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Abstract. Decentralized Partially Observable Markov Decision Pro-
cesses (Dec-POMDPs) provide powerful modeling tools for multiagent
decision-making in the face of uncertainty, but solving these models
comes at a very high computational cost. Two avenues for side-stepping
the computational burden can be identified: structured interactions be-
tween agents and intra-agent communication. In this paper, we focus on
the interplay between these concepts, namely how sparse interactions
impact the communication needs. A key insight is that in domains with
local interactions the amount of communication necessary for successful
joint behavior can be heavily reduced, due to the limited influence be-
tween agents. We exploit this insight by deriving local POMDP models
that optimize each agent’s communication behavior. Our experimental
results show that our approach successfully exploits sparse interactions:
we can effectively identify the situations in which it is beneficial to com-
municate, as well as trade off the cost of communication with overall task
performance.

1 Introduction

Decentralized Partially Observable Markov Decision Processes (Dec-POMDPs)
provide powerful modeling tools for multiagent decision-making with limited
sensing capabilities in stochastic environments. However, the prohibitive com-
putational cost required to compute an optimal decision rule renders them in-
tractable except for the smallest of problems.3 In the literature, two avenues
for side-stepping the computational burden can be identified: localized inter-

actions between agents—where the actions of each agent depend on the other
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3 Dec-MDPs are known to be NEXP-complete even in 2-agent scenarios.



agents only in specific, localized situations [1–7]—and intra-agent communica-

tion—where agents are able to communicate with one another so as to partly
mitigate the impact of partial observability [8–15]. In this paper, we focus on
the interplay between these concepts, namely how sparse interactions impact
the communication needs.

A key insight is that in domains with local interactions the amount of com-
munication necessary for successful joint behavior can be heavily reduced, due
to the limited influence between agents. Several previous works have implicitly
relied on this observation, exploring sparse interactions by having agents share
information locally [5, 7, 11, 16, 17]. In this work, we explicitly reason about the
benefits of communication/information sharing in scenarios with sparse interac-
tions. Sparse interactions enable, to some extent, decoupling the decision-process
of the different agents. We leverage such decoupling to derive local models that
optimize each agent’s communication behavior, allowing it to overcome partial
observability in those situations where decoupled decisions are not possible.

We provide a new way of optimizing communication by proposing a model
in which agents need to plan about when to query other agents’ local states,
which we call QueryPOMDP. We observe that to execute optimal joint poli-
cies in fully observable scenarios—policies which can be computed efficiently—
agents will generally need to reason about the state of other agents. However, in
scenarios where interactions are sparse, this need will be greatly reduced. Our
approach thus relies on the interplay between sparse interactions and their im-
pact on the communication needs for executing fully observable policies. Our
agents construct a local POMDP model of the environment from the fully ob-
servable joint policy of all other agents. Solving this POMDP model allows the
agent not only to determine how to solve the task at hand but also to determine
when to query the local state of the environment. Our approach thus allows
the agents to explicitly reason about communication, without incurring in the
prohibitive computational cost of Dec-POMDP models that include communi-
cation [18]. Furthermore, in contrast to many methods in the literature [11,14],
QueryPOMDP can properly handle noisy communication channels, and does
not require strong independence assumptions [19]. Our empirical analysis on
benchmark problems demonstrates the efficacy of QueryPOMDP in balancing
communication costs with coordination benefits.

The remainder of this work is organized as follows. First, Section 2 briefly
introduces the relevant background regarding Dec-POMDP models, followed by
a motivating example which is presented in Section 3. Section 4 describes our
proposed model for state querying, and how it can be solved for multiple agents.
Experiments are presented in Section 5, followed by a discussion of related re-
search in Section 6. Finally, Section 7 concludes and describes future work.

2 Background

We start by reviewing Decentralized Partially Observable Markov Decision Pro-

cesses (Dec-POMDPs) and related decision theoretic models. An N -agent Dec-



POMDP M can be specified as a tuple M = (N,X , (Ak), (Zk),P, (Ok), r, γ),
where:

– X is the joint state-space;
– A = ×N

i=1
Ai is the set of joint actions, with each Ai the individual action

set for agent i, i = 1, . . . , N ;
– Each Zi, i = 1, . . . , N, represents the set of possible local observations for

agent i;
– P(y | x, a) represents the transition probabilities from joint state x to joint

state y when the joint action a is taken;
– Each Oi(zi | x, a), i = 1, . . . , N, represents the probability of agent i making

the local observation zi when the joint state is x and the last joint action
taken was a;

– r(x, a) represents the expected reward received by all agents for taking the
joint action a in joint state x;

– The scalar γ is a discount factor.

An N -agent Decentralized Markov decision process (Dec-MDP) is a particular
class of Dec-POMDP in which the state is jointly fully observable. Formally this
can be translated into the following condition: for every joint observation z ∈ Z,
with Z = ×N

i=1
Zi, there is a state x ∈ X such that P [X(t) = x | Z(t) = z] = 1,

where X(t) is the joint state of the process at time t and Z(t) the corresponding
joint observation. Although apparently simpler, optimally solving of a Dec-MDP
is in the same complexity class as optimally solving a Dec-POMDP. A partially

observable Markov decision process (POMDP) is a 1-agent Dec-POMDP and
a Markov decision process (MDP) is a 1-agent Dec-MDP. Finally, an N -agent

multiagent MDP (MMDP) is an N -agent Dec-MDP that is fully observable,
i.e., for every individual observation zi ∈ Zi there is a state x ∈ X such that
P [X(t) = x | Zi(t) = zi] = 1.

In this partially observable multiagent setting, an individual (non-Markov)
policy for agent i is a mapping πi : Hi −→ ∆(Ai), where ∆(Ai) is the space of
probability distributions over Ai, and Hi is the set of all possible finite histories
for agent i. The purpose of all agents is to determine a joint policy π that
maximizes the total sum of discounted rewards. In other words, considering a
distinguished initial state x0 ∈ X that is assumed common knowledge among all
agents, the goal of the agents is to maximize

V π = Eπ

[

∞
∑

t=0

γtr
(

X(t), A(t)
)

| X(0) = x0

]

. (1)

For a more detailed introduction to Dec-POMDPs and related models see, for
example, [20].

3 A Motivating Example

Multi-robot systems constitute a primary motivation for our work and provide
a natural example of the class of problems considered herein. In multi-robot



Robot 1 Robot 2

Goal 1Goal 2

Doorway

Fig. 1. H-Environment, where two robots
need to interact only around the nar-
row doorway to reach their corresponding
goals. The shaded arrows correspond to a
possible policy for Robot 2 in the absence
of Robot 1.

systems, interaction among robots is naturally limited by the robot’s physical
boundaries (workspace, communication range, etc.) and limited perception ca-
pabilities. It is therefore natural to subdivide the overall task into smaller tasks
that each robot can execute either autonomously or as part of a small group.
Moreover, besides being embedded in a physical environment, robots typically
have a way of communicating among themselves.

We motivate our ideas in a simple navigation scenario, depicted in Fig. 1. In
this scenario, two robots (Robot 1 and Robot 2) must navigate to their corre-
sponding goal states (marked as Goals 1 and 2). At the same time, they must
avoid colliding in the narrow doorway (the central state), since it leads to a
large penalty. Each robot has 4 possible actions (namely “Move North”, “Move
South”, “Move East” and “Move West”) that move the robot in the correspond-
ing direction. The motion of one robot does not depend on the position or action
of the other robot except in the doorway: if the robots collide in the doorway,
then their actions have an increasing failure probability. Complicating matters,
initially each robot starts uniformly at random in one of the 10 locations on its
side of the doorway.

In a fully observable situation, the agents will move toward their respective
goals. When reaching the doorway, if the other robot is also close to the doorway
one of the two will stop so that the other can safely traverse.4 It will then resume
its trajectory to its goal.

In order for the agents to actually execute the policy just described, they
only need to reason about the state of the other agent when reaching the darker
area in their starting side of the environment. And then, once one robot is in
the doorway, it can just proceed toward its goal, independently of the state of
the other robot. Moreover, even if the robots are generally unable to observe the
position of the other robot, but they are able to query it, they can reasonably
assume that the other robot will behave more or less as in the fully observable

4 Which one stops is determined by the joint policy they adopt.



scenario. This observation is the departing point for the model and approach
proposed in this paper and described in the continuation.

4 A Model for State Querying

We depart from an N -agent Dec-MDP model, and address the problem of when
communication can be beneficial to improve the performance in such a model.
For the purposes of our study, we momentarily focus on the decision processes of
all except one agent, which we refer to as agent k. Unlike other communication-
based approaches to Dec-MDPs (e.g., [11]), we adopt a relatively general com-
munication model, in which the messages received by an agent are taken as part
of its local (noisy) observation. Also, messages received by agent k depend on
explicit information-querying actions executed by k.

Throughout this section, we represent the (finite) state-space of the Dec-
MDP as a set X and assume that it can be factorized as X = Xk ×X−k, where
the elements xk ∈ Xk correspond to agent k’s local state. The state at time t,
X(t), is thus a pair 〈Xk(t), X−k(t)〉. We also assume that the observations of
each agent do not depend on the actions of the remaining agents, i.e.,

P [Zi(t) = zi | X(t), A(t)] = P [Zi(t) = zi | X(t), Ai(t)] ,

for all i = 1, . . . , N . Therefore, we can simply write the observation probabilities
as Oi(zi | x, ai), i = 1, . . . , N .

4.1 Query Actions and Resulting Observations

For the purpose of allowing our agent to reason about communication, we as-
sume that each agent has the ability to query the other agents for their local
state information. In order to make this explicit, we differentiate between com-

munication actions and the remaining actions—henceforth referred as primitive

actions, and write the set of individual actions for agent k as the cartesian prod-
uct of the set of communication actions, AC

k
, and the set of primitive actions,

AP

k
, i.e., Ak = AC

k
×AP

k
. We also assume that transition probabilities are inde-

pendent of the communication actions,

P(y | x, 〈a−k, (a
C

k , a
P

k )〉) = P(y | x, 〈a−k, (b
C

k , a
P

k )〉)

for any x, y ∈ X , a−k ∈ A−k, a
P

k
∈ AP

k
and aC

k
, bC

k
∈ AC

k
.

We also differentiate between communication observations—i.e., observa-
tions that result from communication actions—and primitive observations, that
do not depend on the communication actions. Formally, we write the set of indi-
vidual observations for agent k as the cartesian product of the set of communi-
cation observations, ZC

k
, and primitive observations, ZP

k
, i.e., Zk = ZC

k
× ZP

k
.

Communication observations correspond to either the local state of other agents
or the null observation, 0, i.e., ZC

k
= X−k ∪ {0}. Moreover, we consider that
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Fig. 2. The factored decision model, from agent k’s perspective.

communication observations do not depend on primitive actions, and that prim-
itive observations do not depend on communication actions. This means that we
can decouple the observation probabilities as

Ok

(

(zCk , zPk ) | x, (a
C

k , a
P

k )
)

= O
C

k (z
C

k | x, aCk )O
P

k (z
P

k | x, aPk ),

where

O
C

k (z
C

k | x, aCk ) = P
[

ZC

k (t) = zCk | X(t) = x,AC

k (t) = aCk
]

O
P

k (z
P

k | x, aPk ) = P
[

ZP

k (t) = zPk | X(t) = x,AP

k (t) = aPk
]

.

Finally, we assume that the reward function can also be decomposed as the
sum of two components. The first component, denoted rC , concerns the cost of

communication and is independent on the primitive actions of agent k and on the
actions of the other agents. The second component, denoted as rP corresponds
to the “regular” (or domain-level) reward defining the overall goal of the agents.
It is assumed independent of the communication actions of agent k. Formally, if
a = 〈a−k, ak〉 and ak = (aC

k
, aP

k
), this means that the reward r can be written

as

r(x, a) = rP (x, 〈a−k, a
P

k 〉) + rC(x, aCk ). (2)

Figure 2 depicts a dynamic Bayesian network that summarizes all above consid-
erations.

Following the discussion in Section 3, and for the purpose of its planning
process, agent k will treat all remaining agents as if they follow a Markov policy,
π−k, that corresponds to the optimal policy for the underlying MMDP. This
policy, being Markovian, depends only on the state of the system at time t,
X(t), i.e.,

P [A−k(t) = a−k | H(t)] = P [A−k(t) = a−k | X(t) = x] = π−k(x, a−k), (3)



where A−k(t) denotes the action taken by all agents other than k at time t, H(t)
denotes the whole history of the process up to time t and a−k ∈ A−k. From this
perspective, the decision process for agent k can be modeled as a (single-agent)
POMDP that we describe in the next section.

4.2 POMDP Model for a Single Agent

Let M = (N,X , (Ak), (Zk),P, (Ok), r, γ) be a Dec-MDP as described above.
Let π−k denote the (state-dependent) joint MMDP policy for all agents other
than k. We can now denote the single-agent POMDP model for agent k as a
tuple Mk = (X ,Ak,Zk,Pk,Ok, rk, γ), where:

– X corresponds to the original Dec-MDP state-space.
– Ak is the individual action-space for agent k.
– Zk is the individual observation-space for agent k.
– Pk are the transition probabilities obtained from the original transition prob-

abilities. In particular, given an action ak = (aC
k
, aP

k
), we have

Pk(y | x, ak) =
∑

a
−k∈A

−k

π−k(x, a−k)P(y | x, 〈a−k, a
P

k 〉).

– Ok are the observation probabilities for agent k, that match the original Dec-
MDP observation probabilities. In particular, given an action ak = (aC

k
, aP

k
),

we have
Ok(zk | x, ak) = O

C

k (z
C

k | x, aCk )O
P

k (z
P

k | x, aPk ), (4)

where zk = (zC
k
, zP

k
).

– rk is the reward function obtained from the original Dec-MDP reward func-
tion after averaging over the other agents’ policy, π−k, i.e.,

rk(x, ak) =
∑

a
−k∈A

−k

π−k(x, a−k)r(x, 〈a−k , ak〉).

Given this POMDP model, we can use standard POMDP solution techniques
to explore the trade-off between the costs and benefits of communication for
agent k.

4.3 Results for the H-environment Example

Continuing the example of Section 3, the application of our model allows us to
better understand under which circumstances the benefits of using communica-
tion compensate for its costs. For this purpose, we fix the policy of Agent 2 as
shown in Fig. 1, which corresponds one possible joint MMDP policy for this en-
vironment. As explained above, given such a policy we can construct a POMDP
from the point of view of Agent 1, in which it can query Agent 2’s states at
any time step, at a particular communication cost. For illustration purposes, the
initial state of Agent 2 is selected randomly on the right half of the environment.
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Fig. 3. Results for the H-environment. (a)-(c) Query frequency in each state for
Agent 1, varying in deterministic (Det. P) or noisy (Noisy P) transitions and com-
munication cost.

We test several experimental conditions that include the presence or absence of
transition noise and different costs for the communication actions.

We examine in which states Agent 1 queries Agent 2’s state. When commu-
nication is free (Figs. 3(a) and (b)), Agent 1 queries in all the states it passes
through.5 With a communication cost of 0.3 (Fig. 3(c)), however, it only queries
when near to and left of the doorway. In these states it is crucial to know
Agent 2’s location to avoid potential collisions, an intuition that is exploited
automatically by our model. The use of a POMDP model in this context en-
sures that the agent explicitly reasons about information gathering which, in
our setting, translates in weighting the benefits of communication in terms of
the overall task against the costs associated with it.

4.4 Computing Policies for Multiple Agents

In the previous section we proposed using a POMDP model to compute the
policy for one agent k, treating all other agents as if they were following the
optimal joint policy for the underlying MMDP. Given this POMDP model for
agent k we can compute the corresponding optimal policy using any preferred
POMDP solution technique. We use this approach to better understand the
communication needs of one agent in a simple multiagent navigation scenario,
and to determine in which situations the cost of communication outweighs its
value.

We now want to extend these ideas and actually compute the policy for all
agents in the Dec-MDP. The idea of using POMDP models to plan in multiagent
scenarios has been previously explored in the Dec-POMDP literature [21, 22].
The general difficulty with these approaches arises from the fact that each agent
has only a local observation of the joint state of the world. This implies that,

5 We note that, due to the transition noise, an agent can remain in the same state
more than one consecutive time-step, and hence the values > 1.



when planning for agent k, the POMDP model necessary to properly capture
the behavior of all agents other than k can either be prohibitively large, require
agent k to reason about how the other agents reason about agent k’s state,
leading to infinitely nested beliefs, or both [21, 22].

In our approach, we rely on the intuition discussed in Section 3, according to
which the use of active communication allied with sparse interactions may actu-
ally alleviate the difficulties associated with planning in multiagent systems with
partial observability. We plan for each agent k while treating all other agents
as if following the optimal joint MMDP policy. In scenarios where interactions
are sparse, the general behavior of the agents is expected to roughly follow the
MMDP policy, as discussed in Section 3 and in those situations where coordina-
tion is necessary, agents can resort to communication, but weighting the benefits
of such communication with the associated costs.

Several previous works have already studied the benefits of exploiting commu-
nication and structured interactions separately (see, for example, [5,6,8]).6 The
novelty in our approach lies precisely on the fact that we can explicitly exploit
the interplay between these two aspects (communication and sparse interactions)
to attain efficient planning in multiagent problems. Section 5 describes the ap-
plication of our approach in several navigation scenarios of different dimensions.
Our results empirically show that our approach is indeed able to make effective
use of communication and attain a performance that indeed approaches that
observed in fully observable settings.

5 Experiments

In this section we illustrate the application of our method to several navigation
scenarios from the POMDP and Dec-POMDP literature. We use robot navi-
gation scenarios (Fig. 4), since our model is particularly suited for modeling
multi-robot problems. Furthermore, results can be easily visualized and inter-
preted in this class of problems.

Experimental Setup In each of the test scenarios, each of two (identical)
robots departs from one of the locations marked with a dot, and must reach the
state marked with a circle that is furthest from its initial state. Each robot has 4
actions that move the robot in one of the four possible direction with probability
0.8 and fail with probability 0.2, plus a fifth “NoOp” action.

All agents have full local state observability. The shaded regions correspond to
areas inside of which the agents are able to successfully communicate, i.e., when
an agent queries another agent, it incurs a cost of −0.1 and successfully observes
the local state of the queried agent with a probability of 0.8. With a probability
of 0.2 it receives no observation about the state of the other. In the white cells,
an agent is never able to perceive the state of the other, but still incurs a penalty
of −0.1 if it attempts to communicate. In other words, the agents can always

6 We refer to Section 6 for a detailed discussion of related approaches.



(a) Map 01. (b) Map 02. (c) Map 03.

(d) pentagon. (e) cit. (f) isr.

(g) suny. (h) mit.

Fig. 4. Environments used in the experiments.

attempt to communicate, incurring in a penalty of −0.1 (rC(x) = −0.1 for all
x ∈ X ), but only in the shaded areas does communication succeed (with high
probability). The darker cells correspond to states where the agents receive a
penalty of −20 when standing there simultaneously, in which case the rate of
action failure is also increased to 0.4 for both agents. When an agent reaches
its goal position, it receives a reward of 10 and moves to a rewardless absorbing
state. Throughout the experiments, we used γ = 0.95.

For each of the test scenarios, following the approach in Section 4, we compute
the optimal MMDP joint policy that we use to determine a POMDP model
describing the decision process for each individual agent. This POMDP is then
solved using the Perseus approximate solver [23]. We test our QueryPOMDP

policy for 100 independent trials of 250 steps each and measure the obtained
performance in terms of total discounted reward. We also test the performance
of other sets of agents that communicate at different (but fixed) frequencies (see
Table 1(a)):

– “Never Comm” agents never communicate. These agents observe only their
local state, and each follows the optimal policy for the underlying single-
agent MDP obtained by disregarding the other agent in the environment;

– “Always Comm” agents communicate at every time-step, incurring the cor-
responding penalty. As QueryPOMDP agents, they are subject to commu-



Table 1. (a) Main differences between the groups of agents used. (b) Total discounted
reward for each set of agents in each of the test-scenarios. Entries in italic in the same
column are not statistically different.

(a) Different methods used.

Agents
Comm. Succ. Failed

Freq. Comm. Comm.

QueryPOMDP Variable POMDP POMDP
Never Comm Never − Indiv. MDP
Always Comm 1 step MMDP Indiv. MDP
Comm k = 2 2 steps MMDP Indiv. MDP
Comm k = 3 3 steps MMDP Indiv. MDP
Comm k = 4 4 steps MMDP Indiv. MDP

(b) Experimental results.

Environment Map 1 Map 2 Map 3 cit isr mit Pent. suny

# States 441 1, 296 400 4, 900 1, 849 2, 401 2, 704 5, 476

QueryPOMDP 5.132 3.598 6.156 5 .260 6 .755 2 .964 6.444 5 .328

Never Comm −1.834 0.900 1.917 5 .306 6.663 2 .959 5.641 5 .283

Always Comm 1.961 2.248 3.276 3.286 4.779 1.116 5.038 3.297
Comm k = 2 −0.069 1.097 3.001 4.306 5.839 2.141 5.578 4.294
Comm k = 3 −0.127 1.707 1.564 4.666 6.114 2.426 5.246 4.646
Comm k = 4 −0.785 1.289 3.295 4.324 5.760 2.106 5.448 4.317

mmdp 5.787 5.253 6.608 5 .305 6 .817 3.182 7.606 5 .297

nication errors/limitations and, as such, are not always able to perceive the
state of the other agent. When communication fails, the agent observes only
its local state and adopts the individual MDP policy. When communication
succeeds, it adopts the underlying MMDP policy.

– “Comm k = 2, 3, 4” agents query the state of the other agent every k steps.
Except for the different communication frequency, they are otherwise similar
to “Always Comm” agents.

Comparisons between these different agents will allow us to analyze (i) the im-
pact that communication costs can have on performance, if communication is
not optimized; and (ii) the impact that communication can have in mitigating
partial observability. As discussed ahead, direct comparison against other meth-
ods such as the one in [11] is not very informative, as these do not trade-off
communication costs with task performance.

Results and Discussion The performance of the 6 agent groups in terms of
total discounted reward is summarized in Table 1(b). As a reference against
which to assess the quality of our computed policy we also provide the results



for the MMDP optimal policy in the different environments, providing a perfor-
mance upper bound. The QueryPOMDP approach performs very favorably,
outperforming all other policies and coming close to the MMDP upper bound in
several of the tested scenarios.

The results in Table 1(b) prompt several interesting observations. First, com-
paring the performance of the MMDP policy against that of the group that never
communicates provides an important indication of how critical coordination is
in a given scenario. NeverComm agents act individually, disregarding the exis-
tence of other agents in the environment. In environments where coordination is
critical, NeverComm agents will perform poorly. MMDP agents, on the other
hand, always act in a perfectly coordinated manner, in which coordination does
not come at a cost. In an environment where little coordination is needed, the
difference between these two groups is going to be small. In contrast, scenar-
ios that require significant coordination will cause the performance of the two
groups to significantly differ.

From Table 1(b), we can see that coordination is critical in the smaller en-
vironments (Maps 1-3). In the larger environments, such as cit, mit and suny,
coordination is less critical. The results in the smaller environments illustrate
the impact of effective communication in mitigating the effects of partial ob-
servability. Our method is actually able to attain a performance very close to
that of the MMDP agents, even paying for communication. Additionally, our
approach uses communication efficiently, since the performance of all other com-
municating agents is significantly inferior. In contrast, in cit, mit and suny,
non-communicating agents actually attain optimal performance. The difference
in performance to the communicating groups can be explained by the com-
munication penalty. Again, in these scenarios, our approach is able to manage
communication needs, as it performs similarly to non-communicating agents.

A second observation is that the MMDP performance is an upper bound on
the optimal Dec-MDP performance. This means that in those scenarios where
our approach performs close to or as well as the MMDP group, we can immedi-
ately conclude that it is also performing close to or as well as the optimal Dec-
MDP policy. A general comparison of the performance of our method against
that of the MMDP group indicates that our method, if not optimal, must be
very close to optimal in most scenarios tested. This, in turn, indicates that ap-
proximating the behavior of our agents with that of MMDP agents does provide
a solid basis for planning.

We also applied our approach to a benchmark problem from the Dec-POMDP
literature, namely the firefighting problem with 3 houses and 3 fire levels [24].
In this scenario, the QueryPOMDP agents are allowed to communicate at a
cost, but no observation results out of it, since there is no communication in the
original problem. Allowing for no shared information among agents renders our
version of the firefighting problem effectively equivalent to the original problem
and thus enables a meaningful comparison between the two methods.

Applying our method in the firefighting problem provides useful insights into
two important aspects of our method. First, on the trade-off between communi-



Table 2. Results of QueryPOMDP in the Firefighting problem [24].

Problem Dimension QueryPOMDP Optimal

Firefighters [24] 432 −7.679 −7.176

cation costs and benefits, our method should figure out that communication is
useless in this setting and effectively not use it. Second, concerning the general
applicability of our method, the results should shed some light on whether the
proposed approximation provides meaningful information in scenarios with local
interactions sense, i.e., if each agent, by assuming the other agents to behave
according to the MMDP policy, are still able to make good decisions.

The performance of our approach is summarized in Table 2, corresponding
to the total reward obtained over a 6-step run, averaged over 1, 000 independent
Monte Carlo trials. For comparison, we also provide the optimal value for the
6-step horizon, reported in [25]. As expected, the QueryPOMDP agents learn
not to use communication. Moreover, although the firefighting problem does not
strictly adhere to the setting considered in this paper, it still exhibits some level
of independence that our approach is successfully able to leverage—the difference
in obtained performance is statistically not significant.

Summarizing, our results show that, in scenarios with sparse interactions like
the ones analyzed, our agents behave approximately as MMDP agents, effectively
using communication to mitigate the effects of partial observability.

6 Related work

In the Dec-POMDP literature, early approaches introduced the idea of transition
and reward independence as forms of simplified interactions [26]. Further exam-
ples of models with sparse interactions include interaction-driven Markov games

(IDMGs) [5, 17], distributed POMDPs with coordination locales [7], transition-
decoupled POMDPs [6], factored Dec-POMDPs [4], and models relying on event-
driven interactions [3, 27].

Our representation is closest to IDMGs [5], which leverage independence be-
tween different agents in a Dec-POMDP to decouple the decision process in
significant portions of the joint state-space. In those situations in which agents
interact, IDMGs rely on communication to bring down the the computational
complexity of the joint decision process. The use of communication to overcome
partial observability sets this approach apart from other approaches that also
exploit local interactions. However, communication is assumed to always take
place and to be error-free [5]. In our case, we add explicit query actions to
the agents action repertoires, enabling them to ask another agent’s state, un-
der environment-specific constraints. For instance, two robots may only be able
to share information when they are physically close. We further assume that
communication is not error-free and comes at a cost that must be considered.



Explicit communication in multiagent planning was already addressed in [18],
where the proposed Com-MTDP model allows agents to explicitly reason about
communication in Dec-POMDP scenarios. However, being a generalization of
Dec-POMDPs, it shares the discouraging computational complexity of the lat-
ter model. The actual process of communication has been investigated in [28].
Roth et al. [11] propose to exploit a factored Dec-MDP model and policy repre-
sentation, in which agents query other agents’ local states when this knowledge
is required for choosing their local actions. Although this work already seeks to
optimize communication, this optimization is conducted parallel with the under-
lying decision process. Therefore, the cost of communication does not directly
translate in the agent’s task performance, as in our proposed approach, ren-
dering the tradeoff between communication costs and benefits unclear. Another
closely related work is that of Wu et al. [14] where communication is used as a
means to decrease the planning complexity in Dec-POMDP models. Like in our
proposed approach, this work considers that communication may not always be
available. However, unlike our approach, this work does not consider explicitly
optimization of communication. Finally, Mostafa and Lesser [16] do optimize
communication, while considering the presence of communication limitations.
However, this optimization is also conducted parallel with the underlying deci-
sion process, without directly impacting in the agent’s task performance. Also,
none of the aforementioned methods considers noisy communication channels.

A key point in our approach is that, although we use the MMDP policy in
our planning, its computation is significantly more efficient than computing a
centralized policy for the actual partially observable decision problem. The fact
that we plan individually for each agent is somewhat related to several works
that use round-robin policy optimization to individually optimize the policy of
different agents in Dec-POMDP settings. One of the early examples is the JESP
algorithm [21], which also models agents individually as POMDPs, but does
not use communication. Round-robin policy optimization has been used to learn
communication primitives in Dec-POMDPs whose base models are transition
and observation independent [12], but which are coupled through the communi-
cation actions agents can choose to execute. In that case, however, agents have
to learn when sending a particular message will be beneficial for team perfor-
mance, which is far from trivial given that the policy of the receiving agent
does not exploit the information provided by incoming messages. In our case,
however, agents can opt to query other agents’ states, and it is much easier to
determine when doing so improves performance. Secondly, we consider a much
richer model where agents also “physically” influence each other, instead of only
through communication.

7 Conclusions

In this paper, we analyzed the interplay between sparse interactions and com-
munication in multiagent planning. We observed that, in scenarios where in-
teractions among agents are sparse (i.e., intra-agent action coordination is only



infrequently necessary), the distributed execution of an MMDP policy seldom
requires full-state information. As such, if each agent is (individually) allowed to
query other agents for their local state information when necessary, it may be
possible to partly mitigate partial state observability and leverage more efficient
planning approaches.

Relying on this insight, we proposed the use of a POMDP model to ana-
lyze the communication needs of an agent in a Dec-MDP scenario where the
interaction between the agents is sparse. Our model accommodates communica-
tion costs and failures—the agent must explicitly reason about these factors in
its decision process. QueryPOMDP allows agents to optimize communication,
explicitly trading-off its costs with its benefits in terms of the underlying task.

We used our approach to optimize communication in the simple scenario
of Fig. 1, where our approach was successfully able to capture the intuition
that the fundamental states for coordination are those around the doorway.
We further explored the usefulness of this approach in computing policies for
larger and more general Dec-MDPs. We built POMDP models for each agent by
considering the other agents to behave as if in an MMDP, and use the obtained
POMDP optimal policies. Our results show that our agents are able to effectively
using communication to mitigate the effects of partial observability, behaving
approximately as MMDP agents. One important avenue of future work is to
generalize these techniques beyond Dec-MDPs, to scenarios in which agents can
query other agents’ observations instead of states.
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