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ABSTRACT
This paper proposes a novel modeling approach to prob-
lems of multiagent decision-making under partial observ-
ability, building on the framework of Multiagent Partial Ob-
servable Markov Decision Processes (MPOMDPs). Unfortu-
nately, the size of MPOMDP models (and their solutions)
grows exponentially in the number of agents, and agents
are required to act in synchrony. In the present work, we
show how these problems can be mitigated through an event-
driven, asynchronous formulation of the MPOMDP dynam-
ics.

We introduce the necessary extensions to the dynamics
and solution algorithms of standard MPOMDPs. In partic-
ular, we prove that the optimal value function in our Event-
Driven Multiagent POMDP framework is piecewise linear
and convex, allowing us to extend a standard point-based
solver to the event-driven setting. Finally, we present sim-
ulation results, showing the computational savings of our
modeling approach.

INTRODUCTION
Many multiagent applications take place in stochastic do-

mains, in which the interaction of each agent with its en-
vironment carries a measure of uncertainty with respect to
its outcome. In particular, the information that each agent
can extract from that environment may be limited or noisy.
Examples can be found in sensor networks [7], cooperative
robotics [15], and distributed manufacturing systems [12].

Most existing approaches to multiagent decision making
under uncertainty are grounded in the theory of Markov
Decision Processes (MDPs), for example Decentralized Par-
tially Observable MDPs (Dec-POMDPs) [2] which are in-
tractable without communication (NEXP-Complete); and
Multiagent MDPs (MMDPs) / POMDPs (MPOMDPs), in
which free communication between agents is assumed [3,
11]. In the latter case, the planning problem is of equiva-
lent complexity to that of solving a centralized single-agent
problem defined over the whole team [11]. We focus on sit-
uations in which it is reasonable to assume that agents can
communicate freely, but the system is partially observable,
even given the observations of all agents. This is typical, for
example, when dealing with teams of mobile robots, or in
autonomous surveillance systems. We will therefore rely on
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the MPOMDP paradigm.
Modeling a multiagent problem as an MPOMDP carries a

notable drawback: the complexity of solving an MPOMDP
model, even approximately, is exponential in the number of
agents. This undesirable property, however, follows from the
implicit assumption that agents are performing actions and
observing their outcomes in synchrony. That is to say, at
each decision step, each agent is expected to simultaneously
perform individual local actions, and to receive simultaneous
individual observation symbols.

The present work proposes Event-Driven MPOMDPs, an
alternative description of the dynamics of multiagent de-
cision making under uncertainty, based on the operation of
real-time discrete-event systems [5]1. In our approach, agents
must react to events, which are detected locally, and asyn-
chronously, by each agent. Through the assumption of free
communication, each local event triggers a joint observation,
which is shared by the team. Since multiple events cannot
occur simultaneously, this means that the total number of
joint observations in this model grows linearly in the number
of agents (instead of exponentially), allowing these methods
to scale better to larger scenarios, while retaining MPOMDP
functionality.

Furthermore, the processes through which events are de-
tected are considered to be susceptible to error. An agent
may signal the detection of an event which did not actually
take place (a false positive), or fail to detect a real event (a
false negative). It will be shown that the latter case, in par-
ticular, implies minimal modifications with respect to the
dynamics of a standard POMDP. We prove that the opti-
mal value function is piecewise linear and convex, allowing
us to extend a point-based solver to the event-driven setting.
Lastly, we consolidate the proposed methods through simu-
lated results, comparing the performance of our event-driven
models to that of equivalent synchronous MPOMDPs.

BACKGROUND
This section introduces the necessary background regard-

ing MPOMDPs and their solution.

Definition 1. A Multiagent Partially Observable Markov
Decision Process (MPOMDP) is a tuple 〈d,S,A,O, T,O,R〉,
where:
1Our definition and use of“events”differs from existing work
[1], and concerns different purposes. There, events model in-
terdependencies between agent policies in Dec-MDPs. Here,
events are simply state changes: the system dynamics are
driven by events.



d is the number of agents;

S = X1×X2× . . .×Xk is the state space, a discrete set of
possibilities for the state s of the process. The (joint)
state s ∈ S is a tuple of state factor assignments:
s = 〈x1, x2, . . . , xk〉, where xi ∈ Xi;

A = A1 × A2 × . . . × Ad is a set of joint actions. Each
joint action a ∈ A is a tuple of individual actions:
a = 〈a1, a2, . . . , ad〉, where ai ∈ Ai;

O = O1 ×O2 × . . .×Od is the space of joint observations
o = 〈o1, ..., od〉, where oi ∈ Oi are the individual ob-
servations of each agent.

T : S ×A×S → [0, 1] is the transition function, such that
T (s,a, s′) = Pr (s′|s,a);

O : A × S × O → [0, 1] is the observation function, such
that O(a, s′,o) = Pr (o|a, s′);

R : S × A → R is the instantaneous reward function. The
value R(s,a) represents the “reward” that the team of
agents receives for performing joint action a in state
s;

The state of the system cannot be observed directly in
an (M)POMDP, and therefore agents only have access to
probability distributions over the state space, also known as
belief states, b ∈ Π(S). The belief state at time step t, b|t,
can be computed using Bayes’ rule given the initial belief b|0
and the sequence of actions taken and observations received.
The goal of the planning problem is to maximize the ex-
pected discounted reward of a system over a given number
of decisions (or planning horizon) h. Specifically, we seek
to obtain a sequence of decision rules π = {πh−1, . . . , π0},
where πi : Π(S)→ A, which maximizes the quantity:

V πh−1(b) = E

[
h−1∑
t=0

γt
∑
s∈S

b|t(s)R(s, πh−1−t(b|t))
∣∣∣ b = b|0

]
,

(1)
where γ ∈ [0, 1] is a specified discount factor. The function
V πh−1(b) is also known as a value function for horizon h, un-
der the policy π. We will restrict our attention to optimal
value functions, V ∗n (b), for n = h− 1, . . . , 0. It is well known
that POMDP value functions are piecewise linear and con-
vex (PWLC) for h <∞, and can be arbitrarily well approx-
imated by a PWLC function if h =∞ [13]. Therefore, they
admit a compact representation:

V ∗n (b) = max
υn∈Υn

υn · b , (2)

where Υn is a set of |S|-dimensional vectors. A related con-
cept is that of Q-value functions: V ∗n = maxa∈AQ

∗
n(b,a).

These functions represent the expected value of performing
joint action a when there are n remaining decisions, and
following the optimal policy afterwards [10].

EVENT-DRIVEN MPOMDPS
In this section we propose a novel modeling approach to

multiagent decision making under partial observability. We
overview the multiagent dynamics of typical MPOMDPs,
how they affect the potential applications of the framework,
and how these limitations are addressed through an event-
driven perspective. We then formalize our proposed model.
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a2 = Spray
o2 = Fire 4
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Figure 1: A graphical representation of the dynam-
ics of a synchronous MPOMDP (a) and of an Event-
Driven MPOMDP (b). Two agents must extinguish
forest fires. In (a), agents cannot react instanta-
neously, for example, when a fire breaks out between
instants t = T1 and t = T2; In (b), at instants t = Te1
and t = Te2 , agents 1 and 2 respectively detect events,
triggering new decision episodes for the team.

Synchronous vs. Asynchronous Execution
From a planning perspective, the dynamics of a multia-

gent POMDP are a trivial extension of those of a single-
agent model: agents select an individual action based on a
joint belief state, b, according to a joint policy, π(b). In prac-
tice, however, this implies that agents must only communi-
cate their observations at the end of each decision episode,
so as not to exclude any potential information. Since, in
most cases, no agent can individually determine if a de-
cision episode has finished or not the team must operate
synchronously : taking actions and sharing observations at
a fixed rate, or at predefined time instants. However, this
means that agents can no longer react immediately to sud-
den changes in the state, which, in some cases, can be vital to
the outcome of their plan. Furthermore, there are exponen-
tially many possible combinations of individual observations
which can be shared amongst the team, which is an evident
computational drawback to any planning algorithm which
iterates over possible joint observations. The synchronous
dynamics of an MPOMDP are illustrated in Figure 1a.

We propose an alternate approach, represented in Fig-
ure 1b, that is arguably more intuitive: team decisions are
triggered by changes in the state of the system. These changes
may be detected by any agent, in the form of a characteris-
tic observation, and are promptly communicated to the rest
of the team. The detecting agent can select an appropriate
action immediately, and other agents may do so as soon as



they receive that information. In addition to preserving re-
sponsiveness, this approach implies that, as a function of
the number of agents, there are linearly many possible ob-
servations to be considered, corresponding to the sum of the
possible detections of each of them. This forms the core of
our approach.

Stochastic, Partially Observable Events
Before formally defining a model which operates according

to the requirements formulated above, we need to have a
rigorous definition of what constitutes an “event”.

Definition 2. A set E is a set of events of an MPOMDP
if and only if there is a surjective mapping Φ : S × S →
E such that if Φ(s1, s

′
1) = Φ(s2, s

′
2), then Pr(s′1 | s1,a) =

Pr(s′2 | s2,a) and Pr(o | s1,a, s
′
1) = Pr(o | s2,a, s

′
2), for every

s1, s
′
1 ∈ S, s2 6= s1, s

′
2 6= s′1 ∈ S, a ∈ A ,o ∈ O.

An event e ∈ E is said to be enabled at 〈s, a〉 if, for s′

such that e = Φ(s, s′), Pr(s′ | s, a) > 0. The set of all enabled
events in these conditions will be represented as E(s,a).

Through this definition, events are seen as abstractions to
the state transitions 〈s, s′〉 which share the same stochas-
tic properties. Their probability of occurrence can be influ-
enced locally by the actions of each agent, or cooperatively
through joint actions. In fact, since trivially Pr(s, s′|s,a) =
Pr(s′|s,a), we can also represent the transition function as
T (s,a, e) with e = Φ(s, s′). Note that, in contrast to stan-
dard POMDP models, we include both s and s′ in O as
we are interested in observing characteristics of state tran-
sitions, as opposed to characteristics of states. As such, we
have O(s,a, s′,o) = Pr(o | s,a, s′), allowing the observation
model to be indexed through events, as O(a, e,o).

Noisy event detection processes are typically characterized
through their susceptibility to false positive and false nega-
tive errors. However, in a system where decision episodes are
driven by detected events, the latter case raises a fundamen-
tal problem – if all agents fail to detect the occurrence of an
event, agents will not be able to change their actions. This
has evident implications for the correctness of the expected
value which is calculated during planning and, as such, will
be explicitly taken into account.

A Model for Event-Driven MPOMDPs
We can now formally introduce our modeling approach:

Definition 3. An Event-Driven Multiagent POMDP is
a tuple 〈d,S,A,O, E , T,O, C, R〉 where:

d,S,A, R are defined as in an MPOMDP (Definition 1);

O is a set of observations o which can be generated by the
environment upon the occurrence of a state transition. Ob-
servations are shared by agents;

E is a set of events (Definition 2);

T : S × A × E → [0, 1] is the transition function, such that
T (s,a, e) = Pr (e | s,a) for e ∈ E , s ∈ S, a ∈ A;

O : A×E×O → [0, 1] is the observation function, such that
O(a, e, o) = Pr (o |a, e) for o ∈ O, e ∈ E , a ∈ A;

C : A×O → PS(A)\∅, where PS(A) is the power set of A,
is a constraint-generating function which returns, for each
pair 〈a, o〉, a constrained action set C(a, o) ⊆ A. This set
represents the joint actions which are available to the agents
at the onset of a decision episode, given that, at the previous
step, the team of agents executed a and observed o.

The presence of the constraint function C in this defini-
tion addresses the problem of unobservable events raised be-
fore. In particular, during planning, we can model the occur-
rence of such events through token observations f such that
C(a, f) = a. These observations are never received by an
agent during plan execution (hence why they are simply to-
kens), but they force planning algorithms to select the same
action across different time steps, to account for the fact
that agents will not be able to observe the events associated
to f and change their actions accordingly.

SOLVING EVENT-DRIVEN MPOMDPS
Having defined a framework for Event-Driven MPOMDPs,

we will show in this section that these models retain the
necessary properties that allow them to be solved through
dynamic programming approaches. We will then present an
example of how to modify a typical POMDP solution algo-
rithm to allow it to provide (optimal or approximate) poli-
cies for our proposed framework.

Dynamic Programming
We can show that a value function for an Event-Driven

MPOMDP in the presence of action constraints is still PWLC,
which enables the use of dynamic programming techniques
to calculate (or approximate) an optimal policy.

Theorem 1. For an Event-Driven MPOMDP, and for
finite n, the optimal value function V ∗n can be written as:

V ∗n (b) = max
υn∈Υn

υn · b ,

where Υn is a set of |S|-dimensional vectors.

Proof. Given a constraint-generating function C, any pol-
icy in an Event-Driven MPOMDP is subject to the following
restrictions:{

πn(b|n) ∈ A if n = h
πn(b|n) ∈ C(πn+1(b|n+1), o|n+1) if n < h

,

where b|n and o|n are, respectively, the belief state and the
observation received when there are n steps remaining. Tak-
ing these restrictions into consideration, the Bellman backup
for this model can be written as:

V ∗n (b) = max
a∈A

{∑
s∈S

b(s)R(s,a) +

γ
∑

s∈S,o∈O
e∈E(s,a),

b(s)O(a, e, o)T (s,a, e) max
a′∈C(a,o)

Q∗n−1(bao ,a
′)
}
,

(3)

where bao is the updated belief state according to 〈a, o〉.
For a ∈ A, o ∈ O, let Ha

o be a |S| × |S| matrix with

[Ha
o ]i,j = Pr(si|sj ,a)Pr(o| sj ,a, si)

= T (sj ,a,Φ(sj , si))O(a,Φ(sj , si), o) .

The Bellman backup is then, in vectorial form:

V ∗n (b) =

max
a∈A

{
ra · b+ γ

∑
o∈O

1THa
o b max

a′∈C(a,o)
Q∗n−1(bao ,a

′)
}
, (4)



where ra denotes the a−th column of R(s,a). Also in this
notation, the belief update step is:

bao =
Ha
o b

1THa
o b

, (5)

where 1i = 1, i = {1 . . . |S|}.
At the final decision step, n = 0, we have that:

V ∗0 (b) = max
a∈A

ra · b, (6)

And therefore V ∗0 is clearly PWLC with Υ0 = {ra|a ∈ A}.
Inductively, at n− 1 steps-to-go:

V ∗n−1(bao) = max
υn−1∈Υn−1

υn−1 · bao .

Also, since V ∗n−1(bao) is PWLC iff Q∗n−1(bao ,a
′) is PWLC:

Q∗n−1(bao ,a
′) = max

qa
′
n−1∈K

a′
n−1

qa
′
n−1 · bao , (7)

where Ka
n is a set of |S|−dimensional vectors. Taking this

form for the Q-value, and substituting (5):

Q∗n−1(bao ,a
′) = max

qa
′
n−1∈Kn−1

(qa
′
n−1)THa

o b

1THa
o b

.

Let

q∗,a
′

n−1| b,a, o = arg max
qa
′
n−1∈Kn−1

{
(qa
′
n−1)THa

o b

}
. (8)

Then,

Q∗n−1(bao ,a
′) =

(q∗,a
′

n−1)THa
o b

1THa
o b

.

Returning to (4), and reorganizing and simplifying terms:

V ∗n (b) =

max
a∈A

{(
ra · b+ γ

∑
o∈O

1THa
o b max

a′∈C(a,o)

(q∗,a
′

n−1)THa
o b

1THa
o b

)}
= max

a∈A

{(
ra · b+ γ

∑
o∈O

max
a′∈C(a,o)

(q∗,a
′

n−1)THa
o b
)}

(9)

Therefore, V ∗n (b) = max
υn∈Υn

υn · b, with

υn = ra +
(
γ
∑
o∈O

max
a′∈C(a,o)

(q∗,a
′

n−1)THa
o

)T
. (10)

It should be noted that each vector υ is associated with
a particular action a. This concludes the proof that Event-
Driven MPOMDPs have PWLC optimal value functions.

Next, we will show how this result can be used by most
current POMDP planning algorithms, with minor modifica-
tions, for Event-Driven MPOMDPs.

A Randomized Point-Based Algorithm
We now turn our attention to the problem of calculating

approximately optimal policies for Event-Driven MPOMDPs.
We here focus explicitly on approximately optimal policies
for computational reasons. However, that does not preclude
the possibility of adapting optimal algorithms as well.

A particularly efficient family of approximate POMDP
solvers is that of point-based algorithms [8, 9, 14, 6]. We pro-
pose an adaptation of the Perseus randomized point-based

algorithm that can handle Event-Driven MPOMDPs. The
basic premise of any point-based algorithm is that, given a
belief state b ∈ Π(S), and a value function (or set ofQ−value
functions) at stage n− 1, it is possible to obtain the stage-n
maximizing vector at that point at a relatively low compu-
tational cost.

We are therefore interested in obtaining:

qa,bn = arg max
qan∈Ka

n

qan · b (11)

From (10), we have that:

qan = ra +
(
γ
∑
o∈O

max
a′∈C(a,o)

(q∗,a
′

n−1)THa
o

)T
. (12)

Note that this already implicitly defines an optimal q∗,a
′

n−1 at
a given point b for a particular 〈a, o〉 pair, see Eq. (8). If,
instead of taking the maximum, we evaluate the expected
future reward for each vector in Ka

n−1, and for a given 〈a, o〉:

qk,a
′

n,o,a = γ
(

(qk,a
′

n−1)THa
o

)T
. (13)

Taking the action constraints into consideration, we can se-
lect from these vectors the best at b:

qa,bn,o = arg max
q
k,a′
o,a | a′∈C(a,o)

qk,a
′

o,a · b . (14)

And finally, summing over observations and adding the im-
mediate reward:

qa,bn = ra + γ
∑
o∈O

qa,bn,o . (15)

Equipped with this result, we can formulate our variant of
the Perseus algorithm, which we refer to as Constraint-
Compliant Perseus (CC-Perseus). The belief-backup (15)
is applied to a subset of belief points in a sampled set B
[14], for all possible actions. The resulting set of vectors for
each action is taken as an approximation of Q∗,an+1, and their
union as V ∗n+1. Our explicit use of the Q−value functions
stems from the fact that the sets Ka

n (c.f. (7)) must never
be empty. Otherwise, if an action had no previous-stage vec-
tors associated to it, we would not have an estimate of its
expected value when “forced” by C.

A note on complexity: since this algorithm is keeping track
of all Q−value functions, in the worst case, it has to perform
|A| times as many evaluations over the set B as the stan-
dard version of Perseus. It is expected, then, that it should
underperform Perseus when running over the same model.
However, recall that the main advantage of our formulation
is that it allows considerably smaller representations (par-
ticularly in |O|) of the same problem.

Finally, we emphasize that the considerations made in this
section could be applied to virtually any POMDP solution
algorithm. The only requirements are that: Q−value func-
tions must be maintained for all actions (so value functions
can only be pruned action-wise); and the constraints gener-
ated by C should be satisfied when performing backups.

Execution-Time Belief Updates
In a standard POMDP, a belief state b can be updated

by an agent during plan execution, following the execution
of a (by the team), and observation of o, through Eq. (5).
In an Event-Driven model, this update step is not always
applicable. Planning algorithms, such as CC-Perseus, can



Left Server Right Server

Problem Model |S| |A| |O| d

Access2
E 72 6 9 3
S 72 18 96 3

Access3
E 216 8 10 4
S 216 54 256 4

Figure 2: Left: A layout of the Access2 prob-
lem; Right: Size of the model components for the
tested scenarios, using event-driven (E) and syn-
chronous (S) approaches.

explicitly model the occurrence of false negative detections
of events as symbolic observations. During execution, how-
ever, agents will not have access to any information indicat-
ing false negative detections. Therefore, agents must take
into account the fact that the system can undergo several
unobserved transitions between any two belief update steps.

Theorem 2. Let f ∈ O represent false negative detec-
tions of events. For an infinite-horizon agent in an Event-
Driven POMDP, given that the team is executing a and ob-
serving o in belief state b̂, the belief update step is:

b̂ao =

(
Ha
o (I −Ha

f )−1b̂
)

1T
(
Ha
o (I −Ha

f )−1b̂
) , (16)

iff for all eigenvalues λ of Ha
f , |λi| < 1.

Proof. For f ∈ O indicating false negative observations,
o ∈ O\f and a ∈ A, we have that:

b̂ao(s′) ∝
∑
s∈S

Pr(o|s,a, s′)Pr(s′|s,a)×(
1 +

∑
s′′∈S

Pr(f |s,a, s′′)Pr(s′|s′′,a)

+
( ∑
s′′∈S

Pr(f |s,a, s′′)Pr(s′|s′′,a)
)2

+ . . .
)
b̂(s)

In matrix notation, as before, this is:

b̂ao ∝ Ha
o

( ∞∑
k=0

(Ha
f )k
)
b̂ (17)

If |λi| < 1 for all eigenvalues |λ| of Ha
f :

b̂ao =
1

η
Ha
o (I −Ha

f )−1b̂ (18)

with η = 1THa
o (I−Ha

f )−1b̂, since 1T b̂ao = 1. We note that if
any |λi| = 1, this implies that the system has completely un-
observable (Pr(f |·) = 1) chains, and the belief state cannot
be tracked.

The notation b̂ here indicates run-time belief states, so
as to clarify that Eqs. (5) and (16) will produce different
outputs. In large systems, if the computational complexity of
obtaining (I −Ha

f )−1 is prohibitive, it can be approximated
through a finite number of sums (see proof).

EXPERIMENTS
In this section, we present an evaluation of our proposed

methodology in simulated multiagent decision-making prob-
lems. We consider an autonomous multiagent surveillance
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system, where static agents (e.g. sensors) and mobile agents
(e.g. robots) must cooperate in order to control the access
of human operators to sensitive equipment. In the Access2
problem, two sensors are connected to two restricted-access
servers located in adjacent rooms (see Figure 2). Either sen-
sor can mistake the validity of a user’s credentials, or fail to
detect that a user is there at all (0.2 probability each). A
robot aids these sensors by performing additional measure-
ments, reducing the possibility of false positives and nega-
tives, and also acts as a failsafe in case one of the sensors
malfunctions. The robot can move between the two rooms,
and knows its position. The goal of the problem is to autho-
rize as many valid users as possible.

This task was represented using both an event-driven and
a standard synchronous approach, using factored models [4,
9]. The sizes of the respective model components can be seen
in Figure 2. To see why there is such a pronounced differ-
ence in |O|, consider that each sensor can observe autho-
rized and non-authorized users, hardware failures, or noth-
ing at all. The robot can also observe users (or nothing),
along with its own position. In the synchronous approach,
we must take the product of all of these possibilities. In the
event-driven approach, the only events we need to model are
the arrival/exit of a user, the failure of either sensor, and a
change of state by the robot, plus an “unobserved” event.
Additionally, we can reduce the number of joint actions by
ruling out inconsistent decisions. Both the normal Perseus
algorithm [14] and CC-Perseus were run on this problem,
over a set of 50 sampled belief points with γ = 0.95 and
h = ∞. As a baseline, the Perseus algorithm was run on
our event-driven model, disregarding the effect of unobserv-
able events. Figure 3a shows the maximum improvement (or
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Figure 3: (a), (c) Residual difference between successive value function approximations, maxB{Vn(b) −
Vn−1(b)}.(b), (d) Size of the value function, |Υn|, as a function of n.

residual) to the value function between steps using these al-
gorithms, which is indicative of their real-time convergence.
From here we can see that CC-Perseus on the event-driven
model outperforms its standard version in the synchronous
setting (total run-time was 22.78 s vs. 29.03 s, respectively,
until a residual of 10−4). Figure 3b also shows how the total
number of vectors of CC-Perseus follows |A| times that
of the baseline, since Q−functions are explicitly maintained
for each action. In Figure 4 we show how the baseline pol-
icy, even though faster to compute, is outperformed by CC-
Perseus, since action constraints are not considered in the
former case. Due to this fact, the expected value calculated
by Perseus does not correspond to the reward accrued at
run-time (an error of 27%, vs. 3% with CC-Perseus).

In order to showcase the scalability of these methods,
a larger version of the above problem was implemented.
Access3 has 3 rooms/sensors/servers along a corridor, but
the sensor at the center can only detect authorized personnel
(or nothing). Therefore, there is only one more event with
respect to the previous problem, but the presence of an-
other agent causes an exponential increase in the number of
observations of the synchronous model. Figure 2 shows the
sizes of the models for this problem, and Figures 3c and 3d
show performance results. Although synchronous and event-
driven models are not strictly comparable with regard to ex-
pected reward, since their dynamics are inherently different,
we show in Figure 5 an overlay of the best expected value
(in the sample set) for Access3 using either model, to estab-
lish that they in fact converged to similar near-optimal poli-
cies. Running times to a residual of 10−4 were 6m 52.39 s
for event-driven CC-Perseus and 2h 27m 24.27 s for syn-
chronous Perseus. This shows that the simple addition of
an agent increased the computational advantage of the event-
driven model over its alternative by more than an order of
magnitude (also clearly visible in Figure 5). This establishes
the scalability of our methods to large partially observable
domains, with no assumptions regarding action/observation
independence between agents.

CONCLUSIONS
In this work, we propose a novel modeling approach for

multiagent decision-making under partial observability, based
on the MPOMDP framework, which draws from the con-
cepts of asynchrony in Discrete-Event systems to allow a
more compact representation of such scenarios than what is
typically possible through decision-theoretic frameworks.

We have described how such a model could be formalized
and shown that it still retains the essential properties that
allow it to be solved through dynamic programming. We

have also shown how a common POMDP-solving algorithm
could be adapted to function in an event-driven paradigm,
and how agents can track belief states at run-time in the
presence of false negative observations.

As future work, our event-driven models can be extended
to continuous-time dynamics (such as in Semi-Markov Deci-
sion Processes). This would facilitate the application of these
methods in other domains. We will also investigate specific
solvers for this class of models, which could exploit their
asynchrony for further computational gains.
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