth d and history depth h as test
parameters.

Research Questions. We evaluate the effectiveness of PCTWM by
addressing the following research questions:

RQ1. Can the PCTWM algorithm find concurrency bugs and
how do the bounding parameters bug depth (d) and history depth
(h) affect the bug detection rate?

RQ2. How does the bug detection rate of the PCTWM algorithm
compare to the bug detection rate of C11Tester?

RQ3. How does the effectiveness of PCTWM compare to PCT
for testing programs having more weak memory accesses?



Probabilistic Concurrency Testing for Weak Memory Programs

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

100 100 100 100 100 100 100 100 100 100 100 100 100
94.6
89.4
78.7 86.2
80 76.8 787
76.6 75.4
60 59.4
55.3
41.2
" 39.7
22.7 288
21.6
20 = @ = = 3 z 2 E z
R 3 | je 8 8 3¢ LR § % 3 3 8 2 25
- 2 ok X 2 ¥ £ % X ¥ £ X X 2
o 9o NN N = B - o - + o ¥ @ + < - 9
o 5 © 5 © s o T T ° o s © T T T o 5 ©
dekker barrier cldeque mcslock  linuxrwlocks mpmcqueue  rwlock seqlock msqueue
B Cl1Tester PCT PCTWM

Figure 5: Highest bug hitting rates observed for all nine benchmarks

RQ4. What is the performance overhead of PCTWM in terms of
execution time in comparison to C11Tester?

6.1 The Effectiveness of PCTWM

Varying the bug depth bound. To answer RQ1, we first test
each benchmark with a d value as an algorithm input parameter
that corresponds to the depth of their concurrency bugs. Next, we
vary the bounding test parameters d and h to observe their effect
on the effectiveness of hitting the bugs.

Table 2 lists the percentages of the test executions that detect
the bug out of 1000 test runs. PCTWM successfully detects the bugs
with high probabilities by bounding the sample set of executions
using varying values [d, d + 2] for the bug depth parameter.

For the benchmarks having a concurrency bug of depth d = 0,
PCTWM generates a single execution that does not introduce any
communication relations and detects the bug in all tests. We also
see that increasing values for the bug depth parameter d decreases
the probability of hitting the bug for these benchmarks. For the
other benchmarks, PCTWM detects the bugs with comparable rates
for the depth parameter values [d, d + 2]. We observe that the rate
of detecting bugs decrease for larger values of d [16].

Varying the history depth bound. Table 3 lists the percentages
of the test executions that detect the bugs for varying values of the
history bound h = [1, 4]. We observe only small changes in the bug
detection rates for increasing h. This can be because there are not
many visible write events within h bound for a read event to read
from in the benchmark programs. The history bounding parameter
is more useful for programs with a high number of write events
whose values are visible to read events.

6.2 PCTWM vs C11Tester

We compare the performance of random testing using PCTWM, our
implementation of PCT, and C11Tester in Figure 5. Note that our
implementation of PCT does not restrict the test executions to be

611

Table 2: Bug hitting rates using PCTWM for the data structure
benchmarks for varying values of bug depth d.

Benchmark d Rate(d) Rate(d+1)  Rate(d+2)
dekker 0 100(h:1) 77.1(h:1)  75.7 (h:1)
msqueue 0 100 (h:1) 100 (h:1) 100 (h:1)
barrier 1 77.8 (h:2) 78.7 (h:3) 75.9 (h:2)
cldeque 1 557 (3) 100 (h:1) 100 (h:1)
meslock 1 100 (h:1) 100 (h:1) 100 (hil)
mpmcqueue 2100 (h:1) 100 (h:1) 100 (h:1)
linuxrwlocks 2 100 (h:1) 100 (h:1) 100 (h:1)
rwlock 2 769 (h:4) 788 (h:3) 77 (h3)
seqglock 3 333 (h:3) 41.2 (h:1) 39.5 (h:2)

Table 3: Bug hitting rates using PCTWM for the data structure
benchmarks for varying values of history depth h.

Bug Hitting Rate(%)

Benchmark keom d hii h22 h3 h4

dekker 14 1 771 697 674 653
msqueue 31 0 100 100 100 100
barrier 10 2 748 751 767 78.7
cldeque 56 1 100 100 100 100
mcslock 16 1 100 100 100 100
mpmcqueue 17 2 100 100 100 100
linuxrwlocks 19 2 100 100 100 100
rwlock 74 3 742 76 78.8 1735
seglock 18 4 41.2 39.8 37.1 36.7

sequentially consistent but allows them to exhibit some weak mem-
ory behavior. Therefore, it can detect weak memory concurrency
bugs in the benchmark programs.



ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

mpmcqueue - inserting relaxed writes
® C11Tester © PCT @ PCTWM

100

Bug Hitting Rate in 500 rounds

2 4 6 8

Num of Inserted Writes

rwlock - inserting relaxed writes

©® C11Tester PCT @ PCTWM

Hitting Rate(500 rounds)

0 b t t
5 10

Num of Inserted Writes

20

Mingyu Gao, Soham Chakraborty, and Burcu Kulahcioglu Ozkan

dekker - inserting relaxed writes

® C11Tester PCT @ PCTWM

100

75

50

25

Bug Hitting Rate in 500 rounds

0 2 4 6

Num of Inserted Writes

cldeque - inserting relaxed writes

® C11Tester PCT @ PCTWM

100

ZLo—

75

50

25

Bug Hitting Rate in 500 rounds(%)

Num of Inserted Writes

Figure 6: Change in the bug hitting rates with an increasing number of relaxed write operations in the benchmarks.

PCT vs. C11Tester. PCT achieves higher bug-hitting rates than
Cl11Tester in general and performs significantly better in five of
the benchmarks. This can be explained by the fact that the PCT
algorithm samples a test execution from a d-bounded set of test
executions while C11Tester samples from the set of all possible
program executions.

PCTWM vs. PCT. The PCTWM algorithm performs comparably
or better than PCT in most of the benchmarks. For the benchmarks
with a concurrency bug of depth d = 0, PCTWM is observably bet-
ter than PCT. Because the bug in these benchmarks expose when
there is no communication between its threads and the PCTWM
executions with d = 0 always hit them. The PCT and PCTWM algo-
rithms improve the average bug-hitting rate in the nine benchmarks
by 16% and 29%, respectively.

In general, the bounded testing algorithms PCT and PCTWM
outperform C11Tester except for the seqlock benchmark where they
hit the bug with a slightly lower rate. It is because this benchmark
implements wait loops in which a thread waits for a value written by
another thread. PCT and PCTWM restrict the thread interleavings
and communication, respectively, preventing the thread from going
out of the wait loop. Similar to PCT, which uses some heuristics
to avoid such starvation issues [8], PCTWM applies a heuristic to
switch to a random thread when it observes a livelock. The more
thread switches and external reads-from PCTWM employs to avoid
a livelock, the more it approaches to naive random testing.

612

While the performances of PCT and PCTWM are comparable,
PCTWM performs slightly better than PCT. Theoretically, PCTWM
improves over PCT for the programs having weaker memory behav-
iors than SC. Therefore, the observable performance improvement
of PCTWM over PCT depends on the amount of weak memory
behavior in the benchmark program under test.

6.3 PCTWM vs PCT

The performance improvement of PCTWM over PCT is more ob-
servable with increasing relaxed memory operations in the pro-
grams. In RQ3, we aim to address how the performance of PCTWM
improves over PCT for the programs with a higher amount of weak
memory behaviors. To do so, we insert relaxed write accesses in
the benchmark programs which do not affect the program behavior
or the depth of the concurrency bug. Essentially, we increase the
number of program events and the number of visible writes to
read-from for the read or RMW accesses.

In Figure 6, we observe significant differences in the bug detec-
tion rates of PCT and PCTWM. The bug detection ability of the
PCTWM stays stable while that of the PCT fluctuates. This empiri-
cal observation aligns with the probabilistic guarantees of PCT and
PCTWM. The increased number of program events in the modi-
fied benchmarks decreases the probability of detecting bugs with
PCT, which selects d events to reorder out of all program events.
In contrast, the increased number of relaxed write operations in a
program does not affect the performance of PCTWM.



Probabilistic Concurrency Testing for Weak Memory Programs

6.4 PCTWM vs C11Tester: Performance
Overhead

To answer RQ4, we evaluate the performance of C11Tester and
PCTWM on some real-world applications. We tested the appli-
cations using both single and multiple CPU cores. Table 4 lists
the performance assessment results averaged over 10 runs. We
compare the performance results of PCTWM to that of C11Tester
using the same measurements used earlier for the evaluation of
C11Tester [32]. Accordingly, we report the test throughput (in terms
of op/sec) for the Silo benchmark and the elapsed time (in seconds)
for the Mabain and Iris benchmarks.

In our experiments, both C11Tester and PCTWM detect data
races in all of these applications in single as well as multiple core
configurations. Considering individual applications, we do not ob-
serve a significant difference in the throughput result in Silo. In
Mabain and Iris, the execution time in PCTWM is higher than
C11Tester, around 10% and 16%, respectively. This can be explained
by the computation overhead in the PCTWM algorithm. PCTWM
computes the thread-local views and selects the values to read from
based on the local or global writes, whereas C11Tester does not
maintain this information and randomly selects a write operation
from the set of visible writes. Finally, we observe that the configu-
rations do not affect the performance as the C11Tester framework
runs one thread at a time.

Table 4: Performance on testing real-world applications. In
parentheses, we include the relative standard deviation.

core Cl1tester PCTWM
Silo single 12428 (0.58%) 11039 (7.38%)
(ops/sec)  multiple 11987(0.61%) 11387 (6.92%)
Mabain single 7.73 (1.56%) 8.43 (4.11%)
(time/s) multiple 7.65 (2.48%) 8.40 (3.62%)
Iris single  10.98 (2.02%) 12.79 (4.78%)
(time/s)  multiple 10.83 (1.88%) 12.43 (6.59%)

7 RELATED WORK

Concurrency and consistency. Memory consistency models play
a crucial role in concurrent systems. Architectures [2, 3, 39, 42]
exhibit weak memory concurrency behaviors due to various ar-
chitectural features such as memory hierarchy, interconnect and
so on for performance reason. To gain performance from these
architectures, the high level programming languages also introduce
primitives and a number of programming models for weak memory
concurrency are defined [5, 6, 11, 20, 21, 25, 27, 33, 34, 41, 48]. In
this paper we follow the C/C++ concurrency model [5, 31, 34]. How-
ever, due to the subtle semantics of these primitives, writing weak
memory concurrent programs are often difficult and error prone.
Therefore weak memory concurrency pose a significant challenge
to testing and verification.

Testing and verification of weak memory concurrency. In
recent years a number of approaches are developed for weak mem-
ory verification [1, 3, 22, 38]. Verifying weak memory program is
even more challenging as it may require to explore larger set of

613

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

executions than SC. In this scenario testing [29-31] and dynamic
analysis [9, 10, 15] approaches for weak memory concurrency have
been effective in handling larger programs while sacrificing sound-
ness.

Concurrency testing. Many algorithms and tools have been
proposed for testing the concurrency behavior of programs running
under SC.

Systematic testing relies on a controlled scheduler that can en-
force a particular ordering of thread events in execution and enu-
merates test executions for the scheduler. Due to the explosion in
the number of possible executions of a concurrent program, testing
algorithms focused on exercising a bounded set of program be-
haviors. These include generating test executions with a bounded
number of context switches [43], nonpreemptive contexts [35],
scheduler delays [14], and phases [7].

Randomized testing aims at detecting bugs by randomly gener-
ated test executions, and they are shown [45] to be effective in prac-
tice. The randomized partial order sampling algorithm [44] is de-
signed to cover execution traces more uniformly than pure random
walk. The probabilistic concurrency testing (PCT) algorithm [8]
improved state-of-the-art by providing a theoretical guarantee on
the random testing. The parallel PCT algorithm (PPCT) [36] allows
the parallel execution of many threads instead of serializing them.
The PCT algorithm for multithreaded programs with a set of totally
ordered events is extended to distributed systems [23, 24, 37], to
capture a partially ordered set of events. The partial order sampling
(POS) algorithm [49] also provides theoretical probability bounds
on the generated tests. PCT differs from the other randomized al-
gorithms as it guarantees a probability of detecting bugs that is
exponentially low only in the bug depth, d.

8 CONCLUSION

We presented the Probabilistic Concurrency Testing for Weak Mem-
ory (PCTWM) algorithm for testing weak memory concurrency
programs and provides theoretical guarantees on the probability
of detecting bugs. PCTWM extends the Probabilistic Concurrency
Testing (PCT) algorithm that is designed for SC programs to capture
weak memory concurrency. PCTWM achieves this by (i) revising
the existing notion of concurrency bug depth that is defined based
on thread interleavings to capture thread communications, and (ii)
devising an algorithm to sample a test execution from the set of pro-
gram behaviors with a bounded number of thread communication
relations.

We implemented PCTWM and evaluated its performance in
comparison to the state-of-the-art weak memory program testing
tool C11Tester. Our evaluation demonstrates that PCT and PCTWM
improve the Cl1Tester’s bug detection ability as they enhance
the hitting rate in most of these benchmarks. Moreover, PCTWM
outperforms PCT for testing the weak memory programs with more
relaxed write operations.

DATA-AVAILABILITY STATEMENT

The artifact is available on Zenodo [17]. Appendix A provides the
details on how to use the artifact and how to reproduce the results.



ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

A ARTIFACT APPENDIX

A.1 Abstract

The artifact is in https://doi.org/10.5281/zenodo.7225459. This is a
VagrantBox package (~6 GB) containing the artifact for the paper
‘Probabilistic Concurrency Testing for Weak Memory Programs’.
This vagrant package offers the experimental environment, which
contains all code, benchmarks, and scripts to reproduce the experi-
mental results in the paper.

A.2 Artifact check-list (meta-information)

o Algorithm: The scripts are offered to reproduce the results of
PCT and PCTWM algorithms, implemented on C11Tester. The
results of the original C11Tester experiments are listed in the
C11Tester paper, and we quote them in our paper.

o Metrics: We follow similar evaluation metrics of original C11Tester.
The metric for evaluating the bug detection ability of each algo-
rithm is Bug Hitting Rate(%). It refers to the number of hitting the
bug in the benchmarks over 1000 rounds or 500 rounds. Average
Running time(ms) is evaluated for each data structure bench-
mark and real applications to show the speed of detecting the
bug. Throughout(ops/sec) is another metric when evaluating the
real-world applications.

A.3 Requirements

Hardware. The PC or computer should have memory larger than
64 GB and RAM larger than 16 GB.

Software.

e Install VirtualBox 6.1.26 (https://www.virtualbox.org/wiki/
Changelog-6.1#v26).

e Install VagrantBox 2.2.18 (https://www.vagrantup.com/intro/
v2.2.18).

Running Vagrantbox. To run the artifact’s vagrantbox, please
execute the commands below:

o It may require to run ‘vagrant init package.box’ in the artifact
root directory first.

e It may require to the add the following command to the
Vagrantfile, right before the final ‘end’.

config.vm.provider "virtualbox" do |v]|
v.customize ["modifyvm", :id, "—uartmode1", "disconnected"]
end

e ‘vagrant up’
e It may require: ‘vagrant provision’
e vagrant ssh

A4 Experimental Workflow
We evaluate the research questions (RQ) as follows:

e (RQ1, RQ2) We compute the bug hitting rate in 1000 runs on nine
benchmarks varying the parameters in Appendix A.5.

o (RQ3) We change the nine benchmarks by inserting more ‘relaxed
write” accesses and compute the bug hitting rate in 1000 runs.

o (RQ4) We compute the throughput and average running time of
three real applications, and for nine benchmarks, we compute
the average running time.

614

Mingyu Gao, Soham Chakraborty, and Burcu Kulahcioglu Ozkan

The experiments can be run by the following python scripts.

‘result_pctwm.sh’ runs the PCTWM experiments,
‘result_pct.sh’ runs the PCTWM experiments, and
‘run_all.sh’ runs both PCT and PCTWM experiments.

The results can be observed in the console with the tips - 'results
for questions 1/2/3/4’. We manually plot the results in Figures 5

an

d 6, and Tables 1 to 4.

A.5 Experiment Customization

The parameters in our algorithms are as follows.

For the PCT algorithm. :
e -b: Bug depth
e -1: Number of shared access events
e -s: Seed number

For the PCTWM algorithm. :

-d: Bug depth

-k: Number of communication events
-y: History depth

[ ]
[ ]
[ ]
e -s: Seed number

REFERENCES

[

[2

B3

[o

] Parosh Aziz Abdulla, Stavros Aronis, Mohamed Faouzi Atig, Bengt Jonsson, Carl
Leonardsson, and Konstantinos Sagonas. 2015. Stateless Model Checking for TSO
and PSO. In Tools and Algorithms for the Construction and Analysis of Systems
- 21st International Conference, TACAS 2015, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2015, London, UK, April
11-18, 2015. Proceedings (Lecture Notes in Computer Science, Vol. 9035), Christel
Baier and Cesare Tinelli (Eds.). Springer, 353-367. https://doi.org/10.1007/978-3-
662-46681-0_28

] Jade Alglave, Will Deacon, Richard Grisenthwaite, Antoine Hacquard, and Luc
Maranget. 2021. Armed Cats: Formal Concurrency Modelling at Arm. ACM
Trans. Program. Lang. Syst. 43, 2 (2021), 8:1-8:54. https://doi.org/10.1145/3458926

] Jade Alglave, Luc Maranget, and Michael Tautschnig. 2014. Herding Cats: Mod-
elling, Simulation, Testing, and Data Mining for Weak Memory. ACM Trans.
Program. Lang. Syst. 36, 2 (2014), 7:1-7:74. https://doi.org/10.1145/2627752

] Mark Batty, Alastair F. Donaldson, and John Wickerson. 2016. Overhauling SC
atomics in C11 and OpenCL. In Proceedings of the 43rd Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL 2016, St.
Petersburg, FL, USA, January 20 - 22, 2016, Rastislav Bodik and Rupak Majumdar
(Eds.). ACM, 634-648. https://doi.org/10.1145/2837614.2837637

] Mark Batty, Scott Owens, Susmit Sarkar, Peter Sewell, and Tjark Weber. 2011.
Mathematizing C++ concurrency. In Proceedings of the 38th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL 2011, Austin,
TX, USA, January 26-28, 2011, Thomas Ball and Mooly Sagiv (Eds.). ACM, 55-66.
https://doi.org/10.1145/1926385.1926394

] John Bender and Jens Palsberg. 2019. A formalization of Java’s concurrent access
modes. Proc. ACM Program. Lang. 3, OOPSLA (2019), 142:1-142:28.  https:
//doi.org/10.1145/3360568

] Ahmed Bouajjani and Michael Emmi. 2012. Bounded Phase Analysis of Message-

Passing Programs. In Tools and Algorithms for the Construction and Analysis of

Systems - 18th International Conference, TACAS 2012, Held as Part of the European

Joint Conferences on Theory and Practice of Software, ETAPS 2012, Tallinn, Estonia,

March 24 - April 1, 2012. Proceedings (Lecture Notes in Computer Science, Vol. 7214),

Cormac Flanagan and Barbara Konig (Eds.). Springer, 451-465. https://doi.org/

10.1007/978-3-642-28756-5_31

Sebastian Burckhardt, Pravesh Kothari, Madanlal Musuvathi, and Santosh Na-

garakatte. 2010. A randomized scheduler with probabilistic guarantees of finding

bugs. In Proceedings of the 15th International Conference on Architectural Support
for Programming Languages and Operating Systems, ASPLOS 2010, Pittsburgh,

Pennsylvania, USA, March 13-17, 2010, James C. Hoe and Vikram S. Adve (Eds.).

ACM, 167-178. https://doi.org/10.1145/1736020.1736040

] Jacob Burnim, Koushik Sen, and Christos Stergiou. 2011. Testing concurrent
programs on relaxed memory models. In Proceedings of the 20th International
Symposium on Software Testing and Analysis, ISSTA 2011, Toronto, ON, Canada,
July 17-21, 2011, Matthew B. Dwyer and Frank Tip (Eds.). ACM, 122-132. https:
//doi.org/10.1145/2001420.2001436


https://doi.org/10.5281/zenodo.7225459
https://www.virtualbox.org/wiki/Changelog-6.%201#v26
https://www.virtualbox.org/wiki/Changelog-6.%201#v26
https://www.vagrantup.com/intro/v2.2.18
https://www.vagrantup.com/intro/v2.2.18
https://doi.org/10.1007/978-3-662-46681-0_28
https://doi.org/10.1007/978-3-662-46681-0_28
https://doi.org/10.1145/3458926
https://doi.org/10.1145/2627752
https://doi.org/10.1145/2837614.2837637
https://doi.org/10.1145/1926385.1926394
https://doi.org/10.1145/3360568
https://doi.org/10.1145/3360568
https://doi.org/10.1007/978-3-642-28756-5_31
https://doi.org/10.1007/978-3-642-28756-5_31
https://doi.org/10.1145/1736020.1736040
https://doi.org/10.1145/2001420.2001436
https://doi.org/10.1145/2001420.2001436

Probabilistic Concurrency Testing for Weak Memory Programs

[10] Man Cao, Jake Roemer, Aritra Sengupta, and Michael D. Bond. 2016. Prescient
memory: exposing weak memory model behavior by looking into the future.
In Proceedings of the 2016 ACM SIGPLAN International Symposium on Memory
Management, Santa Barbara, CA, USA, June 14 - 14, 2016, Christine H. Flood and
Eddy Zheng Zhang (Eds.). ACM, 99-110. https://doi.org/10.1145/2926697.2926700

[11] Soham Chakraborty and Viktor Vafeiadis. 2019. Grounding thin-air reads with
event structures. Proc. ACM Program. Lang. 3, POPL (2019), 70:1-70:28. https:
//doi.org/10.1145/3290383

[12] Hoang-Hai Dang, Jacques-Henri Jourdan, Jan-Oliver Kaiser, and Derek Dreyer.
2020. RustBelt meets relaxed memory. Proc. ACM Program. Lang. 4, POPL (2020),
34:1-34:29. https://doi.org/10.1145/3371102

[13] Changxue Deng. 2018. Mabain: A fast and light-weighted key-value store library.

https://github.com/chxdeng/mabain.

Michael Emmi, Shaz Qadeer, and Zvonimir Rakamaric. 2011. Delay-bounded

scheduling. In Proceedings of the 38th ACM SIGPLAN-SIGACT Symposium on

Principles of Programming Languages, POPL 2011, Austin, TX, USA, January 26-28,

2011, Thomas Ball and Mooly Sagiv (Eds.). ACM, 411-422. https://doi.org/10.

1145/1926385.1926432

Cormac Flanagan and Stephen N. Freund. 2010. Adversarial memory for detect-

ing destructive races. In Proceedings of the 2010 ACM SIGPLAN Conference on

Programming Language Design and Implementation, PLDI 2010, Toronto, Ontario,

Canada, June 5-10, 2010, Benjamin G. Zorn and Alexander Aiken (Eds.). ACM,

244-254. https://doi.org/10.1145/1806596.1806625

[16] Mingyu Gao. 2022. Probabilistic Testing for Weak Memory Concurrency. Master’s
thesis. Delft University of Technnology.

[17] Mingyu Gao, Soham Chakraborty, and Burcu Kulahcioglu Ozkan. 2022. Proba-
bilistic Concurrency Testing for Weak Memory Programs — Artifact. Available
at https://doi.org/10.5281/zenodo.7225459.

[18] ISO/IEC 14882. 2011. Programming Language C++.

[19] ISO/IEC 9899. 2011. Programming Language C.

[20] Alan Jeffrey and James Riely. 2016. On Thin Air Reads Towards an Event Struc-
tures Model of Relaxed Memory. In Proceedings of the 31st Annual ACM/IEEE
Symposium on Logic in Computer Science, LICS '16, New York, NY, USA, July 5-8,
2016, Martin Grohe, Eric Koskinen, and Natarajan Shankar (Eds.). ACM, 759-767.
https://doi.org/10.1145/2933575.2934536

[21] Jeehoon Kang, Chung-Kil Hur, Ori Lahav, Viktor Vafeiadis, and Derek Dreyer.
2017. A promising semantics for relaxed-memory concurrency. In Proceedings
of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages,
POPL 2017, Paris, France, January 18-20, 2017, Giuseppe Castagna and Andrew D.
Gordon (Eds.). ACM, 175-189. https://doi.org/10.1145/3009837.3009850

[22] Michalis Kokologiannakis and Viktor Vafeiadis. 2021. GenMC: A Model Checker
for Weak Memory Models. In Computer Aided Verification - 33rd International
Conference, CAV 2021, Virtual Event, July 20-23, 2021, Proceedings, Part I (Lecture
Notes in Computer Science, Vol. 12759), Alexandra Silva and K. Rustan M. Leino
(Eds.). Springer, 427-440. https://doi.org/10.1007/978-3-030-81685-8_20

[23] Burcu Kulahcioglu Ozkan, Rupak Majumdar, Filip Niksic, Mitra Tabaei Befrouei,
and Georg Weissenbacher. 2018. Randomized testing of distributed systems
with probabilistic guarantees. Proc. ACM Program. Lang. 2, OOPSLA (2018),
160:1-160:28. https://doi.org/10.1145/3276530

[24] Burcu Kulahcioglu Ozkan, Rupak Majumdar, and Simin Oraee. 2019. Trace aware
random testing for distributed systems. Proc. ACM Program. Lang. 3, OOPSLA
(2019), 180:1-180:29. https://doi.org/10.1145/3360606

[25] Ori Lahav and Udi Boker. 2022. What’s Decidable About Causally Consistent
Shared Memory? ACM Trans. Program. Lang. Syst. 44, 2 (2022), 8:1-8:55. https:
//doi.org/10.1145/3505273

[26] Ori Lahav and Roy Margalit. 2019. Robustness against release/acquire se-
mantics. In Proceedings of the 40th ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, PLDI 2019, Phoenix, AZ, USA, June
22-26, 2019, Kathryn S. McKinley and Kathleen Fisher (Eds.). ACM, 126-141.
https://doi.org/10.1145/3314221.3314604

[27] Ori Lahav, Viktor Vafeiadis, Jeehoon Kang, Chung-Kil Hur, and Derek Dreyer.

2017. Repairing sequential consistency in C/C++11. In Proceedings of the 38th ACM

SIGPLAN Conference on Programming Language Design and Implementation, PLDI

2017, Barcelona, Spain, June 18-23, 2017, Albert Cohen and Martin T. Vechev (Eds.).

ACM, 618-632. https://doi.org/10.1145/3062341.3062352 Technical Appendix

Available at https://plv.mpi-sws.org/scfix/full.pdf.

Leslie Lamport. 1979. How to Make a Multiprocessor Computer That Correctly

Executes Multiprocess Programs. IEEE Trans. Computers 28, 9 (1979), 690-691.

https://doi.org/10.1109/TC.1979.1675439

[29] Christopher Lidbury and Alastair F. Donaldson. 2017. Dynamic race detection

for C++11. In Proceedings of the 44th ACM SIGPLAN Symposium on Principles of

Programming Languages, POPL 2017, Paris, France, January 18-20, 2017, Giuseppe

Castagna and Andrew D. Gordon (Eds.). ACM, 443-457. https://doi.org/10.1145/

3009837.3009857

Christopher Lidbury and Alastair F. Donaldson. 2019. Sparse record and replay

with controlled scheduling. In Proceedings of the 40th ACM SIGPLAN Conference

on Programming Language Design and Implementation, PLDI 2019, Phoenix, AZ,

USA, June 22-26, 2019, Kathryn S. McKinley and Kathleen Fisher (Eds.). ACM,

[14

[15

[28

[30

615

[31

(32]

[34

[35

'S
S

[37

(38]

(39]

[40

[41]

[42

[43

[44

=
i)

[46

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

576-593. https://doi.org/10.1145/3314221.3314635

Nian Liu, Binyu Zang, and Haibo Chen. 2020. No barrier in the road: a com-
prehensive study and optimization of ARM barriers. In PPoPP "20: 25th ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming, San
Diego, California, USA, February 22-26, 2020, Rajiv Gupta and Xipeng Shen (Eds.).
ACM, 348-361. https://doi.org/10.1145/3332466.3374535

Weiyu Luo and Brian Demsky. 2021. C11Tester: a race detector for C/C++ atomics.
In ASPLOS °21: 26th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, Virtual Event, USA, April 19-
23, 2021, Tim Sherwood, Emery D. Berger, and Christos Kozyrakis (Eds.). ACM,
630-646. https://doi.org/10.1145/3445814.3446711

Jeremy Manson, William W. Pugh, and Sarita V. Adve. 2005. The Java memory
model. In Proceedings of the 32nd ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL 2005, Long Beach, California, USA, January
12-14, 2005, Jens Palsberg and Martin Abadi (Eds.). ACM, 378-391. https://doi.
org/10.1145/1040305.1040336

Roy Margalit and Ori Lahav. 2021. Verifying observational robustness against
a cl1-style memory model. Proc. ACM Program. Lang. 5, POPL (2021), 1-33.
https://doi.org/10.1145/3434285

Madanlal Musuvathi and Shaz Qadeer. 2007. Iterative context bounding for
systematic testing of multithreaded programs. In Proceedings of the ACM SIGPLAN
2007 Conference on Programming Language Design and Implementation, San Diego,
California, USA, June 10-13, 2007, Jeanne Ferrante and Kathryn S. McKinley (Eds.).
ACM, 446-455. https://doi.org/10.1145/1250734.1250785

Santosh Nagarakatte, Sebastian Burckhardt, Milo M. K. Martin, and Madanlal
Musuvathi. 2012. Multicore acceleration of priority-based schedulers for con-
currency bug detection. In ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI ’12, Beijing, China - June 11 - 16, 2012, Jan Vitek,
Haibo Lin, and Frank Tip (Eds.). ACM, 543-554. https://doi.org/10.1145/2254064.
2254128

Filip Niksic. 2019. Combinatorial Constructions for Effective Testing. Ph.D. Disser-
tation. Technische Universitat Kaiserslautern.

Brian Norris and Brian Demsky. 2013. CDSchecker: checking concurrent data
structures written with C/C++ atomics. In Proceedings of the 2013 ACM SIGPLAN
International Conference on Object Oriented Programming Systems Languages &
Applications, OOPSLA 2013, part of SPLASH 2013, Indianapolis, IN, USA, October
26-31, 2013, Antony L. Hosking, Patrick Th. Eugster, and Cristina V. Lopes (Eds.).
ACM, 131-150. https://doi.org/10.1145/2509136.2509514

Scott Owens. 2010. Reasoning about the Implementation of Concurrency Ab-
stractions on x86-TSO. In ECOOP 2010 - Object-Oriented Programming, 24th
European Conference, Maribor, Slovenia, June 21-25, 2010. Proceedings (Lecture
Notes in Computer Science, Vol. 6183), Theo D’Hondt (Ed.). Springer, 478-503.
https://doi.org/10.1007/978-3-642-14107-2_23

Scott Owens, Susmit Sarkar, and Peter Sewell. 2009. A Better x86 Memory Model:
x86-TSO. In Theorem Proving in Higher Order Logics, 22nd International Conference,
TPHOLs 2009, Munich, Germany, August 17-20, 2009. Proceedings (Lecture Notes in
Computer Science, Vol. 5674), Stefan Berghofer, Tobias Nipkow, Christian Urban,
and Makarius Wenzel (Eds.). Springer, 391-407. https://doi.org/10.1007/978-3-
642-03359-9_27

Jean Pichon-Pharabod and Peter Sewell. 2016. A concurrency semantics for
relaxed atomics that permits optimisation and avoids thin-air executions. In
Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL 2016, St. Petersburg, FL, USA, January 20 -
22, 2016, Rastislav Bodik and Rupak Majumdar (Eds.). ACM, 622-633. https:
//doi.org/10.1145/2837614.2837616

Christopher Pulte, Shaked Flur, Will Deacon, Jon French, Susmit Sarkar, and
Peter Sewell. 2018. Simplifying ARM concurrency: multicopy-atomic axiomatic
and operational models for ARMv8. Proc. ACM Program. Lang. 2, POPL (2018),
19:1-19:29. https://doi.org/10.1145/3158107

Shaz Qadeer and Jakob Rehof. 2005. Context-Bounded Model Checking of
Concurrent Software. In Tools and Algorithms for the Construction and Anal-
ysis of Systems, 11th International Conference, TACAS 2005, Held as Part of the
Joint European Conferences on Theory and Practice of Software, ETAPS 2005, Ed-
inburgh, UK, April 4-8, 2005, Proceedings (Lecture Notes in Computer Science,
Vol. 3440), Nicolas Halbwachs and Lenore D. Zuck (Eds.). Springer, 93-107.
https://doi.org/10.1007/978-3-540-31980-1_7

Koushik Sen. 2007. Effective random testing of concurrent programs. In 22nd
IEEE/ACM International Conference on Automated Software Engineering (ASE 2007),
November 5-9, 2007, Atlanta, Georgia, USA, R. E. Kurt Stirewalt, Alexander Egyed,
and Bernd Fischer (Eds.). ACM, 323-332. https://doi.org/10.1145/1321631.1321679
Paul Thomson, Alastair F. Donaldson, and Adam Betts. 2014. Concurrency testing
using schedule bounding: an empirical study. In ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, PPoPP 14, Orlando, FL, USA,
February 15-19, 2014, José E. Moreira and James R. Larus (Eds.). ACM, 15-28.
https://doi.org/10.1145/2555243.2555260

Stephen Tu, Wenting Zheng, and Eddie Kohler. 2013. Silo: Multicore in-
memorystorage engine. https://github.com/stephentu/silo.


https://doi.org/10.1145/2926697.2926700
https://doi.org/10.1145/3290383
https://doi.org/10.1145/3290383
https://doi.org/10.1145/3371102
https://github.com/chxdeng/mabain
https://doi.org/10.1145/1926385.1926432
https://doi.org/10.1145/1926385.1926432
https://doi.org/10.1145/1806596.1806625
https://doi.org/10.5281/zenodo.7225459
https://doi.org/10.1145/2933575.2934536
https://doi.org/10.1145/3009837.3009850
https://doi.org/10.1007/978-3-030-81685-8_20
https://doi.org/10.1145/3276530
https://doi.org/10.1145/3360606
https://doi.org/10.1145/3505273
https://doi.org/10.1145/3505273
https://doi.org/10.1145/3314221.3314604
https://doi.org/10.1145/3062341.3062352
https://plv.mpi-sws.org/scfix/full.pdf
https://doi.org/10.1109/TC.1979.1675439
https://doi.org/10.1145/3009837.3009857
https://doi.org/10.1145/3009837.3009857
https://doi.org/10.1145/3314221.3314635
https://doi.org/10.1145/3332466.3374535
https://doi.org/10.1145/3445814.3446711
https://doi.org/10.1145/1040305.1040336
https://doi.org/10.1145/1040305.1040336
https://doi.org/10.1145/3434285
https://doi.org/10.1145/1250734.1250785
https://doi.org/10.1145/2254064.2254128
https://doi.org/10.1145/2254064.2254128
https://doi.org/10.1145/2509136.2509514
https://doi.org/10.1007/978-3-642-14107-2_23
https://doi.org/10.1007/978-3-642-03359-9_27
https://doi.org/10.1007/978-3-642-03359-9_27
https://doi.org/10.1145/2837614.2837616
https://doi.org/10.1145/2837614.2837616
https://doi.org/10.1145/3158107
https://doi.org/10.1007/978-3-540-31980-1_7
https://doi.org/10.1145/1321631.1321679
https://doi.org/10.1145/2555243.2555260
https://github.com/stephentu/silo

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

[47]

[48]

Stephen Tu, Wenting Zheng, Eddie Kohler, Barbara Liskov, and Samuel Madden.
2013. Speedy transactions in multicore in-memory databases. In ACM SIGOPS
24th Symposium on Operating Systems Principles, SOSP ’13, Farmington, PA, USA,

November 3-6, 2013, Michael Kaminsky and Mike Dahlin (Eds.). ACM, 18-32.

https://doi.org/10.1145/2517349.2522713

Viktor Vafeiadis, Thibaut Balabonski, Soham Chakraborty, Robin Morisset, and
Francesco Zappa Nardelli. 2015. Common Compiler Optimisations are Invalid
in the C11 Memory Model and what we can do about it. In Proceedings of the
42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2015, Mumbai, India, January 15-17, 2015, Sriram K. Rajamani
and David Walker (Eds.). ACM, 209-220. https://doi.org/10.1145/2676726.2676995

616

Mingyu Gao, Soham Chakraborty, and Burcu Kulahcioglu Ozkan

[49] Xinhao Yuan, Junfeng Yang, and Ronghui Gu. 2018. Partial Order Aware Concur-

[50

]

rency Sampling. In Computer Aided Verification - 30th International Conference,
CAV 2018, Held as Part of the Federated Logic Conference, FloC 2018, Oxford,
UK, July 14-17, 2018, Proceedings, Part II (Lecture Notes in Computer Science,
Vol. 10982), Hana Chockler and Georg Weissenbacher (Eds.). Springer, 317-335.
https://doi.org/10.1007/978-3-319-96142-2_20

Xinjing Zhou. 2015. Iris: A low latency asynchronous C++ logging library.
https://github.com/zxjcarrot/iris.

Received 2022-07-07; accepted 2022-09-22


https://doi.org/10.1145/2517349.2522713
https://doi.org/10.1145/2676726.2676995
https://doi.org/10.1007/978-3-319-96142-2_20
https://github.com/zxjcarrot/iris

	Abstract
	1 Introduction
	2 Background
	2.1 Weak Memory Concurrency
	2.2 PCT vs. Naive Random Testing.

	3 Overview
	3.1 A Naive Application of PCT to Weak Memory Concurrency
	3.2 Revising Concurrency Bug Depth
	3.3 PCTWM: PCT for Weak Memory

	4 Weak Memory Concurrency Model
	5 PCT for Weak Memory Programs
	5.1 Formal Definitions
	5.2 The PCTWM Algorithm
	5.3 Example Executions Generated by PCTWM
	5.4 The Probability of Detecting Bugs

	6 Experimental Evaluation
	6.1 The Effectiveness of PCTWM
	6.2 PCTWM vs C11Tester
	6.3 PCTWM vs PCT
	6.4 PCTWM vs C11Tester: Performance Overhead

	7 Related Work
	8 Conclusion
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact check-list (meta-information)
	A.3 Requirements
	A.4 Experimental Workflow
	A.5 Experiment Customization

	References

