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Abstract
We investigate how Safe Policy Improvement (SPI)
algorithms can exploit the structure of factored
Markov decision processes when such structure is
unknown a priori. To facilitate the application of
reinforcement learning in the real world, SPI pro-
vides probabilistic guarantees that policy changes
in a running process will improve the performance
of this process. However, current SPI algorithms
have requirements that might be impractical, such
as: (i) availability of a large amount of histori-
cal data, or (ii) prior knowledge of the underlying
structure. To overcome these limitations we en-
hance a Factored SPI (FSPI) algorithm with differ-
ent structure learning methods. The resulting al-
gorithms need fewer samples to improve the pol-
icy and require weaker prior knowledge assump-
tions. In well-factorized domains, the proposed al-
gorithms improve performance significantly com-
pared to a flat SPI algorithm, demonstrating a sam-
ple complexity closer to an FSPI algorithm that
knows the structure. This indicates that the com-
bination of FSPI and structure learning algorithms
is a promising solution to real-world problems in-
volving many variables.

1 Introduction
Reinforcement Learning (RL) algorithms aim to make smart
decisions during interactions with an unknown environment.
Safe RL mitigates undesirable effects experienced during the
learning process of such algorithms [Garcı́a and Fernández,
2015]. For instance, in applications where a policy πb, called
the behavior policy, is already in use, deploying a new pol-
icy π computed by an RL algorithm might decrease the per-
formance of the system. In these situations, it is important
to provide guarantees that π is better than πb, otherwise one
would prefer to keep executing πb to avoid such risks. To do
so, a safe RL algorithm can use data collected while execut-
ing πb to compute π and estimate π’s performance.

In particular, Safe Policy Improvement (SPI) is the prob-
lem of computing a policy that is better than πb with high
confidence [Thomas et al., 2015]. In this setting, an RL algo-
rithm can either return an improved policy, which will replace

πb, or return πb, indicating that it did not find a better policy
and that πb should continue to be used. An SPI algorithm
is considered safe if it has a high probability of returning a
policy at least as good as πb.

Until recently, SPI algorithms used flat representa-
tions [Thomas et al., 2015; Petrik et al., 2016; Laroche et
al., 2019]. This limited their application since, to be reliable,
they would need a large number of samples before returning
an improved policy instead of πb. In previous work [Simão
and Spaan, 2019], we showed how SPI algorithms that use
a factored representation require fewer samples to return an
improved policy by exploiting the independence between the
variables of the problem to generalize past experiences.

Nevertheless, this factored approach assumes that the local
structure is known a priori, which can be quite impractical in
many applications. For instance, in applications with many
variables, it is difficult for an expert to provide the exact struc-
ture of the problem. Therefore, it is necessary to investigate
how to relax this assumption, without resorting to flat repre-
sentations to maintain a good sample complexity. We aim to
develop SPI algorithms that are sample efficient even when
the structure of the problem is unknown.

The problem of learning the structure has already been
investigated from different perspectives. For example, al-
gorithms have been proposed to improve exploration effi-
ciency [Strehl et al., 2007; Diuk et al., 2009] and to increase
the accuracy of off-policy evaluation methods [Hallak et al.,
2015]. These methods, however, do not consider the safety of
the learning agent. In fact, typical approaches consider “opti-
mism in the face of uncertainty”, which is highly undesirable
in a safe RL setting.

To address safety in environments with an unknown struc-
ture, we propose an SPI framework that can use different
structure learning algorithms to estimate the dynamics of the
environment. We provide two algorithms that instantiate the
new SPI framework using different structure learning algo-
rithms and prove that they have safety guarantees. Our ex-
periments compare these algorithms to an algorithm that has
access to the structure of the problem [Simão and Spaan,
2019] and to an algorithm that ignores the underlying struc-
ture [Laroche et al., 2019]. They show that, depending on the
structure learning algorithm and how well the problem can be
factorized, this framework can yield algorithms with perfor-
mance competitive to an algorithm that knows the structure.
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2 Background
In this section we review basic concepts related to Reinforce-
ment Learning and how to derive sample efficient algorithms
given different levels of prior knowledge about the structure
of the problem.

2.1 MDPs and Factored MDPs
The Markov Decision Process (MDP) [Puterman, 1994] is a
common framework to model the interaction between a deci-
sion maker (the agent) and its environment (the world). For-
mally, an MDP M is represented by a set of states of the
world S, a set of actions of the agent A, a transition func-
tion P (s′|s, a) that represents the probability of moving to
s′ ∈ S after executing a ∈ A in s ∈ S, a reward func-
tion R : S × A → R that indicates the reward obtained
after executing a ∈ A in s ∈ S, and the discount factor
γ ∈ [0, 1) that captures the agent’s preference for immedi-
ate rewards over future rewards. The solution of an MDP is a
policy π : S × A → [0, 1] that represents the behavior of the
agent. The optimal policy maximizes the sum of the expected
discounted reward V (π,M) = E[

∑∞
t=0 γ

tRt | π, S0 = s0],
whereRt is a random variable indicating the reward the agent
receives at time step t.

A sequence of interactions between the agent and
the environment is represented by an episode h =
[st, at, rt, st+1, · · · ] where at ∼ π(st) is the action applied
in the state st and rt = R(st, at) is the reward obtained
and st+1 ∼ P (· | st, at). We denote a set of episodes by
D = {hi | i ∈ [1, |D|]}.

A Factored MDP (FMDP) [Boutilier et al., 1995] is a
compact formalization of MDPs for problems where the
state space S is represented by a set of state variables
X = {X1, . . . , X|X|}, where each variable might assume
a value xi from its domain dom(Xi). Two assumptions
are commonly made that allow us to compactly represent
the transition function using Dynamic Bayesian Networks
(DBNs). First, the outcome of each variable is independent
of the outcome of the other variables:

P (s′ | s, a) =

|X|∏
i=1

P (s′[Xi] | s, a),

where s[·] denotes the value of a variable Xi (or a set of vari-
ables ∆ ⊆ X) on the s ∈ S and P (xi | s, a) is the probability
of observing xi ∈ dom(Xi) conditioned on (s, a).

Second, the dynamics of a variable Xi ∈ X for a given
action a ∈ A depend only on its parents, a subset of the vari-
ables Paa(Xi) ⊆ X . In this way, the probability distribu-
tion of each variable Xi can be conditioned only on Paa(Xi):
P (xi | s, a) = P (xi | s[Paa(Xi)], a), which yields a com-
pact representation of the transition function:

P (s′ | s, a) =

|X|∏
i=1

P (s′[Xi] | s[Paa(Xi)], a). (1)

2.2 Model-based Exploration
In this section we review sample-efficient RL algorithms, fo-
cusing on how they exploit the structure of the environment.

The Knows What It Knows (KWIK) framework was devel-
oped to help RL agents stay aware of under-explored parts of
the environment [Li et al., 2011]. A KWIK learner must only
return ε-accurate predictions with high probability 1− δ, oth-
erwise it can return “I do not know” (⊥). However, a KWIK
learner can only return ⊥ a limited number of times. This
way, a KWIK learner can be used by model-based RL algo-
rithms to learn the transition function of a flat MDP or the
components of an FMDP.

Sophisticated exploration strategies can reduce the number
of interactions necessary to find an optimal policy. R-max
is a family of model-based algorithms that quickly build an
accurate estimate of the transition function, by incentivizing
the agent to visit under-explored parts of the environment.
These algorithms use a KWIK-like method to keep track of
the set of state-action pairs that are still considered unknown.

The original R-max was proposed for flat representa-
tions [Brafman and Tennenholtz, 2002], in this case the set
of known state-action pairs is defined as follows:

Km = {(s, a) ∈ S ×A | n(s, a) ≥ m} , (2)
where m is a minimum number of observations to consider
the state-action pair (s, a) as known, and n(s, a) is the num-
ber of times (s, a) was observed. Note that the R-max algo-
rithm implicitly uses a KWIK algorithm to estimate the tran-
sition function when m is defined according to the required
precision ε and the expected level of confidence 1− δ.

Extensions of this algorithm have been proposed for
FMDPs with different assumptions regarding the prior knowl-
edge about the structure of the DBN [Guestrin et al., 2002;
Strehl, 2007; Diuk et al., 2009; Chakraborty and Stone,
2011]. In general, these extensions use a subalgorithmAXi,a

for each variable-action pair (Xi, a) ∈ X × A to estimate
the distribution of the components of the FMDP. If the sub-
algorithm is KWIK admissible, given a state s, this subalgo-
rithm must return the probability distribution of Xi if it has
a low parametric uncertainty over this distribution, otherwise
it must return ⊥. The main algorithm only consider a state-
action pair (s, a) ∈ S ×A as known, if all the subalgorithms
related to the action a consider (s, a) as known:

K = {(s, a) ∈ S ×A | AXi,a(s) 6= ⊥, ∀Xi ∈ X}. (3)
For problems where the structure of the problem is known

a priori the subalgorithm AXi,a only needs to keep track of
P̂ (Xi = xi | s[Paa(Xi)], a)1 using a maximum likelihood
estimate [Guestrin et al., 2002]. Each subalgorithm also has
a parametermi, that indicates the minimum number of obser-
vations to consider the distribution of Xi known. Therefore,
given a state s, the subalgorithm defines whether a component
is known or not as follows:

AmXi,a(s) =

{
⊥ if n(s[Paa(Xi)]) < m,

P̂ (· | s[Paa(Xi)]), otherwise,

where n(s[Paa(Xi)]) is the number of times a was executed
in states where the parents of Xi were in the same configu-
ration as in s. In the next section, we present algorithms that
can be used when the structure of the problem is unknown.

1Hereinafter, we omit the action a and the variable Xi whenever
they are in the scope of a subalgorithm AXi,a.
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2.3 Structure Learning
When the structure is unknown the subalgorithm AXi,a

needs to initially search for the set of parents Paa,Xi
. This

problem has been extensively studied [Degris et al., 2006;
Strehl et al., 2007; Diuk et al., 2009; Chakraborty and Stone,
2011]. Here we present two structure learning algorithms
with KWIK guarantees.

Given a maximum in-degree d, which bounds the size of
the set of parents Paa(Xi), these algorithms need to choose
a candidate from Comb(X, d) that contains the true set of
parents, where Comb(X, d) is the collection of subsets of X
of size d.

The Structure Learning (SL) algorithm [Strehl et al.,
2007] relies on the fact that the probability distribution of
the variable Xi is independent of non-parents given the true
parents. To choose the set of parents the SL algorithm esti-
mates the distribution for each pair of candidates (∆i,∆j) ∈
Comb(X, d) × Comb(X, d). Given a state s, this algorithm
chooses ∆i as parents if two conditions are met: (i) it has
collected enough samples of the realizations of ∆i and all the
other candidates were in the same configuration as in state s:

n(s[∆i ∪∆j ]) ≥ m, ∀∆j ∈ Comb(X, d) \ {∆i}, (4)

and (ii) the distribution estimate of all pairs of candidates
that include ∆i are similar, that is, the distribution diver-
gence between different pairs that include ∆i is smaller than
a given ε1:

‖P̂ (· | ∆i∪∆j)− P̂ (· | ∆i∪∆k)‖1 ≤ ε1, ∀j, k 6= i. (5)

In this way, given a state s, the SL algorithm returns the prob-
ability distribution of Xi if it finds a subset of variables ∆i

that satisfies both conditions:

AmXi,a(s) =


⊥ if 6 ∃∆i ∈ Comb(X, d)

s.t. ∆i |= (4) and ∆i |= (5),
P̂ (· | s[∆i ∪∆j ]) where j 6= i, otherwise.

The k-meteorologists algorithm [Diuk et al., 2009]
makes the same assumptions as the SL algorithm and initial-
izes the set of tracked candidates R with Comb(X, d). How-
ever, it relies on a different fact to find the best candidate:
the squared error of the distribution function computed ac-
cording to a candidate containing the true parents is smaller
than the one computed without the true parents. Given a tran-
sition sample (s, a, s′) ∈ S × A × S, the squared error of
the set of parents ∆ ⊆ X is given by e = (1 − P̂ (s′[Xi] |
s[∆]))2. Therefore, this algorithm keeps track of the accu-
mulated squared error for each pair of candidate parents and
their number of mismatches ci,j . After two candidates have
disagreed enough times (ci,j ≥ c), the k-meteorologists al-
gorithm discards the one with the largest accumulated er-
ror. When asked for the distribution of variable Xi for a
given state-action pair, the k-meteorologists algorithm returns
the average of of the probability distribution of the remain-
ing candidates R, if they are confident in the distribution
(n(s[∆i]) ≥ m) and if they agree on such:

∀∆i,∆j ∈ R×R : ‖P̂ (· | s[∆i])− P̂ (· | s[∆j ])‖1 < ε1;

otherwise, it returns ⊥.

Algorithm 1 Policy-based SPIBB (Πb-SPIBB)
Input: Previous experiences D
Input: Parameters ε, δ
Input: Behavior policy πb
Output: Safe Policy

1: Estimate P̂ (· | s, a), ∀(s, a) ∈ S ×A
2: m = 2

ε2 log |S||A|2
|S|

δ

3: Compute B = Km B (2)
4: Compute Πb B (7)
5: return arg maxπ∈Πb

V (π, M̂)

3 Safe Policy Improvement
Safe RL aims to develop reliable agents to be deployed in
real-world applications. In particular, when a behavior pol-
icy πb is already in execution, one must provide guarantees
that a new policy π, computed by an RL algorithm, outper-
forms πb. We consider a batch RL setting, where given πb
and a set of past interactions D collected by executing πb, the
RL algorithm needs to compute a new policy to be deployed.
Note that in this setting, the agent does not interact with the
environment during the learning process. The main concern
is to avoid returning policies that have a poor performance.

We call an RL algorithm safe if, givenD and πb, it has high
probability 1 − δ of returning a new policy π that is better
than πb:

Pr
M∼P(·|D)

(V (π,M) ≥ V (πb,M)− ζ) ≥ 1− δ,

where ζ is an admissible error and P(· | D) is the poste-
rior distribution over all possible MDPs given the batch of
previous experiences. Unfortunately, finding a policy π that
maximizes the expected value V (π,M) under the constraints
above is intractable if one does not make any assumptions
about P(· | D) [Delage and Mannor, 2010].

3.1 The SPIBB Framework
To develop tractable SPI algorithms, Laroche et al. [2019]
propose the SPI by Baseline Bootstrapping (SPIBB) criterion,
where the goal is to compute a policy that is better than the
behavior policy on the MDPs whose dynamics are close to
the estimated MDP Ξ(M̂), that is:

max
π∈Π

V (π, M̂) s.t.

∀M ′ ∈ Ξ(M̂) : V (π,M ′) ≥ V (πb,M
′)− ζ. (6)

We refer to Laroche et al. [2019] and Petrik et al. [2016] for
more details on how Ξ(M̂) is computed such that it contains
the true MDP with high probability.

To solve (6), Laroche et al. [2019] propose to bootstrap the
behavior policy in parts of the environment with high para-
metric uncertainty. These parts of the environment are repre-
sented by a set of state-action pairs B ⊆ S × A. The Pol-
icy Based SPIBB (Πb-SPIBB) algorithm solves the estimated
MDP while constraining the policies to use the same proba-
bility as the behavior policy in every bootstrapped state-action
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Algorithm 2 Factored Πb-SPIBB
Input: Previous experiences D
Input: Parameters ε, δ
Input: Behavior policy πb
Input: DBN Structure Pa
Output: Safe Policy

1: Estimate P̂ (· | Paa(Xi), a), ∀(Xi, a) ∈ X ×A
2: Compute P̂ (. | s, a), ∀(s, a) ∈ S ×A B (1)

3: Initialize ~m with mi = 2|X|2
ε2 log |Q|2

|dom(Xi)|

δ
B Q is the number of parameters of the FMDP

4: B = K~m B (3)
5: Compute Πb B (7)
6: return arg maxπ∈Πb

V (π, M̂)

pair (s, a) ∈ B. Formally, the constrained set of policies is
defined as:

Πb = {π | π(s, a) = πb(s, a) : ∀π ∈ Π, ∀(s, a) ∈ B}, (7)

and the safe policy is:

π = arg max
π∈Πb

V (π, M̂).

Algorithm 1 presents an overview of this method. Note that
computing a new policy in this framework is relatively sim-
ple and can be done using slightly adapted value iteration or
policy iteration algorithms.

3.2 The Factored SPIBB Framework
In previous work [Simão and Spaan, 2019], we show that the
Πb-SPIBB framework can be extended to factored environ-
ments. Algorithm 2 shows an overview of the Factored Πb-
SPIBB algorithm. Note that this algorithm takes as input the
structure of the DBN, represented by the set of parents of
each variable-action pair. The main enhancement of this al-
gorithm is a reduction in the number of samples required to
stop bootstrapping a state-action pair.

An important contribution of this method is to overcome
the limitation of the SPIBB framework where the probability
of taken an action a in state s would always be 0, if that prob-
ability was 0 in the behavior policy. In Factored SPIBB, the
agent can generalize past experiences to predict the outcome
of an action that was never taken.

The Factored Πb-SPIBB algorithm assumes that the struc-
ture of the FMDP is known a priori, a strong assumption that
frequently is not satisfied. In the next section we present a
method to overcome this limitation.

4 Structure Learning for Safe Policy
Improvement

In this section, we propose a more general version of the Fac-
tored SPIBB framework for problems where the structure of
the problem is unknown.

Structure Learning Πb-SPIBB keeps track of the distribu-
tion of each transition component using a separate subalgo-
rithm AXi,a, ∀(Xi, a) ∈ X × A. The subalgorithms used by
this framework can be borrowed from the factored RL liter-
ature (Section 2.3). Algorithm 3 presents an overview of the

Algorithm 3 Structure Learning Πb-SPIBB
Input: Previous experiences D
Input: Parameters ε, δ
Input: Behavior policy πb
Input: Subalgorithms A
Output: Safe Policy

1: for all (Xi, a) ∈ X ×A do
2: Initialize AXi,a with ε

|X| and δ
|X||A|

3: Present {(s, a′, s′) ∈ D | a′ = a} to AXi,a

4: end for
5: B = ∅
6: for all (s, a) ∈ S ×A do
7: if ∃Xi ∈ X : AXi,a(s) = ⊥ then
8: B = B ∪ {(s, a)}
9: P̂ (s′ | s, a) = 0, ∀s′ ∈ S

10: else
11: Pi = AXi,a(s), ∀Xi ∈ X
12: P̂ (s′ | s, a) =

∏|X|
i=1 Pi(s

′[Xi]), ∀s′ ∈ S B (1)
13: end if
14: end for
15: Compute Πb according to B B (7)
16: return arg maxπ∈Πb

V (π, M̂)

new framework. Different from the original SPIBB algorithm
(Algorithm 1), this framework takes as input a class of subal-
gorithmsA that must be chosen according to the prior knowl-
edge available. Note that if the given subalgorithm knows
the underlying structure, this algorithm would be equal to the
Factored Πb-SPIBB algorithm.

First, Algorithm 3 instantiates one subalgorithm for each
variable-action pair and presents the relevant transitions from
the batch of previous experiences D to it (lines 1-4). Next,
it estimates the transition function and, at the same time,
it builds the set of bootstrapped state-action pairs (lines 5-
14). Line 8, shows how the set of bootstrapped state-action
pairs B is constructed. For a given state-action pair (s, a),
if one of the subalgorithms related to a returns ⊥ given s
(line 7), then the pair (s, a) is added to B. Note that for these
pairs, at least one of the subalgorithms does not return a distri-
bution, therefore we assume that these state-action pairs are
absorbing. Finally, the safe policy is computed in the same
way as by the original SPIBB algorithm.

For the theoretical analysis of the proposed algorithm, we
first show that the transition function of non-bootstrapped
state-action pairs is precise with high probability.

Proposition 1. When the Structure Learning Πb-SPIBB al-
gorithm is equipped with a subalgorithm A that is KWIK-
admissible, all non-bootstrapped state-action pairs have a
transition error smaller than ε with high probability 1− δ:

Pr(∀(s, a) 6∈ B : ‖P (· | s, a)− P̂ (· | s, a)‖1 ≤ ε) ≥ 1− δ.

Proof. According to Strehl [2007, Corollary 1], if all |X| rel-
evant subalgorithms return a distribution with error smaller
than ε

|X| then the error of the estimated transition function is
smaller than ε. Using a union bound, we conclude that the
probability that there is a factor with error larger than ε

|X| is
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smaller than
∑|X||A|

1
δ

|X||A| = δ. Given that the subalgo-
rithm used is KWIK admissible, the above assumptions hold,
which concludes our proof2.

We can use Proposition 1 to show that the proposed algo-
rithm is safe.

Theorem 1. (Safe Policy Improvement of the Structure
Learning Πb-SPIBB Algorithm). Let Πb be the set of policies
under the constraint of following πb in every bootstrapped
state-action pair (s, a) ∈ B. Then, the policy πpol computed
by the Structure Learning Πb-SPIBB algorithm, is at least
a ζ-approximate safe policy improvement over πb with high
probability 1− δ, with

ζ =
4εVmax

(1− γ)
− V (πpol, M̂) + V (πb, M̂).

Proof. We use Proposition 1 (above) to replace Proposition 1
in the proof of Theorem 2 by Laroche et al. [2019].

In conclusion, the algorithm Structure Learning Πb-SPIBB
is safe when equipped with a KWIK admissible algorithm.

5 Empirical Analysis
We evaluate the Structure Learning Πb-SPIBB framework
combined with the two structure learning algorithms pre-
sented before (SL and k-meteorologists) in three domains.
The two baselines for comparison are the Factored Πb-SPIBB
algorithm [Simão and Spaan, 2019], that knows the structure
of the problem, and the (flat) Πb-SPIBB algorithm [Laroche
et al., 2019], that does not consider this structure. We also
consider an algorithm without safety guarantees, which is re-
ferred to as Factored Basic RL. This algorithm has access to
the structure of the problem and computes a greedy policy
according to an estimate of the factored transition function of
the problem.

All algorithms use a flat estimate of the transition function
and a flat Value Iteration algorithm with a discount factor of
0.99. We assume that the reward function is known in all al-
gorithms. The problems used are: (i) the Taxi domain with
a horizon of 200 steps [Dietterich, 1998], (ii) the SysAdmin
domain with 9 machines in a bidirectional ring topology and a
horizon of 40 steps [Guestrin et al., 2003], and (iii) the Stock-
-Trading domain with 3 sectors and 2 stocks per sector with
a horizon of 40 steps [Strehl et al., 2007]. We follow a setup
similar to the experiments by Laroche et al. [2019], where the
behavior policy πb is defined as a softmax over the optimal
value function. The softmax temperature is set to 2 for the
Taxi and Stock-Trading domains and to 3 for the SysAdmin
domain.

Each experiment is executed in three steps varying the
number of episodes in the batch D of previous experiences:

(i) create D by executing the behavior policy,

2This proof follows the same principle used by Li et al. [2011,
p. 413, Problem 9] to show that the output combination algorithm is
KWIK admissible. However, to prove that Factored MDPs with un-
known structure are KWIK-learnable, Li et al. [2011] use a different
algorithm that includes the action as one of the input variables.

Taxi SysAdmin Stock-Trading

Πb-SPIBB m 10.00 100.00 10.00

Factored Πb-SPIBB m 20.00 10.00 20.00

Πb-SPIBB SL m 20.00 10.00 20.00
ε1 0.01 0.20 0.30

Πb-SPIBB m 10.00 10.00 20.00
k-meteorologists ε1 0.01 0.00 0.01

c 2000.00 2000.00 300.00

Table 1: Parameters used by each algorithm

(ii) present D and πb (in the case of the safe algorithms) to
each algorithm and compute a new policy, and

(iii) estimate the performance of each new policy by averag-
ing the discounted returns of 1000 trials.

Table 1 reports the parameters used by each algorithm.
These values were chosen in order to reduce the number of
samples required to improve the policy, while keeping a safe
behavior. Figures 1 and 2 present the results. In every plot
the x-axis shows the number of trials in the batch collected
with the behavior policy. We highlight that the experiments
with different batch sizes are independent of each other, that
is, the trajectories collected where |D| = x are not related
to the trajectories collected where |D| < x. In both figures,
each column shows the results obtained in different domains:
Taxi (left), SysAdmin (middle) and Stock-Trading (right).

5.1 Searching for the Best Candidate Structure
Figure 1 shows how the estimated structure improves as
the structure learning algorithms receive more data. For
the SL algorithm it shows the number of parents missing
in the selected candidate:

∑
Xi,a∈X×A |Paa(Xi) \ ∆Xi,a|,

where ∆Xi,a is the candidate chosen by subalgorithmAXi,a.
For the k-meteorologists algorithm it shows the average num-
ber of missing parents between all remaining candidates:∑

Xi,a∈X×A

∑
∆∈RXi,a

|Paa(Xi) \∆|
|RXi,a|

,

where RXi,a is the set of remaining candidates of AXi,a.
In the Taxi domain (Figure 1 left) the overall number of

missing parents is small, which is expected since this domain
has only four variables. We note that the k-meteorologists al-
gorithm needs significantly more samples to discard the can-
didates that do not contain the true parents. That occurs be-
cause the number of mismatches (c) must be large to avoid
erroneously discarding a candidate.

In the SysAdmin domain (Figure 1 middle) and in the
Stock-Trading domain (Figure 1 right), the structure learning
algorithms exhibit a similar behavior. Both algorithms select
candidates missing many parents for small batches. How-
ever, the k-meteorologists algorithm has a sudden drop in the
number of missing parents. This is explained by the fact that
all the subalgorithms crossed the minimum number of mis-
matches when the batch is larger than a certain threshold.

We also note that the SL algorithm does not display a
monotonic improvement in these domains. This is because
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Figure 1: Structure learning error of the SL and k-meteorologists algorithms

Figure 2: Average performance of the computed policy over 50 repetitions, along with the 1% quantile and 99% quantile (shaded area)

to compute the distribution divergence of two sets of candi-
dates (5), we only consider configurations that have been ob-
served at least once. Without this measure, the SL algorithm
is not able to learn the structure of the Taxi domain, where
some configurations are never observed. Therefore, in the
SysAdmin and Stock-Trading domains, when |D| is small,
the SL algorithm ignores some of the configurations and can
improve the estimated structure. However, when |D| contains
more configurations it becomes more conservative again, re-
turning ⊥ until it gets enough data for all configurations.

5.2 Policy Improvement
Next, we evaluate the performance of the Factored Πb-SPIBB
equipped with structure learning algorithms (Figure 2). We
present the average performance of 50 repetitions and to mea-
sure the risk of the algorithms the 1%-quantile and 99%-
quantile (shaded area).

First we observe that in the Taxi domain (Figure 2 left),
the structure learning approaches are slightly more conserva-
tive than the flat Πb-SPIBB algorithm. This is not surpris-
ing, since, as pointed out by Strehl et al. [2007], a DBN is
not the ideal structure to capture the independence between
the variables of this domain. Comparing the methods using
structure learning algorithms, we see that the Factored Πb-
SPIBB SL algorithm requires less samples to exceed the per-
formance of the behavior policy than the Factored Πb-SPIBB
k-meteorologists algorithm. This is because, as mentioned
before, the k-meteorologists algorithm requires a large num-
ber of mismatches to discard a candidate, while the SL algo-
rithm can choose the best candidate with fewer samples.

The advantages of using a structure learning algorithm are
more prominent in well-factorized environments, where the

maximum in-degree d is much smaller than the number of
state variables. The experiments with the SysAdmin and
Stock-Trading domains illustrate this fact (Figure 2 middle
and right). We note that in the Stock-Trading domain, the
Factored Πb-SPIBB algorithm needs around 50 trajectories
to find the optimal policy while the Factored Πb-SPIBB k-
meteorologists algorithm needs 200 trajectories and the flat
Πb-SPIBB algorithm needs 10000 trajectories. Their relative
performance is similar in the SysAdmin domain. In summary,
using the k-meteorologists algorithm, Structure Learning Πb-
SPIBB demonstrates a behavior closer to the Factored Πb-
SPIBB algorithm and manages to find an improved policy
with an order of magnitude fewer samples than the flat Πb-
SPIBB algorithm.

6 Conclusions
We presented a Safe Policy Improvement framework for fac-
tored environments with unknown structure. Relaxing the
assumption that the underlying structure is known a pri-
ori makes this method applicable in a wider range of prob-
lems. Furthermore, when equipped with an efficient struc-
ture learning method, this framework can still exploit the
factored structure of the environment and typically requires
fewer samples than a flat algorithm to improve the behavior
policy.

Studying how to exploit other types of structure such as de-
cision trees and linear dynamics in this setting is a promising
line of future work.
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