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Abstract—We consider the problem of task assignment and at hand, but instead are obtained naturally from the re-
execution in multirobot systems, by proposing a procedure for quirements of the tasks. In this paper, tasks are defined
bid estimation in auction protocols. Auctions are of interest and solved using Partially Observable Markov Decision

to multirobot systems because they provide a flexible way to
coordinate the assignment of tasks to robots. The main idea is Processes (POMDPs) [10]. POMDPs form a general and

to exploit task execution controllers that rely on the availability ~Powerful mathematical basis for planning under unceryaint
of value functions. These provide a natural way to obtain the and their use in mobile robotic applications has increased i
oo bid estimation procedures in common use. The Partialy oo umes [211, [20]
oc bi . ;
Observable Markov Decision Process (POMDP) framework is fraﬁgxgrkspﬁﬁtjec?/ljlu:r}ﬂn(f':if))rl\]/lsDFr)(:qu?:: d ?grzgﬁr;ligt?%
used to compute policies for the execution of tasks by each =~ "'~ : ’ >
agent, with the task bid values obtained directly from the bids in auctions, are readily available when the executfon o
respective value functions. Several simulation examples are tasks is formulated with POMDPs. The coordination among
presentgd fo.r. an urbar) surveillance environment, illustrating the different robots is achieved by the auction protocol
the applicability of our ideas. because it computes the optimal task assignment given the
individual fitness values. As a result, the POMDP problems
have much smaller dimensions since full joint planning is no
We consider the problem of the assignment and executis@¢cessary. Although our focus is not on efficient POMDP
of tasks in multirobot systems. Auction protocols for comapu solving, avoiding POMDP models that are exponentially
ing the assignment of tasks are commonly used in multirobsized in the number of robots greatly improves scalability.
systems [4]. The main advantages of these protocols areWe demonstrate our ideas in a simulation of an active
their robustness to individual agent failures and the reduc surveillance system, illustrating the benefits of comunin
bandwidth requirements [6]. Another advantage is that theOMDPs and auction protocols, as well as showing the limits
assignment solution is computed in a distributed mannekr, awf centralized POMDP solutions.
thus can be used by agents with low computational resources.The remainder of this paper is organized as follows.
A crucial challenge in auction protocols is how to estimat&ection Il presents an overview of the proposed approach.
the value that each agent should bid for each task, giveihe POMDP framework is reviewed in Section IlI, and
that agents must evaluate their fitness for executing a taSlection 1V describes the auction protocol. In Section V the
using only locally available information. In mobile roboti proposed approach for the estimation of bids is proposed. In
applications, tasks often consist of the execution of a [ijth Section VI the approach is applied to an active surveillance
[4]. Thus, the bid value for each task is often a function oproblem and evaluated in simulation. Finally, in Sectior VI
the path distance, the travel time or a combination of thedbe results and future work are discussed.
measures [14]. In general, the fithess functions are heurist
and must be defined for each task, usually in an ad-hoc
manner. The problems considered in this paper are the assignment
Instead, we propose to employ the value functions used o tasks and their execution in a multirobot system. The
design of the controllers for the execution of each task. Alrst is formulated as the assignment of tasks with unknown
value function estimates the benefit of taking a particuladrival order. Each robot can execute only one task at the
action in a particular state, given the long-term objectivéme, although it can be interrupted to begin the execution
of executing a task. The fitness of an agent to execute 04 another. It is assumed that communication and hardware
task, given the state of the environment, is thus obtaind@ilures may occur and consequently, the number of avail-
directly from the value functions. The main advantage igble mobile robots at any given instant is not known. The
that the bid functions are not tailored for the applicatioffomputation of the assignment solution when the order of
task arrivals is known and no failures occur is NP-hard
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Arrival of tasks Auctioneer [1l. POMDP BACKGROUND
[ Auction Protoco! We will discuss POMDP models and solution methods,
A briefly introducing some general background but focusing
v on their application to the execution of tasks by an agent.
pronreseeomsoneeos : grmmosemsoese o :| A more elaborate POMDP model description is provided
1+ POMDP Model Task A POMDP Model Task A 1+ POMDP Model Task A )
et : e : by [10], for instance.
g';'o'w[,;;;w;;;l'{;s'k'B"i i";;)'wl',;;ﬁz);;[{a;;g'i A POMDP modgls the interaction (?f an agent W!th a
L I (L ; stochastic and partially observable environment, anddt pr
L bombp Model Task . +| |+ pombpmosel Taskc + | Vides a rich mathematical framework for acting optimally in
R AR 3 [ EECIETRETTLETCERIE ' such environments. The framework is based on the assump-
Agent Agent Agent tions that at any time step the environment is in a stateS

and the actiom € A is taken by the agent. As a result of this

action, a reward-(s, a) signal is received by the agent from
Fig. 1. Diagram of proposed solution. Each agent has a POMDfemo the environment. The environment state is changed to the
for each task in parallel, but only one is active (indicatgdabsolid box). new states’, in accordance to a known stochastic transition

model p(s’|s,a). The task of an agent is defined by the
. . - . . reward it is given at each time step. The goal is to maximize
finite, and possibly distinct, set of actions and can PEELEN e long-term reward signals received. After the environime
features of interest in the environment. This problem mthetransition to the new state, an observation O is perceived
formulated as computing a controller for the execution of the agent. This is conditional on the current environment

taSI_( by the robot: The task_s are ass_um_ed to_be executed dte, and possibly the action executed, according to alknow
a single agent, without explicit coordination with the othe ochastic observation modg{o|s', a)

In this way, we avoid the severe complexity penalty involve&t Given the transition and observation models, the POMDP
when ponsidering the .fuII joint planning Pro?'em (eithercan be transformed to a belief-state MDP, Where all the
centralized or depentral|zed). The coorqlmatlon IS a,@d@ ast information of the agent is summarized using a belief
a task level, by finding the optimal assignment of 'nd'v'duasectorb(s). It represents a probability distribution ovér,
tasks to agents. , from which a Markovian signal can be derived for the
A POMDP problem is formulated and solved for each ofanning of actions. The initial state of the system is drawn
the tasks each robot can execute. The POMDPs at each agegiy the initial beliefb,, which is typically included in the

receive the same set of local observations, but agents do 4 \ipp problem formulation. Every time the actionis
share beliefs or other types of information. When a robot ig; oy by the agent and the observationis obtained, the

assigned a task, the policy of the corresponding POMDP g0 pelief is updated by Bayes' rule; for the discrete case
enabled and the others disabled. That is, the actions edcut

by the robot are those determined only by the policy of the oy _ Dlo|s',a) ,
POMDP associated with the assigned task. ba(s)) = (0la, b) > p(s'ls a)b(s), @
. . . . p ’ seS
Figure Il illustrates the proposed solution. The diagram ) ) )
is composed of a central supervisor, denotedaihetioneer wherep(ola,b) =3, cgp(ols’,a) 3o csp(s']s, a)b(s) is

and a set of robot agents. The tasks to be executed by thdormalizing constant.
agent are received by the auctioneer and are then assigned) POMDP literature, a plan is called a poliey(b) and
through an auction protocol. Although the assignment dfaps beliefs to actions. A policy can be characterized by
tasks is conducted in a centralized manner, the solution c@nvalue functionl”™ which is defined as the expected future
be extended to include multiple auctioneers, each resplensi discounted reward’" (b) the agent can gather by following
for a small group of agents [7]. Furthermore, the notiorf Starting from beliefy:
of a centralized task assignment is not crucial to the ideas
developed in this paper. Decentralized auction technigues h
(e.g., [3]) that shift the burden of a centralized auctionee V7T(b) = Er [Z’Ytr(btaﬂ—(bt))‘bo = b}v (2)
to a consensus problem could be applied as well. t=0

A related approach is the Hoplites framework [11]. How- wherer(b;, 7(b;)) = > g 7(s, m(bt))bs(s) following the
ever, it focuses more on tightly-coupled coordination $ask POMDP model as defined before s the planning horizon,
while we target more loosely coupled scenarios. Anotheand~ is a discount rate) < v < 1.
difference is that in the original work, Hoplites is applied The process of solving POMDPs optimally is hard, and
to a path-planning problem. We consider more general typ#isus algorithms that compute approximate solutions are
of tasks and also we do not plan for the joint action spacesed. Recent years have seen much progress in approximate
(as can happen in Hoplites), to avoid an exponentially sizddOMDP solving which can be used in this paper, see for
problem description. Related in spirit to our work, in [5gth instance [19], [13]. Furthermore, if a value function has
authors propose to use combinatorial auctions for resourbeen computed off-line, the on-line execution of the policy
allocation, modeling each self-interested agent using BIDPit implements is computationally cheap.



IV. AuUCTION PROTOCOL computational and communication costs. Nevertheless the

The purpose of the auction protocol is to determing{?mb'em of cqmputing the bid valugs is not .considered
the POMDP policy that each agent must execute. This I8 [12], the arrival ordgr of the tasks is known _m_advance
equivalent, in the context of this paper, to the assignme@f’d the agents’ state is known accurately. This is not the
of tasks to agents. The task generation process is assunt@g€ in this paper, where the arrival order of tasks is not
to be exogenous to the multirobot system. The execution fOWn and the agents only know their current state with
some tasks can be triggered by specific events, while othéf@Me uncertainty.
can be scheduled to be executed periodically, such as yatter
recharge operations. The tasks could also be executed upon )
request by another agent or the auctioneer. As an example/n this work we assume that the agents do not share
the auctioneer may directly receive event messages affly information among them. The main reason is to reduce
locally favor the assignment of some tasks over others. THEE nétwork bandwidth and the computational requirements,
priority of each task is obtained from the specific applimati SiNC€ the POMDP instances are smaller. It is known that

The tasks arrive at the auctioneer at any time instant, b{fYing on perfect communication can reduce the decentral-
are assigned in a bulk manner at regular intervals. It is ald6€d Planning problem to a centralized one [17], but the size
possible to start an auction round on demand, if for instanc the centralized problem still grows exponentially in the
a high-priority task is received. The auctioneer, in ordefUmber of agents. ,
to solve the task assignment problem, is only required to Another reason is that in general the agents are not
know the expected discounted reward values of the POMDBAUIred to coordinate in order to execute tasks. Conse-

task models from each agent. The auction protocol is th&fently, their POMDP models in general do not need to
designed to obtain this information. account for the beliefs and actions of other agents alth@ugh

- . ) . . could improve overall team performance. For instance,gf th
Deflnlthn 1 (Auction Protocol):The auction protocol is planned paths of two mobile robots intersect, the collision
as follows: could be avoided by sharing their beliefs. For this readads, i
1) All of the tasks are announced to the agents by thgssumed that robots have built-in low-level safety coters!
auctioneer. Since multiple independent decision makers are present
2) The agents reply with their current expected discoun the environment, the problem could be modeled as a
rewardV’f(b) for each task. Hence, this is obtained fromyecentralized POMDP (Dec-POMDP) [15]. However, given
the solutionV™ for the task's POMDP model, and the ihejr very high complexity class, current algorithms do not
agent's current belief. scale to the types of applications we are focusing on. In our
3) The assignment solution is computed by the auctionegpse, the coordination of the agents is obtained implicitly
and announced to the agents. through the auction protocol and the auctioneer; cooriinat
The main advantage of this protocol is that the auctioneés considered on the level of task assignments vs. the level
is not required to know the number of available agents asf individual agent actions, as is common in Dec-POMDPs.
their beliefs. The approach is also robust to the failure of The reward model is equal for all tasks, where the robot
agents or temporary network shortages because if an agesteives a single reward @ when it reaches the goal state.
does not offer bids, the others are still assigned taskslligin Afterwards, it is transferred to an absorbing state, in Whic
the coordination of the agents for the execution of tasks is receives a zero reward. It leaves the absorbing state only
implicitly obtained through the auction protocol. when a new task is assigned. The value functions of all
The computation of the assignment solution is performerbbots are normalized tf), 10] in order to allow the fitness
efficiently in polynomial time using the Hungarian algo-of different robots to be compared. The absorbing state is
rithm [2]. The bandwidth requirements are also low sinceequired because otherwise the POMDP values would keep
only the current expected discounted reward must be raporten rising after the robot would reach the goal state. This
to the auctioneer. It was shown in [7] that the protocol has undesirable for our approach, since we compare values
low polynomial computational and communication complexbetween different POMDPs of the robots.
ities in the number of agents and tasks. Although the value functions of the POMDPs are nor-
As a result, this approach can be applied to small ansalized, it is possible to define priorities for the tasks by
medium sized problems with tens or hundreds of agents andultiplying each of the bid values by the respective task
tasks. In contrast, the auction protocols described infi¢o priority. Since the bid values are normalized, the result is
exhibit exponential complexity. The reason is that in thesthat each bid is weighted by the respective task priority.

protocols, agents bid on bundles of tasks instead of théesing
task case of our protocol. VI. ACTIVE SURVEILLANCE SYSTEM

V. POMDPSs FOR BID ESTIMATION

Although the computational complexity is low, the solu- The presented approach is applied, in simulation, to an
tion is also sub-optimal because the arrival order of taskactive surveillance system. It is composed by a set of mobile
is not known. As was shown in [12], if the arrival order isrobots, an auctioneer and a network of cameras. These are
known for small bundles of tasks, the assignment solutiocapable of detecting, with some uncertainty, the location i
quality is improved without significant increases on thdhe environment of robots and humans. Upon the detection of
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Fig. 3. Comparing POMDP task auctions to a centralized POMiNRisnN.
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Fig. 2. Topological map of the active surveillance environtmen . . . . .
is represented in Figure 2. It was obtained from the test site

TABLE | of the URUS project [18], at the UPC campus in Barcelona,
STATE VARIABLES USED BY DIFFERENT TASKS Spain. The overall dimensions of the map are 100 by 100
_ meters and it was partitioned in smaller regions with their
Task State variables centers represented in the map.
Patrol SouthWest Robot position . . . .
Patrol NorthWest| Robot position Each of the tasks mentioned in the previous section have
Patrol NorthEast | Robot position been modeled and approximately solved a POMDP, using
Patrol SouthEast| Robot position N Symbolic Perseus [16]. The POMDP models are represented
Meet Person Robot position, person position . . .
Identify Person | Robot position, person position using two-stage dynar_n_lc Bayesian netvx{o_rks_, and the soft-
Recharge Robot position, battery level ware allows for exploiting (context-specific) independenc

between state variables. Table | lists the different state
variables for each task. We assume the surveillance cameras
a human by the cameras, the auctioneer is notified. Note tte@n localize each robot, but with a particular uncertainty.

here we present a simplified scenario, which can be extendééso each robot's movement actions are subject to noise.
easily to include more events (with different prioritieg)y  The movement actions of the robots are subject to noise and
instance the detection of fires. each movement is penalized with a negative reward @fi.

The robots have available on-board cameras, which cdi'e discount ratey is set t00.95.
recognize humans, also with some uncertainty. Each robot ] ]
can obtain its localization in the environment directlyrfro A- POMDP Auction vs. Centralized POMDP
the camera network. The on-board power supply of the To show the advantage of auctioning individual POMDP
robots is limited and must be recharged after some time hassks over executing a joint POMDP policy in a distributed
elapsed. The tasks the mobile robots can execute are thuswhy, we compared the performance in a scenario with two
identifying humans, (i) meeting a person, (iii) patrodithe robots and two patrol tasks. A model was created for the
environment and (iv) recharging their on-board battefié® joint task with state variables and observation models for
first two tasks are assigned only when a person was detectedch robot. The reward is the sum of the reward models
In these tasks the robot must approach the desired locatifst the individual tasks. The actions are now all possible
and use the on-board sensors either to identify a human @mbinations of the individual robot actions.
meet it and engage in human-robot interaction. The last two The centralized model was solved using the same parame-
task types are assigned at regular intervals and have a lg¥¢s of Symbolic Perseus, for 50 iterations. The perforraanc
priority with respect to the first two. In this manner, if nojs compared in Figure 3 with the summed performance of
events occur mobile robots can conduct patrols or recharg@ige two individual tasks, denoted by “POMDP Task auction”.
their batteries. The tasks have different priorities, fatance The control quality of each value function is determined
identifying humans is more important than the execution aémpirically by simulating the respective policy & 000
a patrol. times. Figure 3(a) plots the mean of the control quality for
A set of four robots were simulated (as a unicycle), threboth solutions, as a function of the computation time. Both
modeled after a Pioneer 3-AT robot (indicated by Pioneesolutions reach the same control quality, but the centrdliz
A, B and C), and one after an ATRVJr robot (“AtrvJr”). solution takes much longer to compute. In Figure 3(b) the
The difference between the Pioneers and the AtrvJr is thegomplexity of the value functions is plotted, measured by
maximum speed, which is respectivelyt” and1.0”*. In  the number of nodes in Symbolic Perseus algebraic decision
addition, Pioneer A has a camera with a higher resolutiotiagram representation. Since the centralized modeldeiar
than those of other robots. Consequently, this robot cahe complexity is an order of magnitude higher than the two
observe a given location from a greater distance than tledividual POMDP tasks combined.
others. In addition to the much higher computational cost, the
A topological map of the active surveillance environmententralized model requires the robots to synchronize their
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(c) An Identify person task and a Patrol task.

Fig. 4. For several experiments with different sets of taskiset assigned, we plot the POMDP value of each robot’s belief tme, using the its value
function for each task.

view of the state at each time step by sharing their locdhe “Patrol SouthEast” task, while Pioneer A gets “Patrol
observations. This tightly coupled implementation regsiir NorthWest”, Pioneer B “Patrol NorthEast”, and Pioneer C
a network with a low latency and high quality of service."Patrol SouthWest”. The task “Patrol NorthWest” is not

On the other hand, the auction protocol has a much lowdaritially assigned to the AtrvJr because the assignment is
degree of coupling and does not require a high-qualitgdetermined by maximizing the sum of all bid values and not
communication network. Of course, for tasks that requiréhe individual bids.

tight coordination, e.g., two robots carrying an objechilyj,

a centralized solution can be hard to avoid. In the second experiment, three of the robots started in
. ] ) the central node and the other(dt, 75). Initially, the three
B. POMDP Auction Simulation Results patrol tasks are requested but a recharge task is also tedues

In a first experiment, all of the robots were initially when a robots has a low battery level. Upon the detection of
positioned in the center node, located 48, 45). The robots a person, a “Meet Person” task is requested. The obtained
are requested four patrol tasks, one to each corner of the maplue functions of the robots plotted in Figure 4(b). Sirtoe t
The value functions of each robot over time are plotted inobots start with a full battery, all patrol tasks are assajn
Figure 4(a). They are updated as the state beliefs of thegob@t about 50 time units, a person was detected4a 90)
change while moving through the environment. An hysteresend the “Meet Person” task was requested. Since the other
mechanism prevented the assignment solution from changitagsks have a lower priority, Pioneer A abandoned its patrol
too often. Since it is the fastest robot, the AtrvJr robot hatask and was assigned to meet the person. At about 100 time
initially the highest value for any task. It is initially agaed units, the AtrvJr robot while moving to the patrol task goal



passed in the node containing the battery recharge stéttionthe minimum assignment delay for some task types. The
was then assigned the recharge task because the battdry leomtroller can also be used to determine which tasks to
was low and destination of the patrol task was still far.  trade with other auctioneers. Finally, we plan to extend our

In the last experiment, robots Pioneer A and B wersimulations to include more events, and we intend to apply

initially placed at(2.5,17.5) and (87.5,17.5) respectively. our techniques in a real-world setup [1].

Their value functions are plotted in Figure 4(c). The robots
were initially requested two patrols tasks, one for each
of their current locations. As a result, the robots did not[1)
move. At about 40 time units, a person was detected at
node(46,17.5) and an “Identify Person’ task was requested.
For this task, unlike the meet person, the robot must only
approach the person close enough to take a clear pictur&l
Although A is further away from the person, it has a camera,
with a higher resolution. For this reason it is assigned the
identify person task instead of Pioneer B.

From these experiments it is visible that the auction
protocol enabled the robots to coordinate their task ei@tut
without communication of their state or beliefs. The systemld]
was also able to autonomously respond to detected events
that occurred after the initial task assignment.

6
VII. CONCLUSIONS .

We presented an approach to the assignment and executipn
of tasks in a multirobot system. The motivation was to illus-
trate the benefits for multirobot systems of mixing auction[
protocols with controllers based on value functions. Awrtti
protocols enable the coordination of multiple agents in low
quality networks and provide robustness to individual agen[
failures. In this paper, we proposed a more principled way
of estimating the bid values of each agent, in lieu of the
heuristic and often ad-hoc approaches in common use.

The controllers for the execution of tasks were defined
using the POMDP framework. If suitable stochastic model&-1]
of the environment and the agent observations are avajlable
the synthesis problem can be formulated in a straightfatwar2]
mathematical manner. The combination of the two frame-
works produced a solution where the individual drawbac
are minimized. From the synthesis of controllers using
POMDP task models, the values to bid are naturally obtained
from the respective expected discounted rewards, and tHé
agent's belief is already factored into this value. As a ltesu
it is not necessary to invest additional time in the design of
bid functions for each of the agents’ tasks. Furthermore, a!
they are derived directly from the task controller, they are
likely to reflect better true bid values, compared to commonl[16]
used heuristic bid functions.

The use of an auction enabled the use of smaller POMDf7]
models than otherwise would be used if all agents and all
tasks are considered simultaneously. This is because
agents coordination is implied in the use of the auctiongrot
col and the auctioneer. Therefore, in the controller sysithe
problem the other agents and tasks can be abstracted avJ?a@J.
This is at the cost of optimality, since in practice the agent
can interfere in each others’ task execution. [20]

A direction of future research is the synthesis of a co 1]
troller for the auctioneer to determine the task prioritiEise
purpose is to maximize some performance criteria, such as

8]

] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra.
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