
Point-Based POMDP Solving with Factored Value Function Approximation

Tiago S. Veiga
Institute for Systems and Robotics

Instituto Superior Técnico
Universidade de Lisboa

Lisbon, Portugal
tsveiga@isr.ist.utl.pt

Matthijs T. J. Spaan
Delft University of Technology

Delft, The Netherlands
m.t.j.spaan@tudelft.nl

Pedro U. Lima
Institute for Systems and Robotics

Instituto Superior Técnico
Universidade de Lisboa

Lisbon, Portugal
pal@isr.ist.utl.pt

Abstract

Partially observable Markov decision processes
(POMDPs) provide a principled mathematical frame-
work for modeling autonomous decision-making
problems. A POMDP solution is often represented by
a value function comprised of a set of vectors. In the
case of factored models, the size of these vectors grows
exponentially with the number of state factors, leading
to scalability issues. We consider an approximate value
function representation based on a linear combination
of basis functions. In particular, we present a backup
operator that can be used in any point-based POMDP
solver. Furthermore, we show how under certain
conditions independence between observation factors
can be exploited for large computational gains. We
experimentally verify our contributions and show that
they have the potential to improve point-based methods
in policy quality and solution size.

Introduction
Partially observable Markov decision processes (POMDPs)
provide a powerful framework for planning under sensing
and actuation uncertainty, but suffer from scalability issues.
When modeling real-world problems, factored POMDP
models are often used (Boger et al. 2005; Williams and
Young 2007; Spaan, Veiga, and Lima 2010). They allow
for capturing problem structure by representing models in
a two-stage dynamic Bayesian network (Boutilier and Poole
1996; Hansen and Feng 2000). Further reductions in model
size can be obtained by representing the conditional proba-
bility tables as algebraic decision diagrams (ADDs) (Poupart
2005; Shani et al. 2008).

Structured model representations, however, do not guar-
antee any type of structure in the solution (Koller and Parr
1999). POMDP solutions are often represented as a set of
so-called α-vectors that form a piecewise linear and convex
value function. As each vector needs to span the state space,
its size grows exponentially with the number of state factors.
An ADD representation provides only partial relief, since
when each entry in an α-vector has a different value the cor-
responding ADD will consist of a full tree. Instead, in our
work we focus on value function approximation to deal with

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

large state spaces. This allows us to keep each component of
the value function small.

Our contributions in this paper are three-fold. First,
we extend a linear value function approximation scheme
(Guestrin, Koller, and Parr 2001b) for use in point-based
algorithms, a popular family of approximate POMDP al-
gorithms. An important point is that our work focuses on
optimizing a basic operation—the backup of a single belief
point—in POMDP algorithms. Hence, our advances can be
used to speed up many POMDP solvers.

Second, we consider the case of factored observations and
show how under certain conditions we can gain large com-
putational advantages. The number of observations is a ma-
jor source of computational complexity and has been largely
neglected in the literature on solving factored POMDPs.

Third, we provide the first experimental evaluation of
linear value function approximation in a POMDP context.
When compared to the fully observable setting, linear value
function approximation in POMDPs faces challenges re-
garding computation time due to the additional complexity
introduced by the observation variables. However, we exper-
imentally test each algorithmic contribution and show that
they have the potential to improve point-based methods in
policy quality and solution size.

POMDP Background
A POMDP (Kaelbling, Littman, and Cassandra 1998) can be
represented by a tuple 〈S,A,O, T,Ω, R, h, γ〉. At any time
step the environment is in a state s ∈ S, the agent takes
an action a ∈ A and receives a reward R(s, a) from the
environment as a result of this action, while the environment
switches to a new state s′ according to a known stochastic
transition model T : p(s′|s, a). After transitioning to a new
state, the agent perceives an observation o ∈ O that may be
conditional on its action, which provides information about
the state s′ through a known stochastic observation model
Ω : p(o|s′, a). The agent’s task is defined by the reward it
receives at each timestep t and its goal is to maximize its
expected long-term reward E[

∑∞
t=0 γ

tR(st, at)], where γ
is a discount rate, 0 ≤ γ < 1.

A POMDP can be transformed to a belief-state MDP in
which the agent summarizes all information about its past
using a belief vector b(s). The initial state of the system is
drawn from the initial belief b0. Every time the agent takes

Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence

2512

an action a and observes o, b is updated by Bayes’ rule:

boa(s′) =
p(o|s′, a)

p(o|a, b)
∑
s∈S

p(s′|s, a)b(s), (1)

where p(o|a, b) is a normalizing constant. In a POMDP, a
policy π can be characterized by a value function V π :
∆(S) → R, which is defined as the expected future dis-
counted reward V π(b) the agent can gather by following π
starting from belief b. The value of an optimal policy π∗ is
defined by the optimal value function V ∗:

V ∗(b) = max
a∈A

[∑
s∈S

R(s, a)b(s) + γ
∑
o∈O

p(o|b, a)V ∗(boa)
]
,

(2)
with boa given by (1).

The POMDP value function has been proven to be piece-
wise linear and convex (PWLC) for finite horizons, allow-
ing for compact representation. For the infinite-horizon case,
it can be approximated to any desired precision using a
PWLC value function. We parameterize a value function Vn
at stage n by a finite set of |S|-dimensional vectors or hyper-
planes {αkn}, indexed by k. Given a set of vectors, the value
of a belief b is given by Vn(b) = max{αk

n}k b · α
k
n.

Many of the exact and approximate algorithms exploit
the fact that the POMDP value function is PWLC. Point-
based POMDP methods (Pineau, Gordon, and Thrun 2003;
Spaan and Vlassis 2005; Kurniawati, Hsu, and Lee 2008) in
particular compute an α-vector at a belief point b with the
operator backup(b):

backup(b) = argmax
{gba}a∈A

b · gba, with (3)

gba = R(s, a) + γ
∑
o

argmax
{gkao}

b · gkao, and (4)

gkao(s) =
∑
s′

p(o|s′, a)p(s′|s, a)αkn(s′). (5)

In our work, we considered factored POMDP models that
use a two-stage dynamic Bayesian network (DBN) represen-
tation (Boutilier and Poole 1996; Hansen and Feng 2000).
Figure 1 shows an example DBN for the fire fighting prob-
lem (which we will use in our experiments). In this case the
state and observation spaces are factored as follows:

S = X1 ×X2 × . . .×Xi × . . .×XnS
, (6)

O = O1 ×O2 × . . .×Oi × . . .×OnO
, (7)

where nS are the number of state factors and nO the number
of observation factors in the model. Subsequently, rewards
can be defined over subsets of state factors:

R(S,A) =
∑
j

R(Yj , A), (8)

where Yj is a subset of the state factors that make up S. We
call the scope of a variable the set of all its parents in a DBN,
i.e., all the variables on which it is conditionally dependent.
We denote the scope of a variable Xi by Γ(Xi).

Maintaining a factorized but exact belief state is typically
not desirable for reasons of tractability, but bounded approx-
imations are possible (Boyen and Koller 1998) in which the

t t+ 1

X1 X
′

1

A1

O1

R1

X2 X ′

2

A2

O2

R2

X3 X ′

3 O3

R3

Figure 1: Two-stage DBN for the adapted fire fighting prob-
lem, where Xi = {0, 1, . . . , k− 1}; Oi = {0, 1, . . . , l− 1}.

exact belief b is approximated by the product of marginals
over individual state factors bi. This is a common approach
in factorized POMDP solving (Poupart 2005).

Linear value function approximation
As discussed in the introduction, approximating value func-
tions by linear regression has been proposed as a technique
to induce a compact representation of the value function for
factored fully observable Markov decision process (MDP)
and factored POMDP models.

Linear Value Functions in MDPs
To approximate value functions by linear regression we de-
fine the space of allowable value functions V ∈ H ⊆ R|S|
via a set of nh basis functions H = {h1, . . . , hnh

} (Tsitsik-
lis and van Roy 1996). A linear value function is a function
defined over a set of basis functions that can be written as

V(s) =

nh∑
i=1

ωihi(s) (9)

for some coefficients ω = (ω1, . . . , ωnh
). H is the linear

subspace of R|S| spanned by the basis functions H .
A factored linear value function is defined as a linear

function over the basis set {h1, . . . , hnh
}, where the scope

of each hi is restricted to some subset of variables Ci.
Guestrin, Koller, and Parr (2001a) and Guestrin et al. (2003)
present solutions in which value iteration can be imple-
mented more efficiently using factored representations. If we
see value functions as sums of functions which depend on a
restricted set of variables, then it is possible to perform value
iteration in a compact way. The Bellman recursion using a
factored representation becomes:

V n+1(x) = R(x, a) + γ
∑
i

ωni
∑
x′∈X

p(x′|x, a)hi(x). (10)

2513

The new weight vector ωn+1 is found by projecting V n+1

back onto H, which is equivalent to finding the solution of
argminωn+1 ‖

∑nh

i=1 ω
n+1
i hi(s)− V n+1‖p for any given p-

norm.

Extension to POMDPs
Linear value function approximation has been extended to
exact POMDP solving (Guestrin, Koller, and Parr 2001b).
Recall that a value function in an infinite-horizon POMDP
can be approximated arbitrarily well by a finite set of α-
vectors. The key idea is that we can approximate each vector
as a linear combination of basis functions.

In the POMDP case, we have a formulation in which the
state is represented by a factored representation x and α-
vectors are approximated by α̃-vectors, written as a linear
combination of basis functions hi:

α̃(x) =

nh∑
i=1

ωα,ihi(ci). (11)

At each value iteration step we can compute all new α-
vectors which make up the new value function V n+1 and
then project those ontoH.

To our knowledge, the POMDP extension has not been
evaluated experimentally. Furthermore, Guestrin, Koller,
and Parr (2001b) focused on exact POMDP algorithms
such as incremental pruning, which scale poorly due to the
blowup in the number of vectors.

A point-based POMDP method with linear
value function approximation

We introduce a point-based algorithm for approximate
POMDP solving that uses linear value function approxima-
tion. Recall that point-based methods compute the vector at
each point b with the operator backup(b) (3).

First, we rewrite (5) using (11):

gkao(x) =

nh∑
i=1

ωk,i
∑

x′
p(o|x′, a)p(x′|x, a)hi(x′). (12)

The newly computed gkao vectors will generally not be in
the space spanned by the basis functions. That is, we are in-
terested in finding the set of weights which gives the solution
of ωkao = argminω ‖

∑nh

i=1 ωk,ihi(ci)−gkao‖p for any given
p-norm. If we consider the infinity norm, we are able to use
factored maxnorm projection methods (Guestrin, Koller, and
Parr 2001a) to project those vectors back onto this space. In
the end, for each vector we only need to save an array of nh
values (the weights in (11)).

With this, we may easily compute gba vectors, using a lin-
ear representation for gkao and R(s, a) vectors. The opera-
tions needed to compute (4) are the inner product with a
belief point using an approximate representation, which can
be computed as follows:

b · α̃ =
∑
x∈X

nh∑
i=1

ωα,ihi(x)b(x) (13)

=

nh∑
i=1

ωα,i
∑

ci∈Ci

hi(ci)bi(ci), (14)

Algorithm 1 Point-based backup with linear value function
approximation

for all a ∈ A do {independent of b, can be cached}
ωR ← Project R(s, a) vectors toH.
for all o ∈ O do

Compute gkao vectors using (12).
ωkao ← Project gkao vectors toH.

end for
end for
for all a ∈ A do

Compute ωba vectors using (16).
end for
Find the maximizing vector backup(b) using (14).

and the sum of two vectors represented by basis functions:
nh∑
i=1

ω1,ihi(x) +

nh∑
j=1

ω2,jhj(x) =

nh∑
i=1

(ω1,i + ω2,i)hi(x).

(15)
Therefore, computing the gba vectors (4) can be performed

using solely a reduced representation with weight vectors:

ωba = ωR + γ
∑
o

argmax
ωk

ao

(
nh∑
i=1

ωkao,i
∑

ci∈Ci

hi(ci)bi(ci)

)
.

(16)
Here, ωR and ωkao represent the projections onto the space
spanned by the basis functions of, respectively, the immedi-
ate reward R(s, a) and gkao vectors which result from (12).
The inner product is performed using an approximated rep-
resentation as in (14), and summation of weight vectors as
in (15).

Algorithm 1 summarizes the steps needed to perform the
backup step for each belief point using point-based meth-
ods with linear value function approximations. In our experi-
ments, we implemented this backup operator in a straightfor-
ward point-based method called Perseus (Spaan and Vlassis
2005), but it can be used in any method that backs up beliefs.

Exploiting factored observation spaces
Let us now consider that we have an observation space rep-
resented in a factored way. Also, assume that we are able to
write the factored state space S as the cross product of sub-
sets of variables Ui. Each subset Ui contains the parents of
observation i in the DBN (that is, u′i ∈ Γ(Oi)). We will also
assume that all subsets are disjoint (∀ i, j : U ′i ∩ U ′j = ∅).
The key idea is that since basis functions are defined over
a subset of the state space we may exploit similarities be-
tween the scope of basis functions and the structure of the
DBN, although imposing some restrictions on the choice of
basis functions. Those limitations restrict the set of problem
domains to which this method can be applied.

Looking at Equation 12 we can replace both observation
and transition functions by their factored, thus independent,
representation. Additionally, we will assume that for each
problem we define nO basis functions, each one with do-
main Ui, that is, the domain of the basis functions is the

2514

same as of the observation variables. From this, we get the
following:

gkao(x) =

nO∑
i=1

ωk,i
∑

u′
1∈Γ(O1)

. . .
∑

u′
nO
∈Γ(OnO

)

p(o1|u′1, a)× . . .× p(onO
|u′nO

, a)×
× p(u′1|Γ(U ′1), a)× . . .× p(u′nO

|Γ(U ′nO
), a)

× hi(u′i). (17)
Due to the independence between variables we can rewrite
as follows:

gkao(x) =

nO∑
i=1

ωk,i

 ∑
u′1∈Γ(O1)

p(o1|u′
1, a)p(u′

1|Γ(U ′
1), a)

×
. . .×

 ∑
u′nO

∈Γ(OnO
)

p(onO |u
′
nO

, a)p(u′
nO
|Γ(U ′

nO
), a)

× hi(u′

i). (18)

In this representation, at iteration i all terms are constant
except for term i, which includes the corresponding value
of the basis function. Therefore, we can consider a set of
auxiliary vectors defined as:

daoi(x) =
∑

u′
i∈Γ(Oi)

p(oi|u′i, a)p(u′i|Γ(U ′i), a), (19)

faoi(x) =
∑

u′
i∈Γ(Oi)

p(oi|u′i, a)p(u′i|Γ(U ′i), a)hi(u′i), (20)

and replace them in (18):

gkao(x) =

nO∑
i=1

ωk,i

nO∏
j=1
j 6=i

faoi(x)daoj (x) (21)

=

nO∑
i=1

ωk,ifaoi(x)

nO∏
j=1
j 6=i

daoj (x). (22)

Given that we can precompute these auxiliary vectors prior
to performing value iteration, it is possible to reduce the
number of numerical operations needed during computation
of gkao vectors, thereby reducing the complexity of this step.

Experiments
To test the viability of the ideas presented in this paper, we
performed a series of experiments.

Experimental setup
Our experiments have been performed with a Matlab imple-
mentation of Perseus (Spaan and Vlassis 2005) using basis
functions to approximate value functions. All tests used a
belief set of 500 belief points, and results are averaged over
10 times the number of start positions runs of the algorithm
(we test all possible states as start positions). The bench-
mark problem domains for our tests are a variation of the
fire fighting problem (Oliehoek et al. 2008) and the network
management problem (Poupart 2005).

Fire fighting In this problem a number of agents must en-
sure there are no fires burning. A model of the dynamics of
the problem, represented as a dynamic Bayesian network is
shown in Figure 1. We consider a variation of the problem
with 2 agents and 3 houses. Each house can be in one of k
fire levels, Xi = {0, 1, . . . , k − 1}, and there are l obser-
vation levels at each house. In our adaptation it is possible
to observe all houses independent of the agents’ positions.
Therefore, we include one observation variable correspond-
ing to the observation of each house. Like in the original
problem the reward function is additive, that is, there is a re-
ward for each house, according to its fire level. Agents are
rewarded with −xi for each house i.

If a fire fighter is present at a house, its fire level will lower
one level with probability 0.8, while if two fire fighters go
to the same house, its fire level will certainly decrease to
the lowest level. If no fire fighter is present at a house, its
fire level will increase with probability 0.6. The observation
model for 3 fire levels per house and 2 observation levels is
shown in Figure 2a.

Network management In this domain, we consider a
model with 3 machines in a cycle configuration (Poupart
2005). At any stage, each machine may be running or down,
and a system administrator receives an observation for each
machine. If he performs an action (ping or reboot) in a par-
ticular machine he can observe if it is running with a prob-
ability 0.95, otherwise he receives a null observation. We
keep the rest of the problem parameters as in the original
problem.

Comparing basis functions
Our first test consists of running the algorithm with several
different basis functions. We present the set of basis func-
tions tested in Table 2b. The number of basis functions is
equal to the number of state factors, and vectors in table in-
dicate how much the basis valuates each value of a state fac-
tor. For instance, in the fire fighting problem with n houses
there are n basis functions, where each function is a vector
that gives a value for each possible fire level.

In Figure 2c we present the average sum of discounted re-
wards using each basis function, and in Figure 2d the total
solution size needed to represent the value function, for each
iteration step. Our results show that the choice of basis influ-
ences the method’s performance. If we remember that the re-
ward function for this problem (with 2 agents and 3 houses)
isRi(Xi) = [0 −1 −2], we can compare the performance of
each basis function with its similarities to the reward func-
tion. As Guestrin et al. (2003) stress for the MDP case, the
success of the technique depends on the ability to capture the
most important structure in the value function with a good
choice of basis functions.

In our experiments, we distinguish between those bases
which are related to the reward function, and those which
are not. For instance, all bases except for basis 1 assign a
higher value to lower fire levels, and decreasing values for
increasing fire levels. Indeed, we notice that the performance
of basis 1 is one of the worst in the test. It is also important

2515

xi p(o1|xi) p(o2|xi)
1 0.775 0.225
2 0.5 0.5
3 0.225 0.775

(a) Observation model

hi(Xi)
1 [−1 1 −1]
2 [0 −1 −2]
3 [2 1 0]
4 [2 0 −1]
5 [5 −2 −5]
6 [3 1 −1]

(b) Basis functions

0 10 20 30 40 50
−30

−25

−20

−15

−10

Value Function at Iteration n

A
v
e

ra
g

e
 S

u
m

 o
f

D
is

c
o

u
n

te
d

 R
e

w
a

rd
s

Basis1

Basis2

Basis3

Basis4

Basis5

Basis6

(c) Average sum of discounted rewards

0 10 20 30 40 50
0

100

200

300

400

500

Value Function at Iteration n

S
o

lu
to

n
 S

iz
e

 Basis1

Basis2

Basis3

Basis4

Basis5

Basis6

(d) Total # of values stored

0 200 400 600 800 1000
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

Number of states

A
v
e
ra

g
e
 t
im

e
 f
o
r

e
a
c
h
 G

A
O

 v
e
c
to

r
(s

)

Factored observations
No factored observations

(e) Factored observations (log-scale y-axis)

0 10 20 30 40 50
−30

−25

−20

−15

−10

Value Function at Iteration n

A
v
e
ra

g
e
 S

u
m

 o
f
D

is
c
o
u
n
te

d
 R

e
w

a
rd

s

Basis Functions

Flat

Symbolic

(f) Average sum of discounted rewards

0 10 20 30 40 50
0

50

100

150

200

250

300

Value Function at Iteration n

S
o
lu

to
n
 S

iz
e

Basis Functions

Flat

Symbolic

(g) Total # of values stored

Figure 2: Fire fighting problem. (a) Observation model for k = 3, l = 2. (b) Basis functions tested. (c), (d) Comparison of
different basis functions. (e) Exploiting factored observations, with increasing k but constant l. (f), (g) For k = 3 and l = 2,
comparison of different representations for V n: basis functions, flat vectors, and a symbolic (ADD) representation.

to be aware of numerical issues resulting from the choice of
basis functions. In contrast to expectation, bases 2 and 3 do
not perform well, when comparing with others in the test. In
particular, basis 2 is a direct translation of the reward func-
tion to a basis function. We note that having a value of 0 in
a basis function results in numerical issues when projecting
vectors onto the space spanned by the basis functions. Our
results indicate that it can be beneficial to develop a fully
automated way of choosing basis functions, which will need
to capture the most important structure of each problem.

Factored observations
We introduced a method to speed up computation of gkao
by exploiting a factored representation of the observation
model. In Figure 2e we compare the average computation
time for each gkao vector when using Equation 12 and Equa-
tion 22. The implementation of this test is based on the
adapted fire fighting problem. We compare different in-
stances with a constant number of observations (2 obser-
vation levels per house), while we increase the number of
states (by increasing one fire level at the time).

We conclude that there is an excellent speedup in this step
with an increasing number of states, confirming our hypoth-
esis. Since we reduce the number of operations over the state
space, its size is the most significant parameter that affects

the efficiency of speeding up this step. Therefore, the aver-
age time while exploiting factored observations using (22)
does not increase in contrast to computing the gkao vectors in
the traditional way using (12).

Comparison with other methods
We tested our method against two other point-based meth-
ods, regular Perseus (Spaan and Vlassis 2005) and Symbolic
Perseus (Poupart 2005). Perseus is a point-based POMDP
solver which uses a flat representation for its models and so-
lutions, while Symbolic Perseus uses a factored ADD repre-
sentation. We report the average sum of discounted rewards
(Figure 2f and 3a) and the solution sizes (Figure 2g and 3b)
with each method. The latter is computed as the total num-
ber of values needed to store the value function which pro-
vides a fair measure when comparing different representa-
tions. For this test we used the best basis function found in
the tests from Figure 2b (Basis 5, hi(Xi) = [5 −2 −5])
for the fire fighting problem domain, and a basis function
hi(Xi) = [−5 2] for the network management problem.

We observe that in these problem domains we can obtain
good results by using value function approximation. After
convergence, our average sum of discounted rewards is sim-
ilar to those attained by other methods, which shows that it
is possible to solve POMDPs with a value function based

2516

on basis functions. Also, we observe that our method con-
verges faster to a good solution: in both cases, before 10
value iteration steps, when other methods take 30 or more it-
erations to converge. In terms of solution size our representa-
tion presents a similar size as other methods when compared
at the same points. However, if we compare the sizes of so-
lutions at convergence, our method returns a smaller size.
Also, our value function representation size grows slower
than other representations when comparing in the long run.
This may be explained by noting that we are projecting vec-
tors onto smaller spaces (defined by the basis functions),
therefore different vectors might be projected onto the same
weights.

Our algorithm implements an extra operation, when com-
pared to others, which is the projection of vectors onto the
space spanned by the basis functions. This operation re-
quires much of the computational effort in our algorithm,
even if we use methods to take advantage of factored rep-
resentations (Guestrin, Koller, and Parr 2001a). There are
two steps inside this method: building the set of constraints
and solving the resulting linear program. The former step is
the most time consuming, scaling poorly with the number of
states in each vector’s scope. When compared to MDPs, the
introduction of observation variables in POMDPs represents
an additional layer of dependencies in the DBN, thus, addi-
tional complexity. This increases the scope of vectors used
in point-based methods, in particular of the gkao vectors. In
the end, this results in worse computation times compared
to flat and Symbolic Perseus on these problem domains.

Conclusions
Planning under sensing and actuation uncertainty is a hard
problem that has been formalized in the partially observable
Markov decision process (POMDP) framework. In this pa-
per, we explored the use of linear value function approx-
imation for factored POMDPs, which had been proposed
but not tested experimentally. We extended the use of lin-
ear value function approximation for factored POMDPs to
point-based methods.

Methods based on linear value function approximation
with factored models focus on exploiting independence be-
tween state factors and on reducing complexity by using the
fact that most functions involved have restricted domains.
When comparing to implementations of linear function ap-
proximation in MDPs, however, we face challenges due to
the increased complexity that a POMDP introduces over
an MDP due to observation variables. Hence, we also pro-
posed a technique to exploit independence between observa-
tions, another major source of complexity when computing
POMDP solutions.

We presented the first experimental tests with linear value
function approximation in a POMDP context and we showed
that it is possible to successfully approximate α-vectors
through a set of basis functions. We experimentally veri-
fied our contributions by showing that using this method
has the potential to improve point-based methods in pol-
icy quality and solution size. Our results show that we can
get faster convergence with our approach, while having a

0 20 40 60 80 100
−10

−5

0

5

10

15

Value Function at Iteration n

A
v
e

ra
g

e
 S

u
m

 o
f

D
is

c
o

u
n

te
d

 R
e

w
a

rd
s

Basis Functions

Flat

Symbolic

(a) Average sum of discounted rewards

0 20 40 60 80 100
0

50

100

150

200

250

300

Value Function at Iteration n

S
o
lu

to
n
 S

iz
e

Basis Functions

Flat

Symbolic

(b) Total # of values stored

Figure 3: Network management problem with 3 machines.
Comparison of different representations for V n: basis func-
tions, flat vectors, and a symbolic (ADD) representation.

smaller value function representation at the point of con-
vergence. Projecting vectors onto the space spanned by the
basis functions forms a bottleneck, however, resulting in
worse computation times. On the other hand, under certain
assumptions, exploiting independence between observation
factors results in speedups of several orders of magnitudes.

Future improvements might consider to scale our algo-
rithm and improve its efficiency and computation times
compared to methods which use a full representation for the
value function. We might further exploit factored observa-
tion spaces not only to speed up computation of gkao vec-
tors, but also to reduce the number of vectors evaluated at
each step. Note that the number of vectors computed and
evaluated is still directly proportional to the full observa-
tion space size and that factored representations might also
be exploited in this step. Finally, the choice of basis func-
tions is not straightforward but is crucial to the success of
the methods discussed in this paper. For now it is the task of
the system designer to choose the basis functions, but further
developments to automate the choice of basis may improve
performance.

2517

Acknowledgments
This work was partially supported by Fundação
para a Ciência e a Tecnologia (FCT) through grant
SFRH/BD/70559/2010 (T.V.), as well as by strategic project
PEst-OE/EEI/LA0009/2013.

References
Boger, J.; Poupart, P.; Hoey, J.; Boutilier, C.; Fernie, G.; and
Mihailidis, A. 2005. A decision-theoretic approach to task
assistance for persons with dementia. In Proc. Int. Joint
Conf. on Artificial Intelligence.
Boutilier, C., and Poole, D. 1996. Computing optimal poli-
cies for partially observable decision processes using com-
pact representations. In Proceedings of the Thirteenth Na-
tional Conference on Artificial Intelligence.
Boyen, X., and Koller, D. 1998. Tractable inference for
complex stochastic processes. In Proc. Uncertainty in Arti-
ficial Intelligence, 33–42.
Guestrin, C.; Koller, D.; Parr, R.; and Venkataraman, S.
2003. Efficient solution algorithms for factored MDPs. Jour-
nal of Artificial Intelligence Research 19(1):399–468.
Guestrin, C.; Koller, D.; and Parr, R. 2001a. Max-norm
projections for factored MDPs. In Proc. Int. Joint Conf. on
Artificial Intelligence, 673–682.
Guestrin, C.; Koller, D.; and Parr, R. 2001b. Solving fac-
tored POMDPs with linear value functions. In Proceedings
IJCAI-01 Workshop on Planning under Uncertainty and In-
complete Information.
Hansen, E. A., and Feng, Z. 2000. Dynamic programming
for POMDPs using a factored state representation. In Int.
Conf. on Artificial Intelligence Planning and Scheduling.
Kaelbling, L. P.; Littman, M. L.; and Cassandra, A. R. 1998.
Planning and acting in partially observable stochastic do-
mains. Artificial Intelligence 101:99–134.
Koller, D., and Parr, R. 1999. Computing factored value
functions for policies in structured MDPs. In Proc. Int. Joint
Conf. on Artificial Intelligence, 1332–1339.
Kurniawati, H.; Hsu, D.; and Lee, W. 2008. SARSOP: Ef-
ficient point-based POMDP planning by approximating op-
timally reachable belief spaces. In Proc. Robotics: Science
and Systems.
Oliehoek, F. A.; Spaan, M. T. J.; Whiteson, S.; and Vlas-
sis, N. 2008. Exploiting locality of interaction in factored
Dec-POMDPs. In Proc. of Int. Conference on Autonomous
Agents and Multi Agent Systems.
Pineau, J.; Gordon, G.; and Thrun, S. 2003. Point-based
value iteration: An anytime algorithm for POMDPs. In Proc.
Int. Joint Conf. on Artificial Intelligence.
Poupart, P. 2005. Exploiting Structure to Efficiently Solve
Large Scale Partially Observable Markov Decision Pro-
cesses. Ph.D. Dissertation, University of Toronto.
Shani, G.; Poupart, P.; Brafman, R. I.; and Shimony, S. E.
2008. Efficient ADD operations for point-based algorithms.
In Proc. Int. Conf. on Automated Planning and Scheduling.

Spaan, M. T. J., and Vlassis, N. 2005. Perseus: Randomized
point-based value iteration for POMDPs. Journal of Artifi-
cial Intelligence Research 24:195–220.
Spaan, M. T. J.; Veiga, T. S.; and Lima, P. U. 2010. Ac-
tive cooperative perception in network robot systems using
POMDPs. In Proc. International Conference on Intelligent
Robots and Systems, 4800–4805.
Tsitsiklis, J. N., and van Roy, B. 1996. Feature-based meth-
ods for large scale dynamic programming. Machine Learn-
ing 22(1-3):59–94.
Williams, J. D., and Young, S. 2007. Partially observable
Markov decision processes for spoken dialog systems. Com-
puter Speech and Language 21(2):393–422.

2518

