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Abstract—To protect sensitive information on smartphones,
state-of-the-art (SoA) studies exploit the built-in camera to
capture PPG signals from fingertips as a hard-to-forge biometric.
However, those studies do not provide a comprehensive analysis
to optimize the camera parameters and finger pressure, leading
to distorted and unstable PPG signals that degrade the authen-
tication performance. To overcome these limitations, we propose
the CamPressID framework. First, we analyze various camera
parameters and optimize their configuration to obtain PPG
signals with a high signal-to-noise ratio. Second, we investigate
different finger pressures to identify the best pressure for every
subject, in order to avoid signal distortion. To evaluate the
performance of CamPressID, we collect a diverse dataset with
58 subjects. Our evaluation results show that CamPressID can
improve the average balanced accuracy (BAC) by 10%. Moreover,
the BAC reaches 90%, which is similar to the accuracy reported
in the SoA using a dedicated PPG sensor for authentication.

I. INTRODUCTION

To protect user privacy, current smartphone authentica-
tion systems leverage external biometric features such as
fingerprints and facial structures. These external biometrics,
however, can be forged. For example, fingerprints can be
recreated in latex from touched objects [1]; and pictures from
the Internet can be used to fool face recognition systems [2].

To address the fundamental drawback of external features,
researchers are investigating internal biometric features con-
cealed under our skin, which are harder to forge. An internal
biometric feature that is attracting interest is the cardiac
pattern because they are uniquely defined by the heart, lung
and vein structures of an individual. Cardiac signals can be
captured with a photoplethysmogram (PPG) sensor, which
measures the changes in the blood volume via the absorption
of light. PPG sensors rely on two key factors: 1) the use of
LEDs and photodiodes in the near infrared spectrum, and
2) a steady pressure guaranteed by a finger clip, as shown
in Figure 1(a). These two properties allow capturing stable
cardiac signals, as illustrated in Figure 1(b).

The flashlight and camera on smartphones can also be used
to capture PPG signals, as shown in Figure 1(c). However,
the signal quality degrades significantly, as depicted in Fig-
ure 1(d), because the required spectrum and finger clip are
no longer present. Some SoA studies using PPG signals from
the camera report unsatisfying performances, with an equal
error rate of around 20% [3]). Although some studies have
optimized part of the camera parameters, such as in [4], they
still need to collect PPG signals in a controlled manner to
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Figure 1: Cardiac signal obtained with a PPG sensor and a smartphone.

achieve a good performance. None of these studies have con-
ducted a comprehensive analysis over the camera parameter
configuration or the pressure control on the camera.

In this work, we analyze the effect of PPG signals captured
with cameras for authentication. Our contributions are:

Contribution 1: Camera Configuration [Section III]. Cam-
eras are designed for taking pictures and recording videos.
Using cameras to capture PPG signals leads to poor signal
quality as shown in Figure 1(d). We investigate and configure
all camera parameters to render a PPG signal that is as similar
as possible to the one captured with a dedicated sensor.

Contribution 2: Pressure Control [Section IV]. Pressure
plays an important role in signal distortion. Without a finger
clip, SoA systems using cameras have no control on pressure.
We investigate the optimal pressure and provide feedback to
the user to maintain such pressure. By doing so, we achieve
stable PPG signals for every subject without any add-ons.

Contribution 3: Thorough Evaluation [Sections VI & VII].
We collect a dataset with 58 subjects. This dataset is bigger and
more balanced than other datasets used in SoA [4], [5]. Our
results show that the average balanced accuracy is above 90%,
matching the performance of SoA studies using PPG sensors,
which is 10% superior to SoA systems using cameras.

II. SYSTEM OVERVIEW

To improve the quality of the signals captured from cameras,
we propose two methods that can be easily added to existing
authentication solutions: camera configuration and pressure
control. First, we analyze the effect of all camera parameters
to configure the camera for PPG signal collection (as opposed
to optimizing it for pictures and videos). Second, the system
asks the subject to use different pressure levels. Based on
these levels, the system identifies the optimal pressure and
provides feedback to the subject to maintain such level. After



Table I: Camera configurations in the SoA [3]–[5]. The table shows the default camera values for light and dark skin, and our optimized configuration. The
parameters in red means it is studied and controlled. (DC: default configuration; γ: gamma correction; DPS: dynamic pixel selection; −: hardware-limited;
×: not evaluated; ✓: evaluated but the value is not reported.)

Configuration Smartphone Frame rate Frame
resolution Flashlight Aperture ISO Shutter

speed
White

balance γ ROI

[3] Iphone X 240 fps 1280*720 × − ✓ ✓ ✓ × ×
[5] Iphone 7 60 fps × × − 20 200 × × selected pixels
[4] Iphone 7 60 fps 1280*720 ✓ − ✓ × × × DPS

DC for light skin Moto G7 plus 30 fps 320*240 − − 100 1/729 4474 K × All pixels
DC for dark skin Moto G7 plus 30 fps 320*240 − − 100 1/611 4858 K × All pixels
Our configuration Moto G7 plus 30 fps 320*240 − − 100 1/400 6600 K 1 Central 1/4
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Figure 2: Comparison between
variance and CTE.
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Figure 3: RGB values in different
color temperature [6].
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Figure 4: Gamma correction maps
camera curve to human perception.

Table II: PPG amplitude (in pixel intensity)
under different camera settings.

Shutter Speed
ISO 1/200 1/400 1/800 1/2000
100 10.032 11.1327 5.594 2.3122
200 4.7356 6.0337 10.659 3.2671
400 2.0377 4.2761 9.5248 8.1455
800 0.0102 2.7351 7.3982 7.4224

these steps, our system processes the PPG signals and uses
the authentication methods reported in the SoA.

The accuracy of authentication systems depends on two
factors: i) the shape of PPG periods from the same subject
should be similar (short intra-class distance), and ii) the
morphology of different subjects should be distinct (long inter-
class distance). In this work, we refer to the shape of PPG
periods as morphology. If the morphology of each subject
diverges, morphologies from different subject will overlap with
others, which will lead to a huge decline in the authentication
performance. Therefore, a stable morphology for each subject
is essential to PPG authentication.

To check the morphology convergence, we need a high
signal-to-noise ratio (SNR) to detect the PPG signal. Conse-
quently, we introduce two indicators to assess the improvement
of our two methods: PPG amplitude and cross-track-error
(CTE). PPG amplitude can map to SNR. Within the duration of
a PPG signal, the PPG amplitude captures the average peak-to-
peak values of all periods. For CTE, it calculates the shortest
Euclidean distance from points on one signal (points on a
period in a given subject) to a reference signal (the average
morphology in a given subject like the red lines in Figure 5).
That can be used to measure the similarity between periods
in one subject (morphology convergence). Note that CTE is a
better metric to measure similarity than the variance, because
the variance can penalize heavily small misalignments between
periods, as depicted in Figure 2.

III. OPTIMIZING THE CAMERA CONFIGURATION

A comprehensive study of camera configuration for biomet-
rics application is still missing. In Table I, we summarize the
camera configurations in the SoA. Without a thorough study,
it is hard to achieve optimal signal quality for authentication.

A. Camera Parameters Optimization

Two camera parameters have been analyzed in the SoA:
the frame rate and resolution. The frame rate represents the
sampling frequency of a PPG signal. According to [7], a frame
rate between [30 Hz, 60 Hz] leads to comparable PPG signals
as using frame rates above 60 Hz. To reduce the computation

load in our system, we use a frame rate of 30 frames per
second (fps). Regarding the resolution, selecting the lowest
value allows real-time processing without affecting the signal
quality much (given the millions of pixels present).

There are, however, two camera configurations that have not
been analyzed much but affect the quality of cardiac signals:
light exposure and image processing.

1) Light exposure: Four important parameters are related to
light exposure: flashlight intensity, aperture, ISO, and shutter
speed. They affect the pixel intensity in cameras. Whereas,
in most smartphones, flashlight intensity and aperture (impact
the amount of incoming light) are fixed.

We can only configure ISO and shutter speed. ISO controls
the pixel’s sensitivity to light. Shutter speed controls the
shutter open interval, during which cameras integrate the light
energy in each pixel to calculate its value. We should assess all
ISO and shutter speed combinations and select the best one for
our system. Taking the smartphone Moto G7 Plus for example,
there are four values for both ISO (100, 200, 400, 800) and
shutter speed ( 1

200 ,
1

400 ,
1

800 ,
1

2000 ). For each combination, we
use 10 subjects to collect 120 seconds of PPG signals. To
determine the best combination, we adopt PPG amplitude
(SNR) as the metric. The experiment results are shown in
Table II. In high light exposure (ISO: 800, shutter speed:
1

200 ), PPG signals saturate most of the time, which renders
an almost zero PPG amplitude (0.0102). In low light exposure
(ISO: 100, shutter speed: 1

2000 ), pixels are insensitive to light
change, which renders a low PPG amplitude (2.3122). Among
all combinations, ISO 100 and shutter speed 1

400 provide the
highest PPG amplitude. Therefore, on Moto G7 Plus, these
values are optimal. The proper configurations of ISO and
shutter speed on other smartphones can be identified similarly.

2) Image processing: Due to the differences between cam-
eras and human eyes, a camera-captured raw picture is distinct
from the perception of human eyes. To mimic human eyes’
perception, engineers introduce the parameters white balance
and gamma correction to modify the raw RGB values in a
picture, which leads to the distortion in camera PPG signals.

White balance adjusts color intensity to render “correct”
colors to human eyes. It depends on the color temperature.
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(a) Overlapping periods under default con-
figuration (CTE=4.67).
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(b) Overlapping periods under our configu-
ration (CTE=3.42).
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(c) Overlapping periods under PPG sensor
(CTE=3.44).

Figure 5: Comparison of overlapping periods. The red lines represent the average of all overlapping periods.
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Figure 6: The CTE and amplitude
change along with pressure levels.

Figure 3 shows modified RGB values for the white color in
different color temperatures [6]. We can see that except for
color temperatures in [6500K, 6600K], the intensity of two
colors will be attenuated under white light. This will clip the
signal and lose all information. To gain the raw RGB values,
we set the white balance to 6600K.

Gamma correction is a non-linear mapping that maps the
light intensities in cameras to those in human eyes. A camera’s
response to light changes is linear, while human eyes are
sensitive to light changes in a dark environment but resilient
in bright scenarios, as shown in Figure 4. To approximate
human eyes, smartphones apply gamma encoding. Its equation
is Y = 255 (X/255)

γ , where X is the raw pixel intensity, γ is
a constant and Y is the pixel intensity in human eyes. In most
cases, our cameras use γ = 0.45 [8]. From the equation, we
can observe that the non-linear mapping for human eyes am-
plifies the light change by different factors at different intensity
levels. The fluctuation of the pixel intensity level is inevitable
during the data collection due to the fingertip movements or
pressure changes. Therefore, the PPG morphology from the
same subject will suffer a considerable distortion. To restore
the linear mapping, we set γ to 1.

B. Region of Interest Selection

Among all pixels in camera, only a fraction can capture the
changes caused by cardiac signals. Some studies select the best
areas by analyzing each pixel [4], but such a process is too
demanding to attain a real-time response on the smartphone.
In this work, we use only the central 1

4 region of each frame
as our region of interest (ROI). This can avoid the influence of
the ambient light change on the outer regions in each frame.
Furthermore, to exclude noisy pixels in the RoI, we use α-
trimmed mean filtering [9], with α = 0.1 to consider only the
mean of pixel values between the 10th and 90th percentile.

C. Preliminary Evaluation

We use the camera of Moto G7 Plus and optimize the con-
figuration in the last row of Table I. To showcase the improve-
ment of our camera configuration, we perform measurements
with a dedicated PPG sensor (SDPPG from APMKorea) as a
baseline, the default camera configuration (optimized for pho-
tography like [10]), and our optimized camera configuration.

The metrics for the improvement evaluation are PPG am-
plitude and CTE. Given that the PPG amplitude is sensitive
to the spectrum (infrared/visible) and system circuit (PPG
sensor/camera), the comparison between the PPG sensor and

Table III: Notations of our used pressure levels.
Notations L1 L2 L3 L4 L5 L6 L7 L8
Pressure (newton) 0 3 6 9 12 15 18 21

a camera would be unfair. Accordingly, we only compare
the PPG amplitude between different camera configurations.
The default configuration (ISO 100 and shutter speed 1

721 for
light skin; ISO 100 and shutter speed 1

611 for dark skin) has
a pixel intensity of around 5.6. Our camera configuration,
instead, reaches a pixel intensity of about 11. Thus, we can
conclude that with our optimized camera configurations, the
improvement in the PPG amplitude is notable.

The CTE measures the similarity between periods. As an
example, we demonstrate the CTE comparison for one subject,
as shown in Figure 5. The overlapping process consists of two
steps. First, we normalize the duration and amplitude of each
period to 100. Second, we set the starting point of all periods
to (0,0) to align them. We can see that the CTE under the
default configuration is higher and the periods are diverging,
making it hard for a system to learn the morphologies of the
signals. The CTE under our camera configuration is reduced
by 27% and the periods are converging, leading to more stable
morphologies. In the end, compared to the CTE obtained under
our optimized camera configurations, the CTE in the PPG
sensor is slightly higher and the periods are slightly looser.
This demonstrates that our configuration can compensate for
the camera disadvantages to obtain a close resemblance to the
PPG sensor. More evaluations of our camera configuration will
be presented in Section VII-A.

IV. OPTIMIZING THE PRESSURE ON CAMERA

PPG signals are generated by the blood flow. The contacting
pressure on sensors can change the blood flow through altering
the cross-section area of the fingertip’s blood vessels. In this
section, we study its impact on PPG morphologies.

A. Pressure Influence

We study the influence of pressure through experiments.
We put the smartphone on a scale with the rear camera facing
up and ask a subject to put his fingertip on the camera. At
the starting state, no active pressure is applied to the camera.
After every 45 seconds, we add a 3 Newton (i.e., 3 kg ·m/s2)
pressure to the subject’s fingertip until the pressure reaches 21
N. The notation of each pressure level is shown in Table III.
This pressure range can simulate situations from no pressure to
over-pressure. Figure 7 illustrates the pressure’s impact on the
amplitude and morphology of PPG signals. The corresponding
CTE and amplitude values are shown in Figure 6.
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Figure 7: In our experiment, we apply 8 pressure levels on the fingertip of a subject in an increasing order from contact
without active pressure to 21 N (2.1 kg). The increased pressure step is 3 N (300 g). Each pressure level lasts for 45
seconds. Red dots on the PPG signal indicates the end of a pressure level.

Figure 8: The online feedback inter-
face during signal collection of our
smartphone APP.

Under pressure level L1 (before the first red dot in Figure 7),
without active pressure, parts of the fingertip surface detach
from the camera. When a subtle movement happens, the
detaching surface notably affects the light intensity on the
camera. Thus, we can see that, within level L1, the PPG
amplitude is low and CTE is high (divergent periods). This
PPG signal prohibits our system to learn its morphology.

Under pressure levels L2 and L3 (from the first red dot to
the third red dot), the added pressure on camera facilitates the
PPG amplitude and CTE. Especially under pressure L3, the
resulted PPG amplitude is close to the highest value and the
CTE is the lowest. These convergent periods with high SNR
will help the system to abstract the PPG morphologies.

Under pressure level L4, the PPG amplitude reaches the
maximum value, but the CTE increases visibly. Compared with
morphologies obtained under pressure L2 and L3, the mor-
phology under L4 is distorted. The right part of these periods
are lifted, making the morphology distinct from previous ones.
The fingertip under L4 is slightly over-pressed because we will
see later that the morphologies from over-pressed scenarios are
similar to the morphology obtained under L4.

After pressure level L4, larger pressure changes the blood
flow by suppressing the vessels. The camera cannot sense
the visible fluctuation of pixel intensity as before. The PPG
amplitude swiftly decreases to around 2 in the end. The low
PPG amplitude makes periods vulnerable to noise, amplifying
the discrepancy between periods. Thus, there is an increasing
CTE trend in the last four pressure levels. Along with the
increasing pressure, although the general PPG morphologies
are consistent, their shapes become more and more “square”.
These distorted morphologies are far away from reflecting the

real situation of blood flow and cardiac system.

B. Pressure Control
From the analysis of pressure influence, we see that a sub-

ject generates multiple morphologies under various pressures.
Without pressure control, those morphologies from the legiti-
mate subject can increase the chances for attackers to breach
the authentication system. Thus, controlling the pressure at the
best level is essential for camera-based authentication systems.

First, we need to determine the best pressure for each sub-
ject. Given the situation in Figure 7, pressure levels generate
two groups of morphologies: the triangle shape and trapezoid
shape morphology. Within one group of morphologies, the
best pressure level is the one with the highest amplitude and
lowest CTE. Whereas, between morphology groups, we must
compare the authentication performances for best pressures in
each group. Accordingly, we form a dataset with 10 subjects’
pressure processes as Figure 7. For each subject, we select the
pressure providing the highest amplitude and lowest CTE as
the best one in triangle (L3 in Figure 7) and trapezoid group
(L4 in Figure 7). The first 80% of the best pressure durations
are for the training and the rest are for testing. Exploiting
the authentication method in [5], we obtain the BAC result of
triangle shape reaches 93.47%, while that of trapezoid shape
only reaches 85.89%. Consequently, we choose the triangle
morphology with the highest amplitude and lowest CTE as
the best pressure level (L3 in Figure 7) for each subject.

Second, we must stabilize the pressure at that level during
the data collection. To avoid the unconscious fingertip move-
ment or pressure change, we design an Android APP as shown
in Figure 8 to assist users during the data collection. After
obtaining the best pressure level, a subject can know their
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(a) Our CamDefault dataset.
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(b) Our CamConf dataset.
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(c) Our CamPress dataset.

Figure 9: The period numbers of morphologies in our datasets. h′′
1 , h′′

2 and h′′
3 are three dominant morphologies in our datasets; others are discarded.

PPG amplitude and morphology through the APP’s real-time
feedback in Figure 8. Then in both the training and the testing
phases, a subject can stabilize the pressure to achieve similar
PPG amplitude and morphology assisted by the APP. When
there is abrupt fingertip movement or pressure change, the
subject can easily adjust the PPG signal back.

V. AUTHENTICATION METHOD

We present our feature collection and authentication method
briefly. More details can be found in our previous work [5].

In feature collection, let s(t) denote the collected PPG
signal. To stabilize s(t), we only preserve the spectrum of
s(t) within [2f, 5.5f ] (f is the heartbeat frequency) to obtain
h(t). To accentuate subtle fiducial points on h(t), we obtain
its second derivative h′′(t), which has three dominant mor-
phologies h′′

1 , h′′
2 , and h′′

3 , as shown in Figure 7 in [5]. In our
three evaluation datasets (cf. Section VI), those morphologies
contribute more than 95% periods in each dataset, as shown
in Figure 9. In our system, we only exploit h′′

1 , h′′
2 , and h′′

3 .
There are two other observations from Figure 9. First, from

the CamDefault dataset to the CamPress dataset, we observe
a clear increase in period number, which reflects the im-
provement in signal quality. More periods with a better signal
quality help authentication considerably. Second, two subjects
(#36 and #58) have no periods detected in the CamDefault
dataset. This is because signal from those subjects saturated
constantly without camera configuration and pressure control.
More analysis on our datasets are introduced in Section VII-A.

We extract features from both h(t) and h′′(t). The details
of feature collection are illustrated in Section 4.2 in [5]. In
authentication, we refine our features by PCA to gain new
informative ones. After transferring samples on new features,
we find that sometimes data points from one subject can have a
few clusters. Thus, we apply wavelet clustering [11] to identify
all clusters. At last, we select Mahalanobis distance [12]
to measure the distance from new coming samples to all
clusters. According to the distance, our system can verdict
if the samples belong to the legitimate subject.

VI. BUILDING THE DATASET

To evaluate the performance of our methods, we first need
suitable datasets. Existing ones such as in [4], [5] have a
small population of subjects and narrow age range, which are
not enough for thorough evaluation. In this work, the subject
details are listed in Table IV. Compared with others such as
[4], [5], we have more and better diverse subjects: our subject
population (58) is the largest; the gender distribution is more

Table IV: Subject details for different PPG authentication systems.

Studies Sensor # Users # Females Age range
(mean/STD)

[10] PPG sensor 12 4 22–51 (-/-)
[13] PPG sensor 42/32 - - (-/-)
[4] camera 25 6 25–33 (-/-)
[5] camera 43 16 12–79 (36.7/14.9)

CamPressID camera 58 22 15–80 (40.2/14.6)

balanced (22 females); our age range is wide enough to cover
most smartphone users, while the mean (40.2) and standard
deviation (14.6) can guarantee the subject age spreading wide
enough to prevent overfitting on a narrow range of users. With
these subjects, we build three datasets1:

• CamDefault dataset: The data collection runs under the
default camera parameters and without pressure control.
This dataset can represent the data collection of most SoA
authentication systems like [10].

• CamConf dataset: The data collection runs under our
optimized camera configuration.

• CamPress dataset: The data collection runs under our op-
timized camera configuration and with pressure control.

In our data collection, we use a smartphone Moto G7 plus
to extract PPG signals from all the subjects while they are sit-
ting. Each dataset contains a 4-minute PPG recording for all
subjects. 80% of each recording is used for the training while
the rest 20% of each recording is used for the testing.

VII. EVALUATION

In this section, we evaluate our datasets and authentication
methods. Among SoA camera-based authentication systems,
we select CardioID [5] and CardioCam [4] for comparison.

• CardioID [5]: It adopts two types of sensors: camera and
PPG sensor. The sufficient number of subjects (43) and
wide age distribution (average: 36.7, standard deviation:
14.9, and range: 12–79) guarantees that the result gener-
alizes well. The camera-based result (CardioID-Camera)
helps us to evaluate the improvement of our camera
configuration and pressure control. The PPG sensor-based
result (CardioID-PPG) enables us evaluate how close our
CamPressID approaches the result of PPG sensors.

• CardioCam [4]: The number of subjects in this work is
25, which is only about 45% of ours. Thus, it is unfair
to generalize their results in our evaluation directly. For
comparison, we re-implement its signal processing chain
(filters, features and PCA) and apply them to our datasets.

1The data collection activities related to these datasets have been approved
by the Human Research Ethnic Community (HREC) in our University.



Table V: Performance comparison between multi- and single-morphology systems. NDS is the number of detectable subjects.

Method/System Dataset Acquisition speed Acquisition rate NDS PPG amplitude CTE

Multi-morphology1
CamDefault 0.73 (10167/13920) 95.15% (10167/10685) 55 4.03 4.82
CamConf 1.06 (14774/13920) 98.73% (14774/14964) 57 9.41 3.74
CamPress 1.13 (15755/13920) 99.17% (15755/15886) 58 9.41 2.32

Single-morphology2
CamDefault 0.25 (3468/13920) 32.61% (3468/10634) 40 4.98 4.73
CamConf 0.62 (8695/13920) 62.62% (8695/13885) 48 9.44 3.34
CamPress 0.79 (10977/13920) 69.61% (10977/15769) 48 9.42 2.32

1: Studies exploit multiple morphologies in PPG authentication, such as CardioID [5] and CamPressID in this paper.
2: Studies exploit only one morphology in PPG authentication, such as Seeing Red [3] and CardioCam [4].

A. Dataset Evaluation
We employ five metrics to evaluate our datasets: acquisition

speed, acquisition rate, NDS (number of detectable subjects),
PPG amplitude and CTE. PPG amplitude and CTE have been
introduced in Section II. Let S′ denote the useful periods
with morphologies h′′

1 , h′′
2 , h′′

3 and S denote all detectable
periods. The acquisition speed is S′ collected per second; the
acquisition rate is S′/S. The acquisition speed and acquisition
rate can reflect the system’s robustness for data collection,
which is the basis of a real-time system (less authentication
delay). NDS shows how many subjects with S′ > 20 can
be detected by a system (subjects with less S′ provide little
information to learn). It shows the user inclusion of a system.
In an ideal real-time system, the acquisition rate should be
1; the acquisition speed, NDS and PPG amplitude should be
high, and the CTE should be low. There are two ways of
data collection: single-morphology and multi-morphology. The
single-morphology system is commonly used in SoA; in this
work, we re-implement the data collection in CardioCam as the
representative of single-morphology systems. Our CamPressID
is representative of multi-morphology systems. The details of
the comparison are given in Tables V.

First, we compare the multi-morphology (CamPressID) and
the single-morphology (CardioCam) systems under all setups.
Here, we fully focus on the same rows in different systems.
From single-morphology to multi-morphology, our metrics
behave in three ways: 1) increasing remarkably on acquisition
speed, acquisition rate, NDS; 2) increasing slightly on CTE; 3)
staying almost the same on PPG amplitude. This is because the
stringent requirements on the PPG morphology in CardioCam
(the morphology in Figure 8 in [4]) filter out periods with
non-conforming morphologies. Therefore, its datasets have
fewer periods, which results in lower first three metrics, and
more unified morphology, which results in a lower CTE. For
PPG amplitude, the advantages of CardioCam are visible in
CamDefault datasets and negligible in CamConf and CamPress
datasets. This is because only some good periods in noisy
(CamDefault) datasets meet the requirements of CardioCam,
while most periods in CamConf and CamPress datasets do.
Given the higher CTE and more periods in our CamPressID
system, it is more challenging for our system to perform well.

Second, we analyze the difference between datasets in each
system. This analysis fully focuses on the different rows in
one system. It is clear to see the significant improvement on
all metrics from CamDefault datasets to CamConf datasets
in each system. This reflects the contribution of our camera
configuration on the signal quality. From CamConf datasets
to CamPress datasets, except for CTE, the improvements

on other metrics are limited. This is because our pressure
control aims at obtaining stable morphology, which leads to a
significant decline in CTE. The morphology, at which periods
stabilize, is easy for most systems to detect. Therefore, the first
three metrics also increase slightly. Since the pressure control
prioritizes CTE over PPG amplitude, our systems obtain better
CTE at the cost of PPG amplitude decline. In general, from
CamDefault datasets to CamPress datasets, the improvements
are comprehensive and significant, showing the contribution
of our camera configuration and pressure control.

B. Providing the Right Context for Final Evaluation

In PPG authentication, the small intra-distance (low CTE)
and large inter-distance (small subject number) allow authen-
tication systems performs well. Compared with CardioID-
Camera, CamDefault dataset is 19% lower in CTE (5.97 vs.
4.8) and 35% more in subject number (43 vs. 58). Com-
pared with CardioID-PPG, CamPress dataset is 46% lower
in CTE (4.29 vs. 2.32) and 66% more in subject number (35
vs. 58). Considering the percentage gain in subject number
overwhelms that in CTE, our datasets are more challenging.

We cannot fully reproduce the datasets and results in Car-
dioCam, since we do not have their same smartphone and can-
not find their detailed camera configuration. In our evaluation,
we re-implement the signal processing chain of CardioCam
and then evaluate its performance with our datasets. Our goal
is to get as close as possible to CardioID-PPG (93.7%) with
our CamPress dataset. In authentication, an improvement in the
order of 5%, or above, is already considered significant.

C. Authentication Evaluation
From the results given in Tables V, we can see that except

for the CamPress datasets under both setups, NDS cannot reach
58. In the evaluation, if we only average the BACs on de-
tectable subjects, it is unfair for our system because we detect
more subjects. Therefore, we also include the undetectable
subjects into the calculation to make a fair comparison among
all systems. In this case, we assign every undetectable subject
with 0.5 BAC, that is obtained under two assumptions: 1)
systems will reject all testing periods for undetectable subjects,
which is reasonable for a system lacking the information of
these subjects; 2) the data from undetectable subjects will not
confuse authentication systems to degrade the results of other
detectable subjects, which is the ideal scenario. Therefore, the
true positive rate is 0, and true negative rate is 1, which renders
BACs of these subjects are 0.5. Consequently, for every dataset
we present both results with detectable/all subjects.

Figure 10a shows the performance of the camera and
PPG sensor datasets in our baseline [5] and the datasets in
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Figure 10: Comparison among our method, [5] and [4]. CamPressID.D/A
stand for results with detectable/all subjects in CamPressID. CardioCam.D/A
stand for results with with detectable/all subjects in [4].

our system. In the CamDefault dataset, our system has the
lowest performance among all datasets. Even with a partial
camera configuration, CardioID-Camera can perform better
than it. With the CamConf dataset, the BAC obtained in our
system surges to above 0.9, which is 10% higher than the
previous one. Our camera configuration boosts the perform
remarkably through enhancing the signal quality. With the
CamPress dataset, our system performs similarly as one with
the CamConf dataset and is inferior (about 3%) to CardioID-
PPG. There are two reasons for the similar performance of
our system in the CamConf and CamPress datasets. First,
the performance limit of our system on our datasets is just
above 0.9. This is because our CamPress dataset is harder
than CardioID-PPG (discussed in Section VII-B), and the
performance gap between CardioID-PPG and our system in
the CamPress dataset is relatively small. Second, the majority
pressure in the CamConf dataset is the best pressure. During
the data collection in the CamConf dataset, 62.1% (36/58)
subjects apply their best pressures in most of time.

In general, the improvement of the CamPress dataset over
the CamDefault dataset is significant. Moreover, based on
our optimized camera configuration and pressure control, our
CamPressID system is superior to the system with a partial and
simple camera configuration (CardioID-Camera) and close to
the system with a dedicated PPG sensor (CardioID-PPG).

Figure 10b shows the performances of our system and
CardioCam [4] on our datasets. There are two points to notice.
First, the performance gain of our system over CardioCam is
noticeable. The gain with detectable subjects is about 10%,
while the gain with all subjects is about 15%. The reasons
are explained in [5]. Second, both our system and CardioCam
have a significant improvement (more than 10%) from the
CamDefault to CamPress dataset. This shows the potential of
CamPressID to facilitate different authentication methods.

VIII. RELATED WORK

Camera-based PPG authentication systems. CardioCam [4]
is the first work in this area. To obtain reliable cardiac
patterns, the authors develop a gradient-based method to adjust
flashlight and ISO and select sensitive pixels in each frame.
CardioCam achieves a BAC of 95.8% based on single-period
testing. We implement its signal processing chain as our
baseline. CardioID [5], as our other baseline, considers a

PPG sensor and a camera for authentication. They adopt fixed
camera configuration without optimization. CardioID achieves
a BAC of 93% with the PPG sensor and 82% with the
camera. In CamPressID, we optimize the camera configuration
and pressure for improving the system performance. Besides,
Seeing Red [3] also aims at PPG authentication based on
smartphone camera. They adopt fiducial and spectral features
and achieve 20% EER with 15 subjects. Due to the low subject
number, we do not use them as our baselines.

Pressure control for better PPG signals. There is no paper
studying the pressure influence on camera-based PPG authen-
tication. We only find two papers for healthcare considering
pressure during PPG measurement. Chandrasekhar et al. [14]
study the influence of contact pressure on a PPG sensor for
blood pressure measurement. They use the pulse arrival time
to estimate the blood pressure. PhO2 [15] uses a smartphone
mounted by an add-on to measure blood oxygen level. To
mitigate the contact pressure impact, they design a light-based
pressure detection algorithm by monitoring the PPG signal
amplitude. In these papers, instead of morphology, they only
focus on a part of the PPG signal. Moreover, their devices are
tailored for the infrared spectrum. Thus, we cannot use their
studies for authentication on normal smartphone cameras.

IX. CONCLUSIONS

The lack of optimizing camera configuration and pressure
control is preventing current camera-based PPG authentication
systems to achieve high accuracy. In CamPressID, we studied
the impact of camera configuration and pressure control, and
optimize them. In the end, CamPressID reached 90.6% BAC,
approximating the performance of a dedicated PPG sensor,
with a diverse 58 subjects dataset.
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