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Abstract—
Robustness of a concurrent program ensures that its behaviors

on a weak concurrency model are indistinguishable from those
on a stronger model. Enforcing robustness is particularly useful
when porting or migrating applications between architectures.
Existing tools mostly focus on ensuring sequential consistency
(SC) robustness which is a stronger condition and may result in
unnecessary fences.

To address this gap, we analyze and enforce robustness
between weak memory models, more specifically for two main-
stream architectures: x86 and ARM (versions 7 and 8). We iden-
tify robustness conditions and develop analysis techniques that
facilitate porting an application between these architectures. To
the best of our knowledge, this is the first approach that addresses
robustness between the hardware weak memory models.

We implement our robustness checking and enforcement
procedure as a compiler pass in LLVM and experiment on a
number of standard concurrent benchmarks. In almost all cases,
our procedure terminates instantaneously and insert significantly
less fences than the naive schemes that enforce SC-robustness.

I. INTRODUCTION

Robustness analysis checks whether a program running on a
weak memory consistency model demonstrates only the behav-
iors that are allowed by a stronger model. Robust programs can
therefore be seamlessly migrated from one model to another as
far as their concurrent behaviors are concerned. If a program
is not robust, we can insert fences to enforce robustness.

Robustness analysis is especially beneficial in porting ap-
plications [1, 2] where it is crucial to preserve the observable
behaviors of a running application. For instance, consider the
porting of an application written for x86 to ARM. Since the
x86 model is stronger than the ARM models (x86 exhibits
less behavior), x86-robustness abstracts the underlying ARM
machine specification to an outside observer. Consider the
following programs where initially X = Y = 0.

X = 1;
a = Y ;

Y = 1;
b = X;

(SB)
a = X;
Y = 1;

b = Y ;
X = 1;

(LB)

Both x86 and ARM allow same set of concurrent executions
in the SB program and hence indistinguishable on x86 and
ARM. Therefore SB can be ported seamlessly between these
architectures. Now consider the porting of the LB program
from x86 to ARM. x86 disallows a = b = 1 but ARM allows
the outcome. Hence the LB program in ARM is not x86-robust.
To enforce x86-robustness we insert fences in both threads and
restrict the a = b = 1 outcome.

Checking and enforcing robustness to a stronger but non-SC
model from a weaker model can play a key role in migrat-
ing programs between architectures having weak concurrency

models. Existing SC-robustness approaches may not provide
an optimal solution as they check a stronger constraint and
hence may introduce additional fences. For example, if we
use an SC-robustness checker for SB, it identifies that the
a = b = 0 outcome is allowed on ARM but disallowed in SC.
Hence the analyzer inserts two full fences (DMB in ARMv7 and
DMBFULL in ARMv8) between the memory accesses in both
threads which are unnecessary in this case.

To address this scenario we propose robustness analysis
and enforcement between weak memory models of two main-
stream architectures: x86 and ARM (version 8 and 7). As
ARMv8 is a stronger model than ARMv7, we also study
ARMv8-robustness for ARMv7 to enable application porting
between these ARM models. We also check SC-robustness in
x86, ARMv8, ARMv7 and restrict relaxed memory behaviors.

In this paper we propose M -K robustness where M is a
stronger model than K and M can also be a non-SC model
unlike existing approaches in [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
14]. We propose the M -K robustness conditions in §III and
prove their correctness [15]. Our proposed M -K robustness
conditions ensure that if a K-consistent execution satisfies the
M -K condition then the execution is also M -consistent. We
check if certain memory access pairs are appropriately ordered
in a K-consistent execution so that the execution shows no
weaker behavior. Otherwise we insert fences to enforce order
and restrict the weaker behaviors. However, as fences are
costly, we investigate if it is possible to weaken the robustness
constraints for the memory access pairs which are on same-
location or are ordered by dependencies. We observe that these
relations suffice in x86 and ARMv8, but the results in ARMv7
are counter-intuitive.
• We note that dependency based ordering preserved-

program-order (ppo) is not strong enough to ensure robust-
ness in ARMv7. Consider the following ARMv7 program.

a = T ;
X = a;

X = 2;
b = X;
Y = b;

c = Y ;
Z = c;

Z = 1;
d = Z;
T = d;

(WP)

The execution in Fig. 4 exhibits non-SC behavior though
all the memory access pairs result in ppo relations due to
data dependencies. Even an intermediate full fence in one
of these threads cannot restrict the relaxed behavior.

• We evaluate the role of same-location program-order rela-
tion in defining robustness conditions. On ARMv7, same-
location read-write access pair is unordered (see ARM-
Weak [16] example in Fig. 2). Yet if all external-program-
orders (see §III) are on same-location or have intermediate
fences then the program exhibits only SC behavior.



In §IV we propose static analyses to check if a program is
M -K robust based on the respective conditions. Otherwise
we insert fences to enforce robustness. These analyses are
computed in polynomial time as shown in § IV-C unlike the
robustness checkers which explore program executions and are
of significantly higher computational complexity.

The robustness checking procedures analyze the programs
with thread functions. In these programs each thread func-
tion may result in any number of concurrent threads in an
execution. Thus our analysis is parameterized by the thread
functions and the analyses are applicable to all the programs
having same thread functions.

We have implemented the analyses procedures in a tool
called Fency based on LLVM [17] and have evaluated on
several well known concurrent programs [8, 14]. We compare
the SC-x86 robustness analysis of Fency to existing SC-
TSO robustness results of Trencher [8] that explore program
executions by model checkers. Yet, Fency is quite precise and
matches Trencher in most of the programs. Moreover, Fency
does not use external model checkers or SAT/SMT solvers and
therefore is significantly fast in most of the cases.

We also compare Fency to a naive fence insertion scheme
that do not use robustness analysis. Fency inserts significantly
fewer fences than the naive scheme in several benchmarks.
Moreover, empirical evaluations show that if a model W is
weaker than M then ensuring W -K robustness often requires
fewer fences than ensuring M -K robustness. Thus precise
robustness analysis is indeed beneficial for many cases instead
of using SC-robustness checkers.

Outline and Contributions. §II reviews the concurrency
models. §III proposes the M -K robustness conditions. §IV
explains our approach to check and enforce robustness. §V
examine the experimental results. §VI discusses the related
work and we conclude in §VII. The proofs and additional
details are in the supplementary material [15].

II. CONCURRENCY MODELS

In this section we review SC, x86, ARMv8, and ARMv7
concurrency. For all models we follow a common syntax.

E ::=r |v |E + E |E ∗ E |E ≤ E | · · ·
C ::=skip |C;C | t = E | t = X |X = E |RMW(X,E,E)

|Fence |RMW(X,E) |br label | br label label | · · ·
P ::=X = v; · · ·X = v; {C · · · C}

An expression E results from thread-local temporary (t), value
(v), and arithmetic operations (E). Command t = X returns
the value of a shared memory location X to a thread-local
register r and X = E writes the evaluation of expression E
to X . The RMW(X,Er, Ew) atomically compares the values
of X and Er; if equal then X is written to the value of
Ew and set r. If the value of X is not equal to the value
of Er then the RMW fails. Command RMW(X,Er) atomically
updates the value of X with the value of Er and returns the
value of X to r. A failed RMW performs only read access. A
fence orders certain memory accesses. We use conditional and

unconditional branches for program’s control flow. Finally, a
program consists of a set of initialization writes followed by
a parallel composition of thread commands. Unless otherwise
mentioned, the initializations set all memory locations to zero.

A. Program Semantics and Execution Graphs

We follow the axiomatic models for all architectures [18,
19, 20, 21, 22, 23, 24, 25, 26]. In these axiomatic models a
program’s semantics is defined by a set of consistent execu-
tions. An execution consists of a set of events and relations.
Event. An event 〈id, tid, lab〉 consists of unique identifier
id, thread identifier tid ∈ N, and a label lab based on the
respective executed memory or fence access. A label is of the
form 〈op, loc, val〉 where op, loc, and val are operation type,
location, and read or written value.
Preliminaries. Given a binary relation P on events, dom(P )
and codom(P ) are its domain and its range. P−1, P ?, P+,
and P ∗ are inverse, reflexive, transitive, and reflexive-transitive
closures of P respectively. P` denotes P related event pairs
on same locations i.e. P` , {(e, e′) ∈ P | e.loc = e′.loc}
and P6=` , P \ P` denote the P related event pairs on
different locations. imm(P ) defines the immediate P relation,
i.e. imm(P ) , ∃a, b. P (a, b) ∧ @c. P (a, c) ∧ R(c, b). P ; S
is the relational composition of the binary relations P and S.
Finally, [A] is an identity relation on a set A.

R, W, and F are the set of read, write, and fence events. The
events are related by primitive relations: strict partial order
program-order (po) captures the syntactic order among the
events, reads-from (rf) relates a write event to a read event
that justifies its read value, and strict total order coherence-
order (co) relates same-location writes.
Execution. An execution is of the form X = 〈E, po, rf, co〉
where X.E is the set of events in X. The set of po, rf, and co
relations between the events in X.E are X.po, X.rf, and X.co.
Execution X is well-formed if X.po is total in each thread and
every read reads-from some write, i.e. X.R ⊆ codom(X.rf).

We derive a number of relations from these primitive
relations. Relation rmw ⊆ imm(po) ∩ ([R]× [W])` denotes
atomic update where a read has an immediate po-successor
write on the same location. The non-rmw read and write events
are load (Ld) and store (St) events.

Ld , R \ dom(rmw) St ,W \ codom(rmw)

A successful RMW generates an rmw and a failed RMW generates
a Ld event. We use a ·b , [{a}]; imm(po); [{b}] to denote that
a and b are immediate po related events.

Relation WR denotes a write-read event pair on different
locations that does not have any intermediate rmw.

WR , ([W]; po6=`; [R]) \ (po; rmw; po)

The from-read (fr) relation relates a pair of same-location read
and write events r and w where r reads-from a write w′ which
is co-before w, that is, fr , rf−1; co. For example, in Fig. 1a
the R(X, 0) and W(X, 1) events are in fr relation.

We categorize the relations as external and internal based
on whether the events are also in po relation. Considering rf,



co, and fr relations rfi, coi, fri and rfe, coe, fre denote the
internal and external relations respectively.

rfe ,rf \ po coe ,co \ po fre ,fr \ po

rfi ,rf ∩ po coi ,co ∩ po fri ,fr ∩ po

For example, the rf and fr edges in Fig. 1a edges are rfe
and fre edges respectively. Based on the rfe, coe, and fre
we define extended-coherence-order (eco) on same location
events: eco , (rfe ∪ coe ∪ fre)+.
Consistency Axioms. An axiomatic model is defined by a set
of axioms. An execution is consistent in a model if it satisfies
all its axioms. An axiom violation can be captured by a cycle
on the respective execution graph.

B. Formal Models
Now we move to the axiomatic definitions based on var-

ious relations. We elide some definitions here due to space
constraint which we discuss in the technical appendix [15].

In these models a store access writes value v on location
x and generates an event with label W(x, v). A load access
reads value v from x and generates an event with label R(x, v).
A successful RMW on x reads value v′ and writes value v to
generate a pair of R(x, v′) and W(x, v) events that are in rmw
relation. A failed RMW generates an R(x, v′) event. The full
fences in x86, ARMv8, and ARMv7 are MFENCE, DMBFULL,
and DMB respectively. A full fence generate an event with label
F. ARM architectures also provides ISB fence to order a pair
of reads. In ARMv7 an ISB access along with control (cmp)
and jump (bc) instructions generate cmp; bc; ISB that result in
ctrlISB between a pair of read events in an execution [19]. In
ARMv8 an ISB generates an ISB event.
ARMv8 Specific Accesses. In addition, ARMv8 has synchro-
nizing memory accesses such as release write, acquire read,
and acquirePC load which are denoted by events with label
L(x, v), A(x, v), and Q(x, v). ARMv8 also provide DMBLD
and DMBST fences that generate FLD, and FST events. Finally,
L ⊆ W, A ⊆ R, Q ⊆ Ld ⊆ R, and F, FLD, FST are the set of
release, acquire, acquirePC, and full, load, store fence events.

All these models satisfy coherence and atomicity properties.
Coherence. The property enforces SC per location i.e. in an
execution all accesses on same memory locations are totally
ordered. A complete execution graph X satisfies coherence if
X.po` ∪ X.rf ∪ X.co ∪ X.fr is acyclic.
Atomicity. An execution X violates atomicity if there is an
intermediate write on same location between rmw related read
and write events. In that case X.fre(r, w) and X.coe(w′, w)
hold where r and w are X.rmw-related events and w′ is another
write on the same location as r and w.
SC. An well-formed execution X is SC when:
• (X.po ∪ X.rf ∪ X.fr ∪ X.co) is acyclic (SC)
• X.rmw ∩ (X.fre;X.coe) = ∅ (atomicity)

The executions in Fig. 1 are inconsistent in SC. For example,
the SB execution has po ∪ fr cycle. Note that coherence
constraint is included in (SC) axiom as po` ⊆ po holds
and therefore if (X.po ∪ X.rf ∪ X.fr ∪ X.co) is acyclic then
(X.po` ∪ X.rf ∪ X.fr ∪ X.co) is also acyclic.

[X = Y = 0]

W(X, 1)

R(Y, 0)

W(Y, 1)

R(X, 0)
fr

(a) SB

[X = Y = 0]

R(X, 1)

W(Y, 1)

R(Y, 1)

W(X, 1)
rf

(b) LB

W(X[1], 1) W(Y [1], 1)

R(X[1], 1)

R(Y [1], 0)

R(Y [1], 1)

R(X[1], 0)

ppo ppo

(c) IRIW

Fig. 1: Distingushing executions: SB execution is disallowed
in SC but allowed in x86 and ARM. SC and x86 disallow
LB execution but ARM models allow it. IRIW execution is
disallowed in SC, x86, ARMv8, but allowed in ARMv7.

x86. Relation x86-preserved-program-order (xppo) orders
read-read, read-write, write-write access pairs. Relation
implied signifies that an intermediate rmw or F acts as a
full fence. Based on these relations x86 defines x86-happens-
before (xhb). Finally, x86 defines its consistency constraints
for a well-formed execution.

• X.po` ∪ X.rf ∪ X.fr ∪ X.co is acyclic (sc-per-loc)
• X.rmw ∩ (X.fre;X.coe) = ∅ (atomicity)
• X.xhb is acyclic where (GHB)

– xhb , xppo ∪ implied ∪ rfe ∪ fr ∪ co where
– xppo , ((W ×W) ∪ (R×W) ∪ (R× R)) ∩ po
– implied , po; [dom(rmw)∪F]∪ [codom(rmw)∪F]; po

x86 satisfies coherence and atomicity by (sc-per-loc) and
(atomicity) axioms respectively. Axiom (GHB) ensures a
global order based on xhb relation. The model allows Fig. 1a
but disallows the executions in Figs. 1b and 1c.

ARMv8. In ARMv8 relation observed-by (obs ⊆ eco) re-
lates same-location external events. Relation atomic-ordered-
by (aob ⊆ po`) orders events based on rmw and acquire
or acquirePC events. The dependency-ordered-before (dob)
captures dependency based ordering between events e.g. data∪
addr ⊆ dob. Relation barrier-ordered-by (bob) orders events
by fences and stronger memory accesses as follows.

bob ,po; [F]; po ∪ [R]; po; [FLD]; po ∪ [W]; po; [FST]; po; [W]

∪ [L]; po; [A] ∪ po; [L] ∪ [A ∪ Q]; po ∪ po; [L]; coi

A full fence orders all accesses, a load fence orders a read
with its successors, and a store fence orders a pair of writes.
A release access is ordered with its predecessors and an
acquire or acquirePC is ordered with its successors. Release
and acquire accesses are ordered. Finally, (a, b) is ordered if
b is a write and there is an intermediate release store on the
same-location as b. Based on these relations ARMv8 defines
Ordered-before (ob) order: ob , (obs∪ dob∪ aob∪ bob)+. A
well-formed ARMv8 execution X is consistent when:

• X.po` ∪ X.rf ∪ X.co ∪ X.fr is acyclic (internal)
• X.rmw ∩ (X.fre;X.coe) = ∅ (atomicity)
• X.ob is irreflexive (external)

These axioms allow the executions in Figs. 1a and 1b but
disallows the execution in Fig. 1c by the (external) axiom.



a=X;
X=1;

Y =X; X=Y ;

(ARM-Weak)

R(X, 1)

W(X, 1)

R(X, 1)

W(Y, 1)

R(Y, 1)

W(X, 1)

po` ppo ppo

Fig. 2: Outcome a = 1 is allowed in ARMv7.

ARMv7. ARMv7 orders memory accesses in a thread by
preserved-program-order (ppo) based on dependencies or
fence ⊆ po; [F]; po relation. ARMv7 also defines happens-
before (ahb) and propagation (prop ⊆ R1; fence;R2) relations
that can order events across threads. Finally a well-formed
ARMv7 execution X is consistent when:
• (X.po` ∪ X.rf ∪ X.fr ∪ X.co) is acyclic. (sc-per-loc)
• X.rmw ∩ (X.fre;X.coe) = ∅ (atomicity)
• X.fre;X.prop;X.ahb∗ is irreflexive. (observation)
• (X.co ∪ X.prop) is acyclic. (propagation)
• X.ahb is acyclic. (no-thin-air)

Axiom (observation) constrains the set of writes from which
reads may read-from; if a write w is in prop; ahb∗ relation
with a same-location read r then r does not read from w′

which is co-before w. (propagation) ensures that prop does
not contradict co and (no-thin-air) constrain causality cycle.

ARMv7 allows the executions in Fig. 1 including IRIW with
a = c = 1, b = d = 0 outcome in the following program.

X[1] = 1;
a = X[1];
b = Y [a];

c = Y [1];
d = X[c];

Y [1] = 1; (IRIW)

In addition read-write accesses on same-location can be un-
ordered in ARMv7. As a result, the ARM-Weak program in
Fig. 2 has an execution with a = 1 outcome.

III. ROBUSTNESS ANALYSIS AND ENFORCEMENT

In this section we first define M -K robustness and then
propose the M -K robustness conditions.

Definition 1. A program is M -K robust if all its K-consistent
executions are also M -consistent.

Suppose a K-consistent execution X violates an axiom from
M -consistency. The violation results in a cycle in X. If the
cycle contains no po edge then it is formed by rfe, fre, and
coe edges on same location events. The cycle also violates
coherence. This is not possible as execution X is K-consistent
and all K models we are considering satisfy coherence. So the
cycle consists of a set of po-edges along with the eco edges
between them. We define these po edges as external-program-
order (epo) i.e. epo , po ∩ (codom(eco)× dom(eco)).

a

b

c

d

· · ·

. . .

p

q
epo epo epo

eco eco

ecoeco

Thus we represent an axiom violation as a (epo; eco)+ cycle
where all the epo edges on the cycle are not sufficiently
ordered. To enforce order we insert fences to strengthen these
epo edges and restrict a cycle to enforce M -K robustness.

R

R W

fre
W

R W

coe
W R

W
coe

R WW

W
fre coe

Fig. 3: Coherence ensures eco; epo` ∪ epo`; eco ⊆ eco.

Theorem 1. A program P is M -K robust if in all its K-
consistent execution X, X.epo ⊆ X.R holds where R is defined
as M -K condition as follows.

(SC-x86) xppo ∪ po` ∪ implied; po?

(SC-ARMv8) po` ∪ (aob ∪ dob ∪ bob)+

(x86-ARMv8) po` ∪ (aob ∪ bob ∪ dob)+ ∪WR

(SC-ARMv7) po` ∪ fence

(x86-ARMv7) po` ∪ fence ∪WR

(ARMv8-ARMv7) po` ∪ [W]; po ∪ fence

Next, we explain the M -K conditions for the concurrency
models. The correctness proofs for these robustness conditions
are in the technical appendix [15].

A. Robustness of x86 Programs

From the SC-x86 condition in Theorem 1, relation xppo
orders read-read, read-write, and write-write pairs. So if an
x86 execution violates SC-x86 robustness then it contains a
(epo; eco)+ cycle with one or multiple epo edges that are
in WR relation. If it is on same location then there is an
alternative (eco; epo)+ cycle as shown in Fig. 3 that also
denote the violation. The implied; po? relation can order a
write-read pair by intermediate rmw or F.

Consider the SB execution from Fig. 1a in x86. The epo
edges do not satisfy SC-x86 condition and the execution is
non-SC. If we insert fences between the store-load pairs in
each thread then the program exhibits only SC behaviors.

B. Robustness of ARMv8 Programs

SC-ARMv8 Robustness. Suppose an ARMv8 execution con-
tains a (epo; eco)+ cycle that violates SC-ARMv8 robustness.
If an epo` edge is on the cycle then as shown in Fig. 3 there
is an alternative (epo; eco)+ cycle without the edge.

Now consider an (epo; eco)+ cycle where each epo on the
cycle is in (aob ∪ bob ∪ dob)+ relation. In that case ((aob ∪
bob ∪ dob)+; eco)+ cycle implies an ob cycle which is not
possible as an ARMv8 consistent execution satisfies (external).
The epo edges in SB and LB executions in Fig. 1 do not
satisfy the SC-ARMv8 condition. The executions are allowed
in ARMv8 but not in SC.

x86-ARMv8 Robustness. The x86-ARMv8 robustness con-
dition orders all epo relations except WR pairs as WR is also
unordered in x86. Hence an ARMv8 execution exhibits only
x86 behavior if the x86-ARMv8 condition holds. Consider the
SB execution from Fig. 1a in ARMv8; both the epo edges are
also in WR and the execution is x86 consistent.



R(T, 1)

W(X, 1)

W(X, 2)

R(X, 2)

W(Y, 2)

R(Y, 2)

W(Z, 2)

W(Z, 1)

R(Z, 1)

W(T, 1)

Fig. 4: ARMv7 allows the execution of the WP program.

C. Robustness of ARMv7 Programs

SC-ARMv7 Robustness. The ARMv7 model uses po` and
fence relations to order epo edges for SC-ARMv7 robustness.

The ppo and po` do not guarantee SC-ARMv7 robustness
as shown in the execution in Fig. 2. If we insert fences in
the second and third threads the execution is disallowed in
ARMv7 and the resulting program is SC-ARMv7 robust.

Moreover, ppo relations in all epo edges do not ensure
SC behavior in an execution. For instance, the WP program
execution in Fig. 4 is non-SC even though the epo edges are
ppo-ordered. Note that, even if we insert an intermediate DMB
in one of the threads the cycle is still possible in ARMv7.

x86-ARMv7 Robustness. To ensure x86-robustness, ARMv7
orders all epo relations except write-read pairs. Consider the
SB program execution in Fig. 1a where the epo edges are WR
pairs and the execution is consistent in both ARMv7 and x86.

ARMv8-ARMv7 Robustness. ARMv8-ARMv7 robustness
requires to order all epo6=` relations except write-read and
write-write pairs. In this case also ppo relation cannot order
epo6=` edges. Hence the cycle in the ARMv7 execution in
Fig. 4 is disallowed in ARMv8 as it is an ob cycle.

IV. CHECKING AND ENFORCING ROBUSTNESS

In this section we lift the semantic notion of M -K ro-
bustness to the program syntax and propose static analyses
to check and enforce robustness in the following steps.
1) Identify program components which may run concurrently.

We consider fork-join parallelism and identify the thread
functions where each function may create multiple threads.

2) Memory-access pair graph construction. We identify the
memory accesses in thread functions and construct a
memory-access pair graph (MPG) that captures the poten-
tial epo and eco edges in the executions.

3) Checking robustness. If an MPG contains a cycle then we
check whether each access pair on the cycle is ordered. If
so then all K-consistent execution of the program preserve
M -K robustness condition and as a result all K consistent
executions of these programs are also M consistent.

4) Enforcing robustness. If the memory access pairs on the
cycle are not ordered we insert appropriate fences between
the memory access pairs. These fences disallow these cycle
in the executions in the K consistency model and in turn
enforce M -K robustness.

A. MPG Construction

Let {f1, f2, . . . , fn} be the set of thread functions in a
program that may run in parallel. Let C = 〈V, E〉 be a control

SB2(p){
1. if (a) X = 1;
2. else Y = 1;
3. a = Y ;
4. b = X; }

· · ·
1.W(X, -)

3.R(Y, -)

2.W(Y, -)

4.R(X, -)

3.R(Y, -)

4.R(X, -)

Fig. 5: Subgraph of SB2 MPG with potential epo and eco
edges. SB2(true) || SB2(false) violates SC-x86 robustness.

flow graph (CFG) of a thread function where C.V are the
instruction nodes and C.E are the set of control flow edges.
We analyze the thread functions’ CFGs to construct an MPG.

Helper Definitions. We define following helper conditions.
• CFG(f) returns the control-flow-graph of a function f .
• mayAA(i, j) checks if i and j may access same location.
• ac(C, A) returns the primitives in C which create A events

or rmw relations i.e. ac(C, A) , {i | [[i]] ∈ A}. In this case
ac(C, rmw) returns the accesses that create RMW primitives.

• P(C, i, j) checks if there is a path from i to j on the control
flow graph C i.e. P(C, i, j) , (i, j) ∈ [C.V]; C.E+; [C.V].

• MM(C) returns the set of memory access pairs in a control
flow graph C where the second access is reachable from the
first access. These pairs depict the potential epo edges i.e.
MM(C) , {(i, j) | i, j ∈ ac(C,W ∪ R) ∧ P(C, i, j)}.

Definition 2. An MPG is of the form G = 〈V,E〉 where G.V
is the set of shared memory access pairs and G.E denote the
set of edges between the nodes. An edge from (a, b) ∈ G.V to
(c, d) ∈ G.V implies that b and c may access same location.

Procedure BuildG in Fig. 6 constructs an MPG. In
BuildG line 2-4 appends the memory access pairs from
CFG(f1),CFG(f1), . . . ,CFG(fn) to V. Line 5-8 compute the
G.E edges. An edge between (a, b) and (c, d) denotes that
mayAA(b, c) holds. Note that we also create G.E edges be-
tween access pairs from the same thread function. It is because
multiple concurrent threads may execute same thread function
and access pairs from a function may result in events which are
concurrent in an execution. In this case we effectively analyze
all programs of the form f1 || · · · f1 || · · · || fn · · · || fn.

B. Checking robustness on MPG

A cycle in MPG G implies a potential (epo; eco)+ cycle in
an execution. Cy(G) returns the set of access pairs that may
create cycle(s) in the MPG G i.e.

Cy(G) ,{n | n ∈ G.V ∧ ∃m, o ∈ G.V.

m 6= n ∧ o 6= n ∧ G.E(m,n) ∧ G.E(n, o)}

We do create any self loop in G on n. A self loop on n implies
that n may create concurrent event pair (p, q) and (r, s) in an
execution where eco(q, r) or eco(p, s) holds which implies
(p, q), (r, s) ∈ po`. However, po` is included in all M -K
robustness condition and therefore multiple event pairs from
n does not create any new robustness violation.

If Cy(G) has any unordered access pair following respective
Ord condition then we report M -K robustness violation.



example. Consider the SB2 function in Fig. 5. The program
SB2(true) || SB2(false) violates SC-x86 robustness due to an
execution where R(Y, 0) and R(X, 0) is possible in the first
and second threads respectively. We construct the MPG from
{1, 2, 3, 4} accesses. The subgraph in Fig. 5 contains a cycle
of (1, 3) and (2, 4) that depicts SC-x86 robustness violation.

1) Defining Ord Conditions

To define an Ord condition we use the following definitions.
• mustAA(i, j) checks if i and j always access same location.
• Procedure getG(i) returns the CFG C of instruction i.
• Pnf checks if there exist any path from i to j on the CFG C

without passing through a fence in F . Else in all executions
the events from i and j are ordered by a set of fences.

Pnf(C, i, j, F ) , P(〈C.V \ F, C.E \B〉, i, j)
where B = (G.V × F ) ∪ (F ×G.V)

• isW(i) and isR(i) check if the access i is write and read
respectively.

• isWR(C, i, j) checks if i and j are write-read pair which may
access different locations without any intermediate RMW. In
an execution i and j may create a WR relation.

isWR(C, i, j) ,isW(i) ∧ isR(j) ∧ ¬mustAA(i, j)

∧ ∃u (u ∈ ac(C, rmw)

∧ P(C, i, u) ∧ P(C, u, j))

x86. The Ord condition for SC-x86 robustness is as follows.

Ord(SC, x86, C, i, j) ,isR(i) ∨ isW(j) ∨mustAA(i, j)

∨ ¬Pnf(C, i, j, ac(C,F))

The isR(i) and isW(j) conditions ensure xppo relations be-
tween the events generated from i and j. mustAA(i, j) checks
if i and j generated events pairs are in epo` relation. The Pnf

condition checks if there are intermediate fences between i
and j generated events in all executions. The Ord condition is
satisfied in LB and IRIW but violated in the SB program.

In x86 a successful RMW results in rmw which acts as an
intermediate fence. But a failed RMW generates a read event
only and it does not act as a fence. Therefore an RMW operation
between a pair of memory access does not ensure that the
access pair is ordered in all execution. However, if an RMW
is used in an wait-loop where the loop terminates only when
the RMW is successful then the RMW in the wait-loop acts as a
fence in all x86 terminating executions. For these programs we
strengthen SC-x86 robustness checking condition as follows.

SOrd(SC, x86, i, j) ,isR(i) ∨ isW(j) ∨mustAA(i, j)

∨ ¬Pnf(C, i, j, ac(C,F ∪ rmw))

ARMv8(A8). isL(i), isA(i), isAQ(i) check if an access i is
a release, acquire, acquire/acquirePC respectively. isLA(i, j)
holds for a release, acquire access pair (i, j). Lcoi(i) re-
turns the set of release-writes that access same-location as

i. RA(C, i) returns the set of acquire-reads that is reachable
from i through some release-writes.

RA(C, i) ,{a | isA(a) ∧ ¬Pnf(C, i, a, ac(C, L))}
Lcoi(C, i) ,{w | isL(w) ∧mustAA(w, i)}

We now define the Ord condition for SC-ARMv8 robust-
ness where B , ac(C,F) ∪ RA(i). It results in BF =
po; [F]; po ∪ po; [L]; po[A]; po ⊆ bob that acts as a fence on
an epo. Moreover we define isRR(i, j) , isR(i) ∧ isR(j),
isRW(i, j) , isR(i)∧ isW(j), isWW(i, j) , isW(i)∧ isW(j).

Ord(SC,A8, C, i, j) , mustAA(i, j) (1)
∨(¬Pnf(C, i, j, B)) ∨ isLA(i, j) ∨ isAQ(i) ∨ isL(j) (2)
∨(isRR(i, j) ∧ ¬Pnf(C, i, j, B∪ac(C,FLD))) (3)
∨(isRW(i, j)∧¬Pnf(C, i, j, B∪ac(C,FLD)∪Lcoi(C, j))) (4)
∨(isWW(i, j)∧¬Pnf(C, i, j, B∪ac(C,FST)∪Lcoi(C, j))) (5)

The definition ensures that the generated events from i and
j are in (1) po` or in one of the following bob relations:
(2) BF ∪ [L]; po; [A] ∪ [A ∪ Q]; po ∪ po; [L], (3) BF ∪
[R]; po; [FLD]; po, (4) BF ∪ [R]; po; [FLD]; po ∪ po; [L]; coi, (5)
BF ∪[W]; po; [FST]; po; [W]∪po; [L]; coi. The overall condition
ensures SC-ARMv8 robustness. The condition is satisfied in
IRIW but violated in SB and LB.

The dob and aob relations also order memory accesses.
From the definition aob ⊆ po` which is already captured
by (1). We do not include dob in the Ord condition as
a dependency can be optimized away after the robustness
analysis which may result in a non-robust program even when
we report the original program to be robust.

Next, we define x86-ARMv8 robustness condition where an
(i, j) access pair is ordered or may generate a WR pair.

Ord(x86,A8, C, i, j) , Ord(SC,A8, C, i, j) ∨ isWR(C, i, j)

SB and IRIW satisfy the condition but LB violates it.

ARMv7(A7). We define the Ord condition to ensure the SC-
ARMv7 robustness condition in all ARMv7 executions. Then
we extend the Ord for SC-ARMv7 to define the Ord conditions
for x86-ARMv7 and ARMv8-ARMv7 robustness.

Ord(SC,A7, C, i, j) , mustAA(i, j)∨(¬Pnf(C, i, j, ac(C,F)))

Ord(x86,A7, C, i, j) , Ord(SC,A7, C, i, j)∨isWR(C, i, j)
Ord(A8,A7, C, i, j) , Ord(SC,A7, C, i, j)∨isW(i)

The memory access pairs in the LB program satisfies the
ARMv8-ARMv7, and the SB program satisfies the x86-
ARMv7, ARMv8-ARMv7 conditions.

2) Robustness Analysis and Enforcement Procedure

The MKRobust procedure in Fig. 6 checks M -K robustness
on an MPG G: (line 3) we first compute Cy(G). (line 4-7) if
an access pair (a, b) in Cy(G) is on a cycle then we check
if (a, b) is ordered by the Ord condition. (line 8) returns the
unordered memory access pairs O.

If O is empty then the program is M -K robust. Else Enforce
procedure insert appropriate fences to enforce robustness.
Procedure getF returns a fence based on the access type a and



1: procedure BuildG({f1, . . . , fn})
2: for f ∈ {f1, . . . , fn} do
3: C ← CFG(f);
4: V← V ∪MM(C);
5: for (a, b) ∈ V do
6: for (c, d) ∈ V do
7: if mayAA(b, c) then
8: E← E∪{(a, b), (c, d)};
9: return 〈V,E〉;

10: end procedure

1: procedure MKRobust(M , K, G)
2: O ← ∅;
3: AB ← Cy(G);
4: for (a, b) ∈ AB do
5: C ← getG(b);
6: if ¬Ord(M,K, C, a, b) then
7: O ← O ∪ {(a, b)};
8: return O;
9: end procedure

1: procedure Enforce(K,O)
2: H ← ∅;
3: for (a, b) ∈ O do
4: if b /∈ H then
5: f ← getF(K, a, b);
6: insertF(getG(b), a, b, f);
7: H ← H ∪ {b};
8: end procedure

G← BuildG({f1, . . . , fn}); O ← MKRobust(M,K,G); Enforce(K,O);

Fig. 6: Static M -K robustness analysis and enforcement.

1: procedure getF(K, a, b)
2: if K == x86 then return new(MFENCE);
3: if K == A7 then return new(DMB);
4: if K == A8 then
5: if isW(a) ∧ isR(b) then return new(DMBFULL);
6: if isW(a) ∧ isW(b) then return new(DMBST);
7: if isR(a) then return new(DMBLD);
8: end procedure
1: procedure insertF(C, a, b, f )
2: V ′ ← C.V ∪ {f};
3: E1 ← C.E ∪ {(f, b)}
4: E ′ ← E1 ∪ {(e, f) |C.E+(e, b)}∪{(f, e) |C.E+(b, e)}
5: return 〈V ′, E ′〉;
6: end procedure

Fig. 7: Procedure getF and insertF.

b in the memory model K. Procedure insertF inserts the fence
f between a and b. Note that one inserted fence may order
multiple access pairs. These methods are defined in Fig. 7. In
case of x86 and ARM programs we insert MFENCE and DMB
respectively. In ARMv8 we first insert DMBFULL followed by
DMBLD and then DMBST fences.

C. Complexity of Robustness

To analyze the complexity of the robustness algorithm we
analyze the main procedures: BuildG, MKRobust, and Enforce
which perform MM, Pnf , and Cy computations. Given a
program with n statements, the number of shared memory
accesses and control flow edges are bound by n and n2 re-
spectively. Hence MM contain maximum n2 elements and Pnf

computation is bound by traversing n2 edges. So procedure
BuildG constructs an MPG graph with maximum |MM |= n2

nodes and |MM |2= n4 edges. Hence Cy computation traverses
maximum n4 edges. In procedure MKRobust, for each node
in MPG, we check (i) if it is on the cycle by computing Cy (ii)
if yes then it performs Pnf computation for the memory access
pair. Hence MKRobust overall incurs n2∗(n4+n2) = n6+n4

computation. Next, procedure Enforce takes maximum n2

computation for each access pair in MM and for overall incurs

maximum n2∗ |MM |= n4 computation. Hence, the robustness
checking and enforcement computation is bounded by O(n6)
which is polynomial in terms of the program size.

V. EXPERIMENTAL EVALUATION

Implementation. We implement the robustness analysis and
enforcement techniques in Fency (for FENCe analYsis) as
LLVM compiler passes for x86, ARMv8, and ARMv7 pro-
grams. We leverage the existing analyses in LLVM. The CFG
analyses are used to define MM, Path, P , and Pnf conditions.
We define the mayAA and mustAA conditions using memory
operand type and alias analyses provided in LLVM.

We run the analyses on a MacOS machine having a 2.4GHz
8-Core Intel i9 processor with 64 GB RAM.

Benchmarks. We analyze a number of well-known concur-
rent algorithms and data structures [14, 27] including global
barrier (Barrier) construct, mutual exclusion algorithms (by
Dekker, Peterson, and Lamport), different lock algorithms
(e.g. Spinlock, Seqlock, Ticketlock), non-blocking write proto-
col (NBW), read-copy-update (RCU) programs, work-stealing
queue in Cilk, and ChaseLev dequeue. These programs
use C11 [28, 29] atomic accesses extensively. The release-
acquire(RA)/TSO/SC versions indicate the memory model for
which the respective version is developed. The number of lines
in the LLVM IR (.ll) files vary between 100-400 which indicate
the approximate size of an analyzed CFG.

Naive fence insertion scheme. We compare Fency to a naive
scheme which does not use robustness information in fence
insertion. The naive scheme works as follows.
• Eliminate existing fences in concurrent threads.
• Enforce robustness by fence insertion in concurrent threads.

– (x86) Insert MFENCE after load, store, and RMW accesses.
– (ARMv8) Insert DMBLD after non-acquire loads and
DMBFULL for other memory accesses.

– (ARMv7) Insert DMB after all memory accesses.

A. Experimental Results

In Figs. 8 and 9 we report the results of some benchmarks.
The full results are in the supplementary material [15]. For
comparison we also provide the number of fences required by



Prog.
SC-x86

result 〈sec
Trencher

result 〈sec
Barrier 6|072 〈0.005 72 〈0.004

Dekker-TSO 20|430 〈0.002 30 〈0.007
Peterson-SC 14|072 〈0.004 72 〈0.013
Lamport-SC 17|074 〈0.019 74 〈0.107

Spinlock 14|030 〈0.004 30 〈0.007
Ticketlock 12|030 〈0.004 30 〈0.006

Seqlock 7|030 〈0.004 30 〈0.582
RCU-offline 33|473 〈0.038 7- 〈0.246

Cilk-TSO 22|230 〈0.011 70 〈2.039
Cilk-SC 22|030 〈0.010 32 〈6.322

Prog. ARMv7
SC

result 〈sec
x86

result 〈sec
ARMv8

result 〈sec
Barrier 6|272 〈0.012 6|230 〈0.002 6|230 〈0.002

Dekker-TSO 20|876 〈0.003 20|876 〈0.007 20|876 〈0.009
Peterson-SC 14|0712 〈0.002 14|0710 〈0.002 14|078 〈0.003
Lamport-SC 17|7710 〈1.699 17|778 〈1.659 17|775 〈1.698

Spinlock 18|1230 〈0.141 18|12 30 〈0.133 18|1230 〈0.133
Ticketlock 14|830 〈0.025 14|830 〈0.022 14|830 〈0.023

Seqlock 9|672 〈0.006 9|672 〈0.002 9|672 〈0.002
RCU-offline 36|19717 〈0.335 36|19715 〈0.334 36|19710 〈0.339

Cilk-TSO 33|1076 〈2.455 33|1076 〈2.411 33|1076 〈2.427
Cilk-SC 33|877 〈2.445 33|877 〈2.410 33|877 〈2.411

Fig. 8: Robustness analyses and enforcement for x86 and ARMv7 programs.

the naive schemes as well as the results from state-of-the-art
x86-robustness checker Trencher [8].

Intrpreting the Results. The (SC-K) entries in the tables are
of the form (a|b(3/7) c 〈 d) where
• ‘a’: number of fences required by naive scheme.
• ‘b’: number of existing fences in the program.
• ‘c’: number of fences inserted by proposed scheme.
• ‘3/7’ symbol denotes if a program is M -K robust or not.
• ‘d’: time taken by the robustness pass in seconds.
In ARMv8 we show total number of DMB(FULL/LD/ST)
fences. We use #(a-(b+c)) less fences than the naive schemes
e.g. from Fig. 8 the Barrier program requires 6-(0+2)=4 less
fences than the naive scheme to enforce SC-x86 robustness.

For Trencher we analyze the encoded programs taken from
[14]. We report if the program is SC-x86 robust (3/7), number
of inserted fences (i.e. ‘c’) and the execution time (i.e. ‘d’).
Trencher fence insertion does not terminate for RCU-offline.

1) Checking Robustness

x86 programs. We report the SC-x86 robustness analysis
results of Fency in Fig. 8 (and in [15]) and compare the results
from Trencher. on the corresponding programs.

The SC-x86 robustness analysis in Fency is quite precise and
agrees to Trencher in all cases except Lamport-RA, Lamport-
TSO, and Cilk-SC programs. Lamport-(RA/TSO) have un-
ordered write-read pairs that generate WR relations and hence
Fency report SC-robustness violation though these access pairs
never execute concurrently in any x86 execution. Moreover, in
most cases Fency insert same number of fences as Trencher.

We note a subtle case in Cillk-SC. It has an access sequence
a = RRLX(T );WRLX(T, a-1);RRLX(H). Trencher reports SC-
violation due to the WR pair. However, LLVM combines
the load and store of T and create an atomic fetch-and-sub:
a = RRLX(T );WRLX(T, a-1)  a = fsub(T, 1). Hence the
resulting x86 program ensures SC-robustness which Fency
reports correctly.

We also note the execution time of Fency and of Trencher.
Trencher incurs significantly more time for the Seqlock, Cilk-

Prog. ARMv8
SC

result 〈sec
x86

result 〈sec
Barrier 6|272 〈0.009 6|270 〈0.007

Dekker-TSO 20|874 〈0.007 20|874 〈0.011
Peterson-SC 14|0711 〈0.001 14|0 710 〈0.001
Lamport-SC 17|779 〈0.007 17|779 〈0.008

Spinlock 18|1274 〈0.017 18|12 74 〈0.009
Ticketlock 14|872 〈0.006 14|872 〈0.007

Seqlock 9|672 〈0.002 9|6 72 〈0.005
RCU-offline 35|16717 〈0.157 35|16 719 〈0.160

Cilk-TSO 33|1077 〈0.025 33|10 77 〈0.024
Cilk-SC 33|878 〈0.011 33|878 〈0.012

Fig. 9: Robustness analyses & enforcement in ARMv8.

TSO, Cilk-SC programs and does not terminate for RCU-
offline fence insertion. Trencher exhibits comparable efficiency
in certain programs e.g. Spinlock, Ticketlock. However, in
these programs also if we increase the number of threads by
replicating the thread functions then Trencher incurs orders of
seconds to check and enforce robustness. At the same time
Trencher inserts more fences. On the other hand, the analyses
in Fency are parameterized by thread functions and therefore
are unaffected by the number of executing threads.

ARMv8 programs. In Fig. 9 (and in [15]) we report the
robustness results of the ARMv8 programs. The ARMv8
programs violate SC and x86 robustness as the programs
contain independent memory accesses on different locations
which are unordered in ARMv8.

As ARMv8 is weaker than x86, the programs (e.g. Barrier)
which violate SC-x86 robustness also violate SC-ARMv8
robustness. Moreover, there are programs which are SC-x86
robust but violates SC-ARMv8 robustness such as dekker-
TSO. These programs violate both SC-ARMv8 and x86-
ARMv8 robustness due to unordered accesses that result in
[R]; po6=`; [R] or [W]; po6=`; [W] relation in an execution. These
access pairs are ordered in x86 but not in ARMv8 and hence
violate x86-ARMv8 robustness.



Robustness of ARMv7 programs. In general the ARMv7
programs violate robustness when x86 or ARMv8 are not
robust as shown in Fig. 8 (and in [15]). However, C11
release/acquire/SC accesses which generate full fences in
ARMv7 and synchronizing accesses in ARMv8 which act as
half fences. As a result, in some programs the ARMv7 version
enforce stronger ordering than the ARMv8 version. Hence the
ARMv7 programs are robust unlike the ARMv8 programs. For
example, Consider the C11 event (without read/written values)
sequences from Spinlock and Ticketlock programs and their
C11 to ARMv8 and ARMv7 mappings [30].

R(X) ·WSC(Y ) · R(Z) 7→ R(X) · L(Y ) · R(Z) (C-v8)
R(X) ·WSC(Y ) · R(Z) 7→ R(X) · F ·W(Y ) · F · R(Z) (C-v7)

The reads are unordered in ARMv8 and may violate SC-
ARMv8. The ARMv7 event sequence is ordered by fences
that leads to SC-ARMv7 robustness.

The Barrier (and Peterson-RA-b) program violates SC-
ARMv7 due to unordered store-load pairs, but satisfies x86
and ARMv8 robustness. Some ARMv7 programs violate SC,
x86, ARMv8 robustness due to unordered read-read pairs.

2) Enforcing robustness.

In most of the programs enforcing weaker model requires less
number of inserted fences. However, certain ARMv8 programs
(e.g. lamport-SC) incur less fences to enforce SC-ARMv8 than
x86-ARMv8. Consider the ARMv8 sequence W(X) · R(X) ·
R(Y ) ·W(Y ) that may violate SC-ARMv8 and x86-ARMv8.
To ensure SC-ARMv8 we insert a DMBFULL that results in
W(X) · R(X) · F · R(Y ) · W(Y ) sequence. To ensure x86-
ARMv8 we insert a DMBLD and a DMBST to generate a W(X) ·
R(X) · FLD · R(Y ) · FST ·W(Y ) sequence.

3) Performance of Robustness Analyses

We have already compared the execution times of SC-x86
robustness analysis in Fency and Trencher. In case of ARM
program versions Fency incurs less than a second except
for ARMv7 Cilk-(TSO/SC) programs. The timings of Fency
analyses vary among different program versions. It is because
LLVM may optimize a program differently for different archi-
tectures. So the number of memory accesses (parameter ‘a’ in
Figs. 8 and 9) and the number of memory access pairs vary.
Moreover, the CFGs in different architectures also differ which
affect the Pnf and Cy computations.

VI. RELATED WORK

SC-robustness is studied against TSO [3, 4, 5, 6, 7, 8, 9, 10],
PSO [11, 12], POWER [13], and Release-Acquire [14] models
by exploring possible executions using model checking tools.
On the contrary, we analyze and transform programs as LLVM
passes without exploring program executions.

[8] check and enforce SC-robustness for parameterized
programs for any number of threads. It reduces the robustness
checking problem to parameterized reachability analysis on
possible executions. Instead, our approach is static and param-
eterized over the thread functions for any number of threads.

PORTHOS [31] checks portability of a program from one
model to another, particularly from POWER to TSO by
encoding models in SAT/SMT solvers. On the contrary, we
check robustness or portability of ARM models which are
different from POWER. In addition, our analysis enable fence
insertion to enforce robustness unlike PORTHOS.

A number of approaches [32, 8, 33, 34, 35, 18, 6, 11]
propose fence insertion to ensure SC. Among these fence
insertion schemes our approach is closer to static approaches
[34, 18, 35]. [18] use delay-set analysis to ensure SC for weak
memory programs. [35] proved that identifying minimal set of
fences is NP-hard and proposed minimal fence insertion based
on control flow analysis. Similar to [35], we analyze control
flow graph without exploring the executions.

[32] checks SC-robustness against x86 and POWER, and
restore SC by inserting lock-unlock or RMW constructs. [34]
proposed fence insertion in POWER to strengthen a program to
release/acquire semantics which has same ordering constraints
between memory accesses as TSO. On the contrary, we
propose M -K robustness; we define robustness conditions
for ARMv7 and ARMv8 programs and show that ppo is not
sufficient to enforce SC in ARMv7. Moreover, we analyze
parameterized programs unlike these approaches.

We extend abstract event graph (AEG) from [34] and pro-
pose memory pair graph in our analyses. An AEG captures the
possible execution graphs statically for a given set of threads
and statically detect possible robustness-violating cycles which
may occur in an execution. The proposed memory-access pair
graph (MPG) also considers that the program is parameterized
where each thread function may create multiple threads and
hence construct the event graph on all memory access pairs
from all threads. Then similar to AEG we statically detect
possible robustness-violating cycles on MPG. However, our
fence insertion may not be optimal; identifying optimal fence
insertion is an well studied problem [35, 18, 34] which we
will pursue in the context of M -K robustness.

VII. CONCLUSION AND FUTURE WORK

In this paper we identify robustness conditions for x86,
ARMv8, and ARMv7 relaxed memory models. Based on these
identified conditions we check M -K robustness. If robustness
is violated we insert appropriate fences to enforce robustness.
We implement our approach as LLVM compiler passes and
evaluate the efficiency on a number of well-known concurrent
algorithms and data structures.

Going forward we want to extend the analyses to other
concurrency features in x86 and ARM models [36]. We would
also like to extend these analyses to other architectures such
as RISC-V [37] and Power [38].
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