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Abstract

Factored Decentralized Partially Observable Markov Decision Processes (Dec-
POMDPs) form a powerful framework for multiagent planning under uncertainty,
but optimal solutions require a rigid history-based policyrepresentation. In this
paper we allow inter-agent communication which turns the problem in a central-
ized Multiagent POMDP (MPOMDP). We map belief distributions over state fac-
tors to an agent’s local actions by exploiting structure in the joint MPOMDP pol-
icy. The key point is that when sparse dependencies between the agents’ decisions
exist, often the belief over its local state factors is sufficient for an agent to un-
equivocally identify the optimal action, and communication can be avoided. We
formalize these notions by casting the problem into convex optimization form, and
present experimental results illustrating the savings in communication that we can
obtain.

1 Introduction

Intelligent decision making in real-world scenarios requires an agent to take into account its limita-
tions in sensing and actuation. These limitations lead to uncertainty about the state of environment,
as well as how the environment will respond to performing a certain action. When multiple agents
interact and cooperate in the same environment, the optimaldecision-making problem is particularly
challenging. For an agent in isolation, planning under uncertainty has been studied using decision-
theoretic models like Partially Observable Markov Decision Processes (POMDPs) [4]. Our focus
is on multiagent techniques, building on the factored Multiagent POMDP model. In this paper, we
propose a novel method that exploits sparse dependencies insuch a model in order to reduce the
amount of inter-agent communication.

The major source of intractability for optimal Dec-POMDP solvers is that they typically reason over
all possible histories of observations other agents can receive. In this work, we consider factored
Dec-POMDPs in which communication between agents is possible, which has already been explored
for non-factored models [10, 11, 15, 13] as well as for factored Dec-MDPs [12]. When agents share
their observations at each time step, the decentralized problem reduces to a centralized one, known
as a Multiagent POMDP (MPOMDP) [10]. In this work, we developindividual policies which map
beliefs over state factors to actions or communication decisions.
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Maintaining an exact, factorized belief state is typicallynot possible in cooperative problems. While
bounded approximations are possible for probabilistic inference [2], these results do not carry over
directly to decision-making settings (but see [5]). Intuitively, even a small difference in belief can
lead to a different action being taken. However, when sparsedependencies between the agents’
decisions exist, often the belief over its local state factors is sufficient for an agent to identify the
action that it should take, and communication can be avoided. We formalize these notions as con-
vex optimization problems, extracting those situations inwhich communication is superfluous. We
present experimental results showing the savings in communication that we can obtain, and the
overall impact on decision quality.

The rest of the paper is organized as follows. First, Section2 presents the necessary background
material. Section 3 presents the formalization of our method to associate belief points over state
factors to actions. Next, Section 4 illustrates the concepts with experimental results, and Section 5
provides conclusions and discusses future work.

2 Background

In this section we provide background on factored Dec-POMDPs and Multiagent POMDPs.

A factoredDec-POMDP is defined as the following tuple [8]:

D = {1, ..., n} is the set of agents.Di will be used to refer to agenti;
S = ×iXi, i = 1, . . . , nf is the state space, decomposable intonf factorsXi ∈ {1, ...,mi} which

lie inside a finite range of integer values.X = {X1, . . . ,Xnf
} is the set of all state factors;

A = ×iAi, i = 1, ..., n is the joint action space. At each step, every agenti takes an individual
actionai ∈ Ai, resulting in thejoint actiona = 〈a1, ..., an〉 ∈ A;

O = ×iOi, i = 1, ..., n is the space of joint observationso = 〈o1, ..., on〉, whereoi ∈ Oi are the
individual observations. An agent receives only its own observation;

T : S × S ×A → [0, 1] specifies the transition probabilitiesPr (s′|s, a);
O : O × S ×A → [0, 1] specifies the joint observation probabilitiesPr (o|s′, a);
R : S ×A → R specifies the reward for performing actiona ∈ A in states ∈ S;
b0 ∈ B is the initial state distribution. The setB is the space of all possible distributions overS;
h is the planning horizon.

The main advantage of factored (Dec-)POMDP models over their standard formulation lies in their
more efficient representation. Existing methods for factored Dec-POMDPs can partition the decision
problem across local subsets of agents, due to the possible independence between their actions and
observations [8]. A natural state-space decomposition is to perform anagent-wisefactorization, in
which a state in the environment corresponds to a unique assignment over the states of individual
agents. Note that this does not preclude the existence of state factors which are common to multiple
agents.

The possibility of exchanging information between agents greatly influences the overall complexity
of solving a Dec-POMDP. In a fully communicative Dec-POMDP,the decentralized model can be
reduced to a centralized one, the so-calledMultiagent POMDP(MPOMDP) [10]. An MPOMDP is
a regular single-agent POMDP but defined over the joint models of all agents. In a Dec-POMDP,
at eacht an agenti knows onlyai andoi, while in an MPOMDP, it is assumed to knowa ando.
In the latter case, inter-agent communication is necessaryto share the local observations. Solving
an MPOMDP is of a lower complexity class than solving a Dec-POMDP (PSPACE-Complete vs.
NEXP-Complete) [1].

It is well-known that, for a given decision stept, the value functionV t of a POMDP is a piecewise
linear, convex function [4], which can be represented as

V t(bt) = max
α∈Γt

αT · bt , (1)

whereΓt is a set of vectors (traditionally referred to asα-vectors). Everyα ∈ Γt has a particular
joint actiona associated to it, which we will denote asφ(α). The transpose operator is here denoted
as(·)T. In this work, we assume that a value function is given for theMultiagent POMDP. However,
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this value function need not be optimal, nor stationary. Ourtechniques preserve the quality of the
supplied value function, even if it is an approximation.

A joint belief state is a probability distribution over the set of statesS, and encodes all of the
information gathered by all agents in the Dec-POMDP up to a given timet:

bt(s) = Pr(st|ot−1, at−1,ot−2, at−2, . . . ,o1, a1, b0)

= Pr(X t
1 , . . . ,X

t
nf
|·) (2)

A factored belief state is a representation of this very samejoint belief as the product ofnF assumed
independent belief states over the state factorsXi, which we will refer to asbelief factors:

bt = ×nF

i=1
btFi

(3)

Every factorbtFi
is defined over a subsetFi ⊆ X of state factors, so that:

bt(s) ≃ Pr(F t
1
|·)Pr(F t

2
|·) · · ·Pr(F t

nF
|·) (4)

With Fi ∩ Fj = ∅ , ∀i 6= j. A belief point over factorsL which are locally available to the agent
will be denotedbL.

The marginalization ofb ontobF is:

btF(F
t) = Pr

(

F t|a1,··· ,t−1,o1,··· ,t−1
)

=
∑

X t\Ft

Pr
(

X t
1 ,X

t
2 , · · · ,X

t
nf
|·
)

=
∑

X t\Ft

bt(st), (5)

which can be viewed as a projection ofb onto the smaller subspaceBF :

bF = MX
F b (6)

whereMX
F is a matrix whereMX

F (u, v) = 1 if the assignments to all state factors contained in
stateu ∈ F are the same as in statev ∈ X , and0 otherwise. This intuitively carries out the
marginalization of points inB ontoBF .

3 Exploiting Sparse Dependencies in Multiagent POMDPs

In the implementation of Multiagent POMDPs, an important practical issue is raised: since the joint
policy arising from the value function maps joint beliefs tojoint actions, all agents must maintain
and update the joint belief equivalently for their decisions to remain consistent. The amount of
communication required to make this possible can then become problematically large. Here, we
will deal with a fully-communicative team of agents, but we will be interested in minimizing the
necessary amount of communication. Even if agents can communicate with each other freely, they
might not need to always do so in order to act independently, or even cooperatively.

The problem of when and what to communicate has been studied before for Dec-MDPs [12], where
factors can be directly observed with no associated uncertainty, by reasoning over the possible local
alternative actions to a particular assignment of observable state features. For MPOMDPs, this
had been approximated at runtime, but implied keeping trackand reasoning over a rapidly-growing
number of possible joint belief points [11].

We will describe a method to map a belief factor (or several factors) directly to a local action, or to a
communication decision, when applicable. Our approach is the first to exploit, offline, the structure
of the value function itself in order to identify regions of belief space where an agent may act inde-
pendently. This raises the possibility of developing more flexible forms for joint policies which can
be efficiently decoupled whenever this is advantageous in terms of communication. Furthermore,
since our method runs offline, it is not mutually exclusive with online communication-reduction
techniques: it can be used as a basis for further computations at runtime, thereby increasing their
efficiency.
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3.1 Decision-making with factored beliefs

Note that, as fully described in [2], the factorization (4) typically results in an approximation of the
true joint belief, since it is seldom possible to decouple the dynamics of a MDP into strictly inde-
pendent subprocesses. The dependencies between factors, induced by the transition and observation
model of the joint process, quickly develop correlations when the horizon of the decision problem
is increased, even if these dependencies are sparse. Still,it was proven in [2] that, if some of these
dependencies are broken, the resulting error (measured as the KL-divergence) of the factored belief
state, with respect to the true joint belief, is bounded. Unfortunately, even a small error in the belief
state can lead to different actions being selected, which may significantly affect the decision quality
of the multiagent team in some settings [5, 9]. However, in rapidly-mixing processes (i.e., models
with transition functions which quickly propagate uncertainty), the overall negative effect of using
this approximation is minimized.

Each belief factor’s dynamics can be described using a two-stage Dynamic Bayesian Network
(DBN). For an agent to maintain, at each time step, a set of belief factors, it must have access
to the state factors contained in a particular time slice of the respective DBNs. This can be ac-
complished either through direct observation, when possible, or by requesting this information from
other agents. In the latter case, it may be necessary to perform additional communication in order
to keep belief factors consistent. The amount of data to be communicated in this case, as well as its
frequency, depends largely on the factorization scheme which is selected for a particular problem.
We will not be here concerned with the problem of obtaining a suitable partition scheme of the joint
belief onto its factors. Such a partitioning is typically simple to identify for multi-agent teams which
exhibit sparsity of interaction. Instead we will focus on the amount of communication which is
necessary for the joint decision-making of the multi-agentteam.

3.2 Formal model

We will hereafter focus on the value function, and its associated quantities, at a given decision stept,
and, for simplicity, we shall omit this dependency. However, we restate that the value function does
not need to be stationary – for a finite-horizon problem, the following methods can simply be applied
for everyt = 1, . . . , h.

3.2.1 Value Bounds Over Local Belief Space

Recall that, for a givenα-vector,Vα(b) = α · b represents the expected reward for selecting the
action associated withα. Ideally, if this quantity could be mapped from a local belief point bL, then
it would be possible to select the best action for an agent based only on its local information. This
is typically not possible since the projection (6) is non-invertible. However, as we will show, it is
possible to obtain bounds on the achievable value of any given vector, in local belief space.

The available information regardingVα(b) in local space can be expressed in the linear forms:

Vα(b) = α · b

1
T
nb = 1

MX
L b = bL

(7)

where1n = [ 1 1 . . . 1 ]
T
∈ R

n. Letm be size of the local belief factor which containsbL.
Reducing this system, we can associateVα(b) with b andbL, having at leastn−m free variables in
the leading row, induced by the locally unavailable dimensions ofb. The resulting equation can be
rewritten as:

Vα(b) = β · b+ γ · bL + δ , (8)

with β ∈ R
n, γ ∈ R

m andδ ∈ R. By maximizing (or minimizing) the terms associated with the
potentially free variables, we can use this form to establish the maximum (and minimum) value that
can be attained atbL.

Theorem 1. Let Iu =
{

v : MX
L (u, v) = 1

}

, β ∈ R
m : βi = maxj∈Ii

βj , i = 1, . . . ,m and
β ∈ R

m : βi = minj∈Ii
βj , i = 1, . . . ,m. The maximum achievable value for a local belief

point,bL, according toα, is:
Vα(bL) =

(

β + γ
)

· bL + δ . (9)
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Analogously, the minimum achievable value is

Vα(bL) =
(

β + γ
)

· bL + δ , (10)

Proof. First, we shall establish thatVα(bL) is an upper bound onVα(b). The setIi contains the
indexes of the elements ofb which marginalize onto(bL)i. From the definition ofβ it follows that,
∀b ∈ B:

∑

j∈Ii

βibj ≥
∑

j∈Ii

βjbj , i = 1, . . . ,m ⇔

⇔ βi(bL)i ≥
∑

j∈Ii

βjbj , i = 1, . . . ,m ,

where we used the fact that
∑

j∈Ii

bj = (bL)i. Summing over alli, this implies thatβ · bL ≥ β · b.

Using (8) and (9),

β · bL + γ · bL + δ ≥ β · b+ γ · bL + δ ⇔ Vα(bL) ≥ Vα(b)

Next, we need to show that∃b ∈ B : Vα(bL) = Vα(b). Since1T
nb = 1 andbi ≥ 0 ∀i, β · b is a

convex combination of the elements inβ. Consequently,

max
b∈B

β · b = max
b∈B

β ·MX
L b = max

i
βi

Therefore, forbm = argmax
b∈B

β · b, we have thatVα(M
X
L bm) = Vα(bm).

The proof for the minimum achievable valueVα(bL) is analogous.

By obtaining the bounds (9) and (10), we have taken a step towards identifying the correct action
for an agent to take, based on the local information contained in bL. From their evaluation, the
following remarks can be made: ifα andα′ are such thatVα′ (bL) ≤ Vα(bL), thenα′ is surely
not the maximizing vector atb; if this property holds for allα′ such that(φ(α′))i 6= (φ(α))i, then
by following the action associated withα, agenti will accrue at least as much value as with any
other vector for all possibleb subject to (6). That action can be safely selected without needing to
communicate.

The complexity of obtaining the local value bounds for a given value function is basically that of
reducing the system (7) for each vector. This is typically achieved through Gaussian Elimination,
with an associated complexity ofO(n(m + 2)2) [3]. Note that the dominant term corresponds to
the size of the local belief factor, which is usually exponentially smaller thann. This is repeated
for all vectors, and if pruning is then done over the resulting set (the respective cost isO(|Γ|2)), the
total complexity isO(|Γ|n(m + 2)2 + |Γ|2). The pruning process used here is the same as what is
typically done by POMDP solvers [14].

3.2.2 Dealing With Locally Ambiguous Actions

The definition of the value bounds (9) and (10) only allows an agent to act in atypical situations in
which an action is clearly dominant in terms of expected value. However, this is often not the case,
particularly when considering a large decision horizon, since the present effects of any given action
on the overall expected reward are typically not pronouncedenough for these considerations to be
practical. In a situation where multiple value bounds are conflicting (i.e. Vα(bL) > Vα′(bL) and
Vα(bL) < Vα′(bL)), an agent is forced to further reason about which of those actions is best.

In order to tackle this problem, let us assume that two actions a anda′ have conflicting bounds at
bL. GivenΓa = {α ∈ Γ : (φ(α))i = a} and similarly definedΓa′

, we will define the matrices
A = [Γa

i ]k×n, i = 1, . . . , |Γa| andA′ = [Γa′

i ]k′×n, i = 1, . . . , |Γa′

|. Then, the vectorsv = Ab

andv′ = A′b (in R
k andRk′

respectively) contain all possible values attainable atb through the
vectors inΓa andΓa′

. Naturally, we will be interested in the maximum of these values for each
action. In particular, we want to determine ifmaxi vi is greater thanmaxj v

′
j for all possibleb such

thatbL = MX
L b. If this is the case, thena should be selected as the best action, since it is guaranteed

to provide a higher value atbL thana′.
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The problem of determining the minimum value ofv − v
′ at bL can be expressed as the following

set of Linear Programs (LPs) [6]. Note thatx � y is here assumed to mean thatxi ≥ yi ∀i:

∀i = 1, . . . , |Γa′

| maximize Γa′

i b− s

subject to Ab � 1ks b � 0n

MX
L b = bL 1

T
n b = 1

(11)

If the solutionbopt to each of these LPs is such thatmaxi(Abopt)i ≥ maxj(A
′bopt)j , then actiona

can be safely selected based onbL. If this is not the case for any of the solutions, then it is not
possible to map the agent’s best action solely throughbL. In order to disambiguate every possible
action, this optimization needs to be carried out for all conflicting pairs of actions. However, a less
computationally expensive alternative is to approximate the optimization (11) by a single LP (refer
to [6] for more details):

maximize 1
T
k′ξ

subject to Ab � 1ks b � 0n MX
L b = bL

A′b = 1k′s+ ξ 1
T
n b = 1

(12)

3.2.3 Mapping Local Belief Points to Communication Decisions

For an environment with only two belief factors, the method described so far could already incor-
porate an explicit communication policy: given the local belief bL of an agent, if it is possible to
unequivocally identify any action as being maximal, then that action can be safely executed without
any loss of expected value. Otherwise, the remaining belieffactor should be requested from other
agents, in order to reconstructb through (4), and map that agent’s action through the joint policy.
However, in most scenarios, it is not sufficient to know whether or not to communicate: equally
important are the issues of what to communicate, and with whom.

Let us consider the general problem withnF belief factors contained in the setF . In this case there
are2|F|−1 combinations of non-local factors which the agent can request. Our goal is to identify one
such combination which contains enough information to disambiguate the agent’s actions. Central
to this process is the ability to quickly determine, for a given set of belief factorsG ⊆ F , if there are
no points inbG with non-decidable actions. The exact solution to this problem would require, in the
worst case, the solution of|Γa|× |Γa′

| LPs of the form (11) for every pair of actions with conflicting
value bounds. However, a modification of the approximate LP (12) allows us to tackle this problem
efficiently:

maximize 1
T
k′ξ′ + 1

T
kξ

subject to Ab � 1ks A′b = 1k′s+ ξ MX
L b = bL

A′b′ � 1k′s′ Ab′ = 1ks
′ + ξ′ MX

L b′ = bL

b � 0n b′ � 0n MX
G b = MX

G b′

(13)

The rationale behind this formulation is that any solution to the LP, in whichmaxi ξi > 0 and
maxj ξ

′
j > 0 simultaneously, identifies two different pointsb andb′ which map to the same point

bG in G, but share different maximizing actionsa′ anda respectively. This implies that, in order to
select an action unambiguously from the belief overG, no such solution may be possible.

Equipped with this result, we can now formulate a general procedure that, for a set of belief points
in local space, returns the corresponding belief factors which must be communicated in order for an
agent to act unambiguously. We refer to this as obtaining thecommunication mapfor the problem.
This procedure is as follows (a more detailed version is included in [6]): we begin by computing the
value bounds ofV over local factorsL, and samplingN reachable local belief pointsbL; for each
of these points, if the value bounds of the best action are notconflicting (see Section 3.2.1), or any
conflicting bounds are resolved by LP (12), we can markbL assafe, add it to the communication
map, and continue on to the next point; otherwise, using LP (13), we search for the minimum set of
non-local factorsG which resolves all conflicts; we then associatebL with G and add it to the map.

During execution, an agent updates its local informationbL, finds the nearest neighbor point in the
communication map, and requests the corresponding factorsfrom the other agents. The agent then
selects the action which exhibits the highest maximum valuebound given the resulting information.
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Figure 1: (a) Layout of theRelay-Smallproblem. (b) Layout of theRelay-Largeproblem. (c)
Communication map for theRelay-Smallproblem.

4 Experiments

We now analyze the results of applying the aforementioned offline communication mapping process
to three different MPOMDP environments, each with a different degrees of interdependencybetween
agents. The first and smallest of the test problems, shown in Figure 1a, is named theRelay-Small
problem, and is mainly used for explanatory purposes. In this world each agent is confined to a
two-state area. One of the agents possesses a package which it must hand over to the other agent,
through the non-traversable opening between the roomsL1 andR1. Each agent can move randomly
inside its own room (aShuffleaction),Exchangethe package with the other agent, orSenseits
environment in order to find the opening. AnExchangeis only successful if both agents are in
the correct position(L1,R1) and if both agents perform this action at the same time, whichmakes
it the only available cooperative action. The fact that, in this problem, each belief factor is two-
dimensional (each factor spans one of the rooms) allows us tovisualize the results of our method. In
Figure 2, we see that some of the agent’s expected behavior isalready contained in the value bounds
over its local factor: if an agent is certain of being in roomR1 (i.e. (bX1

)1 = 0), then the action
with the highest-valued bound isShuffle. Likewise, anExchangeshould only be carried out when
the agent is certain of being inL1, but it is an ambiguous action since the agent needs to be surethat
its teammate can cooperate. In Figure 1c we represent the communication map which was obtained
offline through the proposed algorithm. Since there are onlytwo factors, the agent only needs to
make a binary decision of whether or not to communicate for a given local belief point. The belief
points consideredsafeare marked as0, and those associated with a communication decision are
marked as1. In terms of quantitative results, we see that∼ 30 − 40% of communication episodes
are avoided in this simple example, without a significant loss of collected reward.

Another test scenario is the OneDoor environment of [7], which is further described in [6]. In this
49-state world, two agents lie inside opposite rooms, akin to the Relay-Smallproblem, but each
agent has the goal of moving to the other room. There is only one common passage between both
rooms, where the agents may collide. For shorter-horizon solutions, agents may not be able to reach
their goal, and they communicate so as to minimize negative reward (collisions). For the infinite-
horizon case, however, typically only one of the agents communicates, while waiting for its partner
to clear the passage. Note that this relationship between the problem’s horizon and the amount of
communication savings does not hold for all of the problems.The proposed method exploits the
invariance of local policies over subsets of the joint belief space, and this may arbitrarily change
with the problem’s horizon.

A larger example is displayed in Figure 1b. This is an adaptation of theRelay-Smallproblem (aptly
namedRelay-Large) to a setting in which each room has four different states, and each agent may be
carrying a package at a given time. AgentD1 may retrieve new packages from positionL1, andD2

Relay-Small OneDoor Relay-Large
h. Full Comm. Red. Comm. Full Comm. Red. Comm. Full Comm. Red. Comm.
6 15.4, 100% 14.8, 56.9% 0.35, 100% 0.30, 89.0% 27.4, 100% 25.8, 44.1%
10 39.8, 100% 38.7, 68.2% 1.47, 100% 1.38, 76.2% -19.7, 100% -21.6, 62,5%
∞ 77.5, 100% 73.9, 46.1% 2.31, 100% 2.02, 61.3% 134.0, 100% 129.7, 58.9%

Table 1: Results of the proposed method for various environments. For settings assuming full and
reduced communication, we show empirical control quality,online communication usage.
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Relay-Small OneDoor Relay-Large
h 6 10 ∞ 6 10 ∞ 6 10 ∞

Perseus 1.1 4.3 0.1 7.3 33.3 5.3 239.5 643.0 31.5
Comm. Map 5.9 21.4 7.4 12.4 57.7 5.9 368.7 859.5 138.1

Table 2: Running time (in seconds) of the proposed method in comparison to the Perseus point-based
POMDP solver.
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Figure 2: Value bounds for theRelay-Smallproblem. The dashed lines indicate the minimum value
bounds, and the filled lines represent the maximum value bounds, for each action.

can deliver them toL2, receiving for that a positive reward. There are a total of64 possible states for
the environment. Here, since the agents can act independently for a longer time, the communication
savings are more pronounced, as shown in Table 1.

Finally, we argue that the running time of the proposed algorithm is comparable to that of general
POMDP solvers for these same environments. Even though boththe solver and the mapper algo-
rithms must be executed in sequence, the results in Table 2 show that they are typically both in the
same order of magnitude.

5 Conclusions and Future Work

Traditional multiagent planning on partially observable environments mostly deals with fully-
communicative or non-communicative situations. For a morerealistic scenario where communi-
cation should be used only when necessary, state-of-the-art methods are only capable of approxi-
mating the optimal policy at run-time [11, 15]. Here, we haveanalyzed the properties of MPOMDP
models which can be exploited in order to increase the efficiency of communication between agents.
We have shown that these properties hold, for various MPOMDPscenarios, and that the decision
quality can be maintained while significantly reducing the amount of communication, as long as the
dependencies within the model are sparse.

Although one of the main features of these techniques is thatthey may be applied to any given
MPOMDP value function, in some situations this value function may be costly to obtain. As future
work, we will investigate methods for obtaining MPOMDP value functions that are easy to partition
using our techniques.

Acknowledgments

This work was funded in part by Fundação para a Ciência e a Tecnologia (ISR/IST pluriannual fund-
ing) through the PIDDAC Program funds and was supported by project CMU-PT/SIA/0023/2009
under the Carnegie Mellon-Portugal Program. J.M. was supported by a PhD Student Scholarship,
SFRH/BD/44661/2008, from the Portuguese FCT POCTI programme. M.S. is funded by the FP7
Marie Curie Actions Individual Fellowship #275217 (FP7-PEOPLE-2010-IEF).

8



References

[1] Daniel S. Bernstein, Robert Givan, Neil Immerman, and Shlomo Zilberstein. The complexity
of decentralized control of Markov decision processes.Mathematics of Operations Research,
27(4):819–840, 2002.

[2] Xavier Boyen and Daphne Koller. Tractable inference forcomplex stochastic processes. In
Proc. of Uncertainty in Artificial Intelligence, 1998.

[3] X.G. Fang and G. Havas. On the worst-case complexity of integer gaussian elimination. In
Proceedings of the 1997 international symposium on Symbolic and algebraic computation, pages
28–31. ACM, 1997.

[4] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra. Planning and acting in partially observable
stochastic domains.Artificial Intelligence, 101:99–134, 1998.

[5] David A. McAllester and Satinder Singh. Approximate planning for factored POMDPs using
belief state simplification. InProc. of Uncertainty in Artificial Intelligence, 1999.

[6] J.V. Messias, M.T.J. Spaan, and P. U. Lima. Supplementary material for “Efficient Offline
Communication Policies for Factored Multiagent POMDPs”. ISR/IST, 2011.

[7] Frans A. Oliehoek, Matthijs T. J. Spaan, and Nikos Vlassis. Dec-POMDPs with delayed com-
munication. InMulti-agent Sequential Decision Making in Uncertain Domains, 2007. Workshop
at AAMAS07.

[8] Frans A. Oliehoek, Matthijs T. J. Spaan, Shimon Whiteson, and Nikos Vlassis. Exploiting
locality of interaction in factored Dec-POMDPs. InProc. of Int. Conference on Autonomous
Agents and Multi Agent Systems, 2008.

[9] P. Poupart and C. Boutilier. Value-directed belief state approximation for POMDPs. InProc. of
Uncertainty in Artificial Intelligence, volume 130, 2000.

[10] David V. Pynadath and Milind Tambe. The communicative multiagent team decision problem:
Analyzing teamwork theories and models.Journal of Artificial Intelligence Research, 16:389–
423, 2002.

[11] M. Roth, R. Simmons, and M. Veloso. Decentralized communication strategies for coordinated
multi-agent policies. InMulti-Robot Systems: From Swarms to Intelligent Automata, volume IV.
Kluwer Academic Publishers, 2005.

[12] Maayan Roth, Reid Simmons, and Manuela Veloso. Exploiting factored representations for
decentralized execution in multi-agent teams. InProc. of Int. Conference on Autonomous Agents
and Multi Agent Systems, 2007.

[13] Matthijs T. J. Spaan, Frans A. Oliehoek, and Nikos Vlassis. Multiagent planning under uncer-
tainty with stochastic communication delays. InProc. of Int. Conf. on Automated Planning and
Scheduling, pages 338–345, 2008.

[14] Chelsea C. White. Partially observed Markov decision processes: a survey.Annals of Opera-
tions Research, 32, 1991.

[15] Feng Wu, Shlomo Zilberstein, and Xiaoping Chen. Multi-agent online planning with commu-
nication. InInt. Conf. on Automated Planning and Scheduling, 2009.

9


