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Abstract
Markov Decision Processes (MDPs) provide an extensive
theoretical background for problems of decision-making un-
der uncertainty. In order to maintain computational tractabil-
ity, however, real-world problems are typically discretized in
states and actions as well as in time. Assuming synchronous
state transitions and actions at fixed rates may result in mod-
els which are not strictly Markovian, or where agents are
forced to idle between actions, losing their ability to react
to sudden changes in the environment. In this work, we
explore the application of Generalized Semi-Markov Deci-
sion Processes (GSMDPs) to a realistic multi-robot scenario.
A case study will be presented in the domain of coopera-
tive robotics, where real-time reactivity must be preserved,
and synchronous discrete-time approaches are therefore sub-
optimal. This case study is tested on a team of real robots, and
also in realistic simulation. By allowing asynchronous events
to be modeled over continuous time, the GSMDP approach
is shown to provide greater solution quality than its discrete-
time counterparts, while still being approximately solvable by
existing methods.

Introduction
Planning under uncertainty has long been an actively re-
searched topic in the fields of Operations Research and Arti-
ficial Intelligence. In many realistic environments, it is nec-
essary to take into account uncertainty in actions and/or ob-
servations of an agent as it interacts with its environment.
A Markov Decision Process (MDP) is a widely known and
well-studied mathematical framework to model problems
where the outcome of an agent’s actions is probabilistic, but
knowledge of the agent’s state is assumed (Puterman 1994).
Since its introduction, the versatility of the MDP framework
has led to its application in diverse “real-world” domains,
i.e., in industry, commerce, or other areas outside of research
environments (White 1993). However, the number of such
applications which have actually been implemented as per-
manent, “in-the-loop” decision making methods in their re-
spective domains, has been manifestly small (White 1993).

This work is part of an ongoing attempt to address the
limitations of MDP-based frameworks in modeling general
real-world decision-making problems, with a particular em-
phasis on multi-robot environments (Messias, Spaan, and
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Lima 2010; 2011). The most general MDP approach to mul-
tiagent problems is that of the Dec-MDP framework (Bern-
stein et al. 2002), in which no communication between
agents is assumed. Consequently, such models can quickly
become intractable (Roth, Simmons, and Veloso 2007). For
teams of multiple robots, it is typically safe to assume that
communication is possible and relatively inexpensive. How-
ever, models which assume free communication (Multia-
gent MDPs, (Boutilier 1996)) or costly communication, also
typically assume that state transitions are experienced syn-
chronously by all agents, at a fixed rate. This, in turn, can
lead either to sub-optimal policies in which, for instance,
robots are forced to idle until the next time step is reached,
or to the loss of the Markovian property.

The approach taken in this work lifts the assumption of
synchrony in the dynamics of the system. That is, states and
actions will still be regarded as discrete, but a continuous
measure of time will be maintained, and state transitions un-
der actions will be regarded as randomly occurring “events”.
This approach will be shown to have several advantages for
multi-robot teams. First, by explicitly modeling the tem-
poral occurrence of events in an MDP, the non-Markovian
effects of state and action space discretization can be mini-
mized, increasing solution quality. Second, since events are
allowed to occur at any time, the system is fully reactive
to sudden changes. And finally, communication between
agents will only be required upon the occurrence of an event,
as opposed to having a fixed rate.

The framework of Generalized Semi-Markov Decision
Processes (GSMDPs), proposed by Younes and Simmons
(2004) is ideally suited for the requirements of this work.
It allows generic temporal probability distributions over
events, while maintaining the possibility of modeling per-
sistently enabled (concurrent) events, which is essential in
multi-robot domains. Other related work on event-driven
MDPs deals with such events without explicitly modeling
the effect of continuous time: by keeping track of event his-
tories in the system state (Becker, Zilberstein, and Goldman
2004), or by considering the occurrence of non-Markovian
events as being unpredictable (Witwicki et al. 2013).

GSMDP models can be solved by commonly used
discrete-time MDP algorithms, by first obtaining an equiva-
lent (semi-)Markovian model through the use of Phase-type
approximations of temporal distributions (Younes and Sim-



mons 2004; Younes 2005). However, to our knowledge, this
framework has never been applied in a realistic multi-robot
context. We show that, by allowing event-driven plan exe-
cution, the application of the GSMDP framework to multi-
robot planning problems allows us to avoid the negative ef-
fects of its synchronous alternatives, resulting in greater per-
formance. We also take into account the fact that some
events which are characteristic of robotic systems are not
amenable to phase-type approximations, and that, if so, the
resulting approximate systems remain semi-Markovian.

We present a case study of robots executing a coopera-
tive task in a robotic soccer scenario. Cooperative robotics
forms a particularly suitable testbed for multiagent decision-
theoretic methods, since, in this domain, agents must typi-
cally operate over inherently continuous environments, and
are subject to uncertainty in both their actions and observa-
tions (although the latter is not yet considered here). The dy-
namic nature of robotic soccer requires agents to take joint
decisions which maximize the success of the team, while
maintaining the possibility of reacting to unexpected events.
This case study is tested in a team of RoboCup Middle-Sized
League (MSL) soccer robots, both in a realistic simulation
environment, and on the actual robots.

Background
This section provides the required definitions on GSMDPs
which form the background of this work, and interpret the
original formulation in (Younes and Simmons 2004) under
the context of multi-robot problems.

Definition 1 A multiagent Generalized Semi-Markov Deci-
sion Process (GSMDP) is a tuple 〈d,S,X ,A, T,F , R, C, h〉
where:
d is the number of agents;
S = X1×X2×. . .×Xnf

is the state space, a discrete set of
possibilities for the state s of the process. The state space is
decomposable into nf state factors Xi ∈ {1, ...,mi} which
lie inside a finite range of integer values.
X = {X1, . . . ,Xnf

} is the set of all state factors;
A = A1 × A2 × . . . × Ad is a set of joint actions. Ai

contains the individual actions of agent i. Each joint ac-
tion a ∈ A is a tuple of individual actions 〈a1, a2, . . . , ad〉,
where ai ∈ Ai.
T : S ×A×S → [0, 1] is a transition function, such that

T (s,a, s′) = Pr (s′|s,a). It models the stochasticity in the
actions of the agent;
F is the time model, a set of probability density func-

tions fas,s′ which specify the probability over the instant
of the next decision episode, given that the system state
changes from s to s′ under the execution of joint action a.
R : S × A → R is the instantaneous reward function.

The value R(s,a) represents the “reward” that the team of
agents receives for performing joint action a in state s, rep-
resenting either its utility or cost.
C : S × A → R is the cumulative reward rate which,

in addition to the instantaneous reward model R, allows the
modeling of an utility or cost associated with the sojourn
time at s while executing a.
h ∈ R+

0 is the planning horizon over continuous time.
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Figure 1: An example of a discretized environment in which
persistently enabled events are an issue: (a) At time T1, two
agents attempt to move from state L to G through a simple
navigation action a. (a) At T2 > T1, agent 1 detects that
it has changed its local state factor (x1), triggering a new
joint decision. For agent 2, Pr(x′2 = R|x2 = L, a) is now
intuitively higher, given the time that it has been moving so
far. However, a memoryless discrete MDP cannot use this
information. The system is not strictly Markovian.

Definition 1 formulates a decentralized multiagent prob-
lem, in the most general sense, akin to a Dec-MDP (Bern-
stein et al. 2002). However, it is here assumed that agents
can freely communicate with each other, which means that
the model is equivalent, in terms of complexity, to a central-
ized single-agent model defined over the whole team.

In this work, we will adopt the following definition for
what constitutes an “event”:

Definition 2 An event in a GSMDP is an element of a count-
able set E , the codomain of a mapping Φ : S × S → E such
that, for all s1, s′1, s2, s

′
2 ∈ S:

• If Φ(s1, s
′
1) = Φ(s2, s

′
2), then T (s1,a1, s

′
1) =

T (s2,a2, s
′
2) and fa1

s1,s′1
= fa2

s2,s′2
,∀a1, a2 ∈ A;

• Φ(s1, s
′
1) 6= Φ(s1, s

′
2) if s′1 6= s′2.

An event e ∈ E is said to be enabled at 〈s,a〉 if, for s′ such
that e = Φ(s, s′), T (s,a, s′) > 0. The set of all enabled
events in these conditions will be represented as E(s,a).

An event is then seen as an abstraction to state transitions
that share the same properties.

The goal of the planning problem is to obtain a policy πh,
which provides, for each t ∈ [0 , h] a joint action that max-
imizes the total expected discounted reward. A stationary
(infinite-horizon) policy will be represented simply as π.

Decision Theoretic Multi-Robot Systems
When approaching a multi-robot environment from a
decision-theoretic perspective, it is often necessary to obtain
a compact, discrete representation of the states and actions
involved in the problem, in order to maintain its computa-
tional tractability. We here discuss the implications of this
process, for the practical operation of teams of real robots.

Discretization and the Markov Property
Consider the scenario represented in Figure 1, where two
robots are concurrently moving across their environment to-
wards a target position. The exact state of the system is de-
fined as the composition of the physical configurations of



both robots. Navigation problems, such as this one, which
are characteristic of multi-robot scenarios, involve naturally
continuous state and action spaces. In the general case, we
are interested in partitioning these spaces into discrete states
and actions that can capture the decision-making problem.
Additionally, for a multiagent MDP to be an accurate repre-
sentation of the physical multi-robot system, the discretized
model must be at least approximately Markovian (i.e., mem-
ory of its past states should not be required in order to predict
its future states). However, even if a physical multi-robot
system is Markovian, a discrete, memoryless model of its
dynamics does not necessarily hold this property.

A straightforward discretization of a multi-robot naviga-
tion problem is to map the configuration of each robot to a
coarse topological location in the environment (Figure 1).
A transition model could then be built by determining the
probability of switching between these locations through a
given control sequence. However, these probabilities would
not be independent of the sojourn time of each robot inside a
particular location: if one of the robots enters a new location,
triggering a change of state, then the probability of the next
state change being triggered by its partner should be updated
to take into account the relative motion of the latter, even if
it did not move to a different local state. These events are
enabled in parallel, and the occurrence of one of them does
not affect the expected triggering time of the other. These
are said to be persistently enabled events. More formally,

Definition 3 An event e ∈ E is persistently enabled from
step n to n + 1 if e ∈ E(sn,an) and e ∈ E(sn+1,an+1),
but e did not trigger at step n.

In a fully Markovian system, all events are assumed to
be memoryless, and so the problem represented in Figure
1 cannot be modeled directly, since those events are non-
Markovian and persistently enabled. Non-Markovian state
transitions can be modeled under the framework of Semi-
Markov Decision Processes (SMDPs); however, SMDPs
cannot model persistently enabled transitions.

Effects on Real-Time Performance
The common approach to minimize the non-Markovian ef-
fects induced by state and action discretization is to force the
agents to act periodically in time, at a pre-defined rate, and
in synchrony. This means that any changes in the state of
the system are only observed by the agents at these instants,
and state transition probabilities can be approximated as if
they were stationary. However, as shown in Figure 2, this
approach can have a negative effect on the performance of
the system. If the decision period is longer than the actual
duration of a given action, then robots will have to idle for
the rest of that decision episode. Not only does this mean
that tasks can take sub-optimal amounts of time to complete,
but it also implies that the robots can no longer immediately
react to sudden changes. That may be important to the long-
term outcome of the decision problem. An asynchronous so-
lution is therefore preferred. Asynchronous operation is pos-
sible under the framework of Continuous-Time MDPs (CT-
MDPs); however, CTMDPs cannot model non-Markovian
temporal distributions (Howard 1960).
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Figure 2: Action selection in synchronous and asynchronous
execution of a multi-robot system. In synchronous oper-
ation, actions are jointly taken at positive multiples of T .
During the gaps between the end of a given local action
(filled arrow) and the beginning of the next decision step,
agents are forced to idle. Dashed arrows between agents
represent communication instances; In asynchronous execu-
tion, a new decision episode starts immediately after a tran-
sition is detected, so there is no idle time. Furthermore, only
the agent that detects an event needs to communicate.

The GSMDP framework adresses the issues so far de-
scribed: persistently enabled events can be modeled by al-
lowing their temporal distributions to depend on the time
that they have been enabled, even if other events have mean-
while been triggered in the system. Furthermore, any non-
negative distribution can be used to model the occurrence
of an event. Therefore, they allow the asynchronous oper-
ation of multi-robot systems, while explicitly modeling the
non-Markovian effects introduced by its discretization.

Another advantage of event-driven approaches is their
communication efficiency (Figure 2). If the joint state space
is not directly accessible by each agent (i.e., not all state
factors are observed by every agent), then agents are forced
to share information. While a synchronous approach re-
quires that each agent sends its own local state to its partners
at each time-step, an asynchronous solution requires only
the communication of changes in state factors, which ef-
fectively minimizes the number of communication episodes
accross the team. Minimizing communication is a rele-
vant problem for scenarios in which agents spend energy
to transmit data, or where transmissions can be delayed or
intercepted (Messias, Spaan, and Lima 2011; Roth, Sim-
mons, and Veloso 2007; Spaan, Oliehoek, and Vlassis 2008;
Spaan, Gordon, and Vlassis 2006).

GSMDPs for Multi-Robot Sequential
Decision-Making

This section discusses the methodology involved in applying
GSMDPs to a generic multi-robot problem, and in obtaining
a useful plan from a given GSMDP model. It also describes
the aspects of this work which contribute to the practical use
of the theory of GSMDPs in real multi-robot scenarios.



x1 x′1

x2 x′2

0 t

a2

a1

0 t

λ2

(a)

x1 p1

x2 x′2

0 t

a2

p2 x′1

0 t

0 t 0 t 0 t

λ2

(1− ρ)λ1 λ1 λ1

ρλ1

(b)

Figure 3: Approximating non-Markovian events through
phase-type distributions. The topmost temporal distribu-
tion in Figure 3a is approximated through the Markov chain
shown in its place, in Figure 3b. The newly added Markov
chain models a Generalized Erlang distribution with three
phases, which matches the first two moments of the original
distribution. The system in Figure 3b is fully Markovian.

Modeling Events
When modeling a multi-robot problem as a (G)SMDP, given
a suitable (discrete) state and action space, the identification
of the stochastic models of the system, T and F , must be
carried out. At this point, it is useful to group state transi-
tions into E , as per Definition 2. For example, for a set of
identical robots, each with a state factor representing battery
level, the event of running low on battery would be mapped
by the same change in any of those factors, and so only one
temporal distribution and state transition probability would
need to be specified.

For every event in E , the identification procedure for T
and F is technically simple: T can be estimated through the
relative frequency of the occurrence of each transition; and
by timing this transition data, it is straightforward to fit a
probabilistic model over the resulting data to obtain F .

Each non-exponential fas,s′ in F can be approximated as
phase-type distribution (Younes and Simmons 2004). This
replaces a given event in the system event with an acyclic
Markov chain, in which each of its own states is regarded as
a phase of the approximate distribution, and each transition
is governed by a Poisson process. If this replacement is pos-
sible for every event, then the approximate system is fully
Markovian, allowing it to be solved as an MDP.

There are, however, limitations to this approach. An arbi-
trary non-Markovian distribution, with a coefficient of vari-
ation cv = σ/µ, where µ is its mean and σ2 its variance,
requires the d 1

cv2 e phases to be approximated as a General-
ized Erlang distribution (one such phase-type distribution),
if cv2 < 0.5. This number can quickly become unreason-
ably large for many processes which are characteristic of
robotic systems. In particular, this affects actions with a
clear minimum time to their outcome, dictated by the phys-
ical restrictions of a robot (e.g., navigation actions given
known initial positions), since µ can be arbitrarily large.

Systems with non-Markovian events which do not admit
phase-type approximations can still be analyzed as semi-
Markovian Decision Processes (SMDPs), but only if those
events are never persistently enabled, since memory be-
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Figure 4: (a) Temporal distribution of the event of switching
agent roles after a pass, in our experimental domain. (b) Two
modeling approaches. Top: As a (truncated) normal distri-
bution. Would require 238 phases for a direct Generalized
Erlang approximation; Bottom: A sequence of determinis-
tically timed events, followed by a Weibull distribution (2
phases). 8 states are required, in total, for the approxima-
tion. Right-tailed probability mass is discarded.

tween transitions cannot be kept. We propose a practical
alternative, for situations in which this is not a valid assump-
tion, and which can be used to model events with minimum
triggering times: such an event can be decomposed into a se-
quence of deterministically timed transitions, followed by a
positive distribution (typically a “lifetime” distribution, see
Figure 4b). The latter can then be better approximated by a
phase-type distribution with a small number of phases. This
requires the addition of intermediate observable states to the
system, similar in purpose to the phases of a phase-type ap-
proximation, which act as “memory” for the original non-
Markovian event. The length of this deterministic sequence
can be adjusted to increase the quality of the approxima-
tion. Note that deterministically timed transitions are non-
Markovian themselves, so the system is still an SMDP.

Solving a GSMDP
The direct solution of a general GSMDP is a difficult prob-
lem, since typical dynamic programming approaches can-
not be directly applied under its non-Markovian dynam-
ics. However, in the case where, after introducing approx-
imate phase-type distributions where possible, F still con-
tains non-exponential distributions, the system can still be
approximated by a discrete-time model by first describing
its dynamics as an SMDP. Let U(s, a) represent the total
(cumulative and instantaneous) reward at (s, a). The value
of executing a stationary SMDP policy is:

V π(s) =

= U(s, π(s)) +
∑
s′∈S

V π(s′)
∫∞
0

Pr(t, s′ | s, π(s))e−γtdt

= U(s, π(s)) +
∑
s′∈S
L{fπ(s)s,s′ (t)}T (s, π(s), s′)V π(s′) ,
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Figure 5: Simulated results. Distance from the ball to the
goal (blue, solid) and accrued joint reward (red, dashed)
over time. Top: using an MDP model with fixed time-step
T = 4 s; Bottom: using the GSMDP formulation of the
same problem. Jumps in reward correspond to new deci-
sion episodes. Rewards of 150 correspond to a shooting ac-
tions, and those equal to 60 correspond to passing instances
in which robots switch roles. Whenever a goal is scored (the
distance tends to 0), the ball is reset to its original position.
Here, the robots could control and kick the ball efficiently.

where Pr(τ, s′ | s, a) is the joint distribution over resulting
states and decision instants, γ ∈ R+

0 is the discount fac-
tor of the problem, and L{·} denotes the Laplace transform.
This well-known result allows an SMDP to be viewed as
an equivalent discrete-time MDP with state-action depen-
dent discount rates γ(s,a) = L{fas,s′(t)} (Puterman 1994;
Bradtke and Duff 1995). This, in turn, forms a very pos-
itive practical result, since virtually all solution algorithms
for MDPs can also be applied to a GSMDP formulated ap-
proximately in this way.

Experimental Results
A common task in robotic soccer is to have various robotic
soccer players cooperating in order to take the ball towards
their opponent’s goal. In the two-agent case, one of these
players should carry the ball forward, and the other should
position itself so that it may receive a pass from its partner,
if necessary. During the course of their task, the robots may
randomly encounter obstacles. The team must jointly decide
which robot should carry the ball, and whether or not to per-
form a pass in order to avoid imminent obstacles, since it is
difficult to avoid collisions while carrying the ball.

In previous work (Messias, Spaan, and Lima 2010), we
modeled a version of this problem as a multiagent POMDP.
Here, we assume joint full observability in order to instanti-
ate it as a GSMDP. The resulting model has 126 states across
4 state factors. As in (Messias, Spaan, and Lima 2010), there
are 36 joint actions. Agents are rewarded for scoring a goal
(150) and for successfully switching roles whenever obsta-
cles are blocking the attacker (60).

Every transition was timed and modeled, either according

to exponential distributions, where possible; through uni-
form distributions — the time of entry of the dribbling robot
into one of the field partitions; or through truncated normal
distributions — the time to a role switch after a pass occurs,
represented in Figure 4a. The latter was kept in its normal
parameterization, since no concurrent events can trigger in
that situation. The model was then reduced to an SMDP by
replacing all uniform distributions with phase-type approxi-
mations. In order to minimize the state space size, the same
phase variable was used to model all phase-type distribu-
tions, depending on the context. The value iteration algo-
rithm was used to solve the approximate SMDP.

Simulation Results
Part of our experimental results were gathered using a real-
istic robotics simulator. In an initial analysis, the abilities of
the simulated robots were extended in order to allow them
to more efficiently dribble and kick the ball, so that their re-
activity to events is not affected by their physical limitations
when acting. Figure 5 compares real-time profiles of the sys-
tem, under these conditions, when executing an event-driven
GSMDP solution and a discrete-time multiagent MDP so-
lution with a fixed time-step. These execution profiles are
characterized by the distance between the ball and the goal,
alongside the reward associated with the joint state and ac-
tion, accrued at decision instants. While the MDP system is
committed to performing the same action throughout the du-
ration of the time-step, the GSMDP reacts asynchronously
to events, which eliminates any idle time in the actions of
the robots, resulting in more frequently scored goals.

Real Robot Results
The performance of the synchronous (fixed time-step) and
event-driven (GSMDP) approaches to this problem in the
real team of robots was quantitatively evaluated by testing
a synchronous MDP solution with a series of different fixed
time-steps, as well as the GSMDP solution. The perfor-
mance metric for this comparison is the time between con-
secutive goals using each model. The results are shown in
Figure 7. The amount of trials that could be run on the real
robots was limited by total time: the average sample size is
5 scored goals for each model (9 for the GSMDP and the
best performing MDP). In order to provide further statistical
validity for these real robot results, simulated trials were run
under equivalent conditions (considering all actuation limi-
tations), in runs of 120 seconds each, to a total of 50 goals
per model (box plot in Figure 7a).

The average and median time between goals was shorter
with the GSMDP solution than with any of the synchronous
MDPs. The time-step of the synchronous models was shown
to have a significant, non-monotonic effect on performance.
The best MDP model, with a time-step of 0.4 seconds, un-
derperformed the GSMDP model both in the real robot tri-
als (one-way ANOVA, p = 0.063), and in the correspond-
ing simulated trials (p = 0.079). For time-steps below this
value, agents acted on outdated information, due to commu-
nication/processing delays, and had difficulty in switching
roles (note from Figure 4b that the minimum time for a role
switch during a pass is also ∼ 0.4s). For larger time-steps,
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Figure 6: Sequence showing two robots cooperating in order to avoid an obstacle and score a goal (from left to right, top to
bottom), in our experimental setup. The team was executing an event-driven GSMDP policy. The ability of the robots to handle
the ball individually is very limited, which makes this type of cooperation necessary. In image 4 a role switch has occurred,
after the successful passing of the ball. A video of this experiment can be seen at: http://masplan.org/MessiasAAAI2013.
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Figure 7: Performance of GSMDP / MDP models. Syn-
chronous models are labeled as MDP-T , with T the decision
period (seconds). (a) Median time difference between goals,
on the real robot trials (diamond markers). Equivalent sim-
ulated trials are represented in the underlying box plot. (b)
Frequency of goals per each trial, for the GSMDP, and the
best and worst MDP models (0.4s, 4s, respectively). Trials
with 0 goals are indicative of random system failures.

loss of reactivity and the corresponding idle time in the sys-
tem also lowered the resulting performance. The average
duration of decision episodes (and communication period)
with the GSMDP model was 1.09s. Since the frequency of
communication episodes for synchronous MDP models is
2/T (Figure 2), this implies a reduction in communication
usage of 81.7% with respect to the best MDP model.

Random system failures, occurring mostly due to robot
navigation problems, or unmodeled spurious effects, were

independent of the modeling approach (Figure 7b).
Figure 6 shows an image sequence of a typical

trial. A video containing this trial, and showcas-
ing the differences in behavior between the synchronous
MDP and GSMDP approaches to this problem, both in
the real and simulated environments, can be found at:
http://masplan.org/MessiasAAAI2013.

Conclusions and Future Work
Multi-robot systems form particularly appropriate testbeds
for the study and application of multiagent decision-
theoretic methods. However, there are non-trivial and often
overlooked problems involved in the application of inher-
ently discrete models such as MDPs to dynamic, physical
systems which are naturally continuous.

In this work, we showed how discrete models of multi-
robot systems are not fully Markovian, and how the most
common work-around (which is to assume synchronous op-
eration) impacts the performance of the system. We dis-
cussed how the GSMDP framework fits the requirements for
a more efficient, event-driven solution, and the methodolo-
gies required for GSMDPs to be implemented in practice.

Future work on the topic will explore the extension of this
framework to partially-observable domains, which is a rele-
vant problem when agents cannot assume full local knowl-
edge; and the use of bilateral phase distributions to approxi-
mate a broader class of non-Markovian events.
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